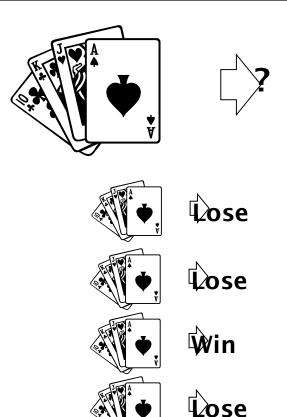
An Introduction to Markov Chain Monte Carlo

Teg Grenager July 1, 2004

- Motivation
 - The Monte Carlo Principle
- Markov Chain Monte Carlo
- Metropolis Hastings
- Gibbs Sampling
- Advanced Topics

Monte Carlo principle

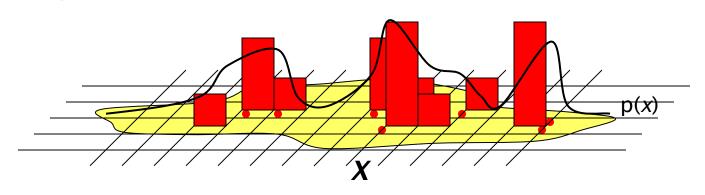
- Consider the game of solitaire: what's the chance of winning with a properly shuffled deck?
- Hard to compute analytically because winning or losing depends on a complex procedure of reorganizing cards
- Insight: why not just play a few hands, and see empirically how many do in fact win?
- More generally, can approximate a probability density function using only samples from that density



Chance of winning is 1 in 4!

Monte Carlo principle

- Given a very large set X and a distribution p(x) over it
- We draw i.i.d. a set of N samples
- We can then approximate the distribution using these samples



$$p_N(x) = \frac{1}{N} \sum_{i=1}^{N} 1(x^{(i)} = x) \xrightarrow[N \to \infty]{} p(x)$$

Monte Carlo principle

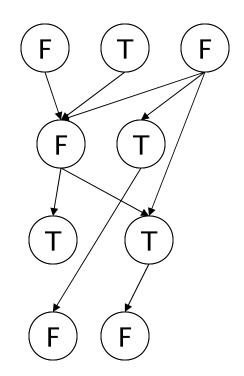
We can also use these samples to compute expectations

$$E_N(f) = \frac{1}{N} \sum_{i=1}^{N} f(x^{(i)}) \underset{N \to \infty}{\to} E(f) = \sum_{x} f(x) p(x)$$

And even use them to find a maximum

$$\hat{x} = \underset{x^{(i)}}{\operatorname{arg\,max}}[p(x^{(i)})]$$

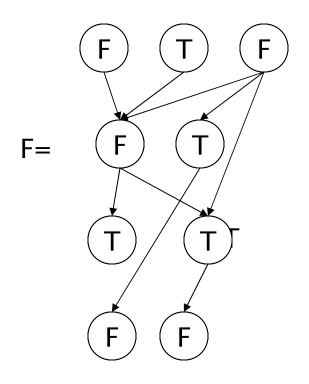
Example: Bayes net inference



Sample 1: FTFTTTFFT Sample 2: FTFFTTTFF etc.

- Suppose we have a Bayesian network with variables X
- Our state space is the set of all possible assignments of values to variables
- Computing the joint distribution is in the worst case NP-hard
- However, note that you can draw a sample in time that is linear in the size of the network
- Draw N samples, use them to approximate the joint

Rejection sampling



Sample 1: FTFTTTFFT reject Sample 2: FTFFTTTFF accept etc.

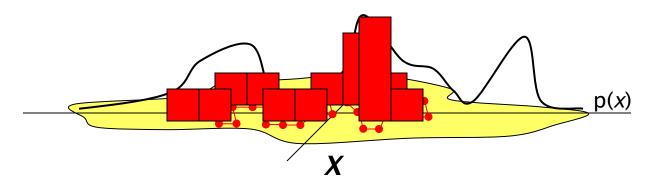
- Suppose we have a Bayesian network with variables X
- We wish to condition on some evidence Z\(\overline{I}\)X and compute the posterior over Y=X-Z
- Draw samples, rejecting them when they contradict the evidence in Z
- Very inefficient if the evidence is itself improbable, because we must reject a large number of samples

Rejection sampling

- More generally, we would like to sample from p(x), but it's easier to sample from a proposal distribution q(x)
- q(x) satisfies $p(x) \square M q(x)$ for some M < Y
- Procedure:
 - Sample $x^{(i)}$ from q(x)
 - Accept with probability $p(x^{(i)}) / Mq(x^{(i)})$
 - Reject otherwise
- The accepted $x^{(i)}$ are sampled from p(x)!
- Problem: if M is too large, we will rarely accept samples
 - In the Bayes network, if the evidence Z is very unlikely then we will reject almost all samples

Markov chain Monte Carlo

- Recall again the set X and the distribution p(x) we wish to sample from
- Suppose that it is hard to sample p(x) but that it is possible to "walk around" in X using only local state transitions
- Insight: we can use a "random walk" to help us draw random samples from p(x)



Markov chains

• Markov chain on a space X with transitions T is a random process (infinite sequence of random variables) $(x^{(0)}, x^{(1)}, ..., x^{(t)}, ...)$ X that satisfy

$$p(x^{(t)} | x^{(t-1)},...,x^{(1)}) = T(x^{(t-1)},x^{(t)})$$

- That is, the probability of being in a particular state at time t given the state history depends only on the state at time t-1
- If the transition probabilities are fixed for all t, the chain is considered homogeneous

$$T = \begin{pmatrix} 0.7 & 0.3 & 0 \\ 0.3 & 0.4 & 0.3 \\ 0 & 0.3 & 0.7 \end{pmatrix} \begin{pmatrix} 0.4 \\ x_2 \\ 0.3 \\ 0.3 \\ 0.3 \\ x_3 \end{pmatrix} \begin{pmatrix} 0.4 \\ x_2 \\ 0.3 \\ 0.3 \\ 0.3 \\ 0.7$$

Markov Chains for sampling

In order for a Markov chain to useful for sampling p(x), we require that for any starting state $x^{(1)}$

$$\mathsf{p}_{\mathsf{x}^{(1)}}^{(t)}(x) \mathop{\to}_{t \to \infty} \mathsf{p}(x)$$

• Equivalently, the stationary distribution of the Markov chain must be p(x)

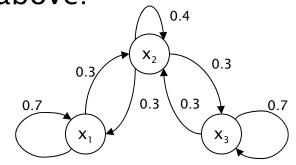
$$[pT](x) = p(x)$$

- If this is the case, we can start in an arbitrary state, use the Markov chain to do a random walk for a while, and stop and output the current state x^(t)
- The resulting state will be sampled from p(x)!

Stationary distribution

Consider the Markov chain given above:

T=
$$\begin{pmatrix} 0.7 & 0.3 & 0 \\ 0.3 & 0.4 & 0.3 \\ 0 & 0.3 & 0.7 \end{pmatrix}$$



The stationary distribution is

$$\begin{pmatrix}
0.33 & 0.33 & 0.33 \\
0.7 & 0.3 & 0_{=} \\
0.3 & 0.4 & 0.3 \\
0 & 0.3 & 0.7
\end{pmatrix}$$

$$\begin{pmatrix}
0.7 & 0.3 & 0_{=} \\
0.3 & 0.4 & 0.3 \\
0 & 0.3 & 0.7
\end{pmatrix}$$

■ Some samples: 1,1,2,3,2,1,2,3,32mpirical Distribution:

Ergodicity

- Claim: To ensure that the chain converges to a unique stationary distribution the following conditions are sufficient:
 - *Irreducibility*: every state is eventually reachable from any start state; for all $x,y \square X$ there exists a t such that $p_x^{(t)}(y) > 0$
 - Aperiodicity: the chain doesn't get caught in cycles; for all $x,y \square X$ it is the case that

$$gcd\{t: p_x^{(t)}(y) > 0\} = 1$$

- The process is ergodic if it is both irreducible and aperiodic
- This claim is easy to prove, but involves eigenstuff!

Markov Chains for sampling

Claim: To ensure that the stationary distribution of the Markov chain is p(x) it is sufficient for p and T to satisfy the detailed balance (reversibility) condition:

$$p(x)T(x,y) = p(y)T(y,x)$$

Proof: for all y we have

$$[pT](y) = \sum_{x} p(x)T(x,y) = \sum_{x} p(y)T(y,x) = p(y)$$

And thus p must be a stationary distribution of T

Metropolis algorithm

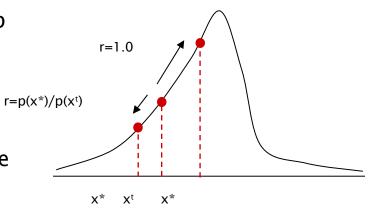
- How to pick a suitable Markov chain for our distribution?
- Suppose our distribution p(x) is easy to sample, and easy to compute up to a normalization constant, but hard to compute exactly
 - e.g. a Bayesian posterior P(M|D) P(D|M)P(M)
- We define a Markov chain with the following process:
 - Sample a candidate point x^* from a *proposal distribution* $q(x^*|x^{(t)})$ which is *symmetric*: q(x|y)=q(y|x)
 - Compute the *importance ratio* (this is easy since the normalization constants cancel)

$$r = \frac{p(x^*)}{p(x^{(t)})}$$

With probability min(r,1) transition to x*, otherwise stay in the same state

Metropolis intuition

- Why does the Metropolis algorithm work?
 - Proposal distribution can propose anything it likes (as long as it can jump back with the same probability)
 - Proposal is always accepted if it's jumping to a more likely state
 - Proposal accepted with the importance ratio if it's jumping to a less likely state
- The acceptance policy, combined with the reversibility of the proposal distribution, makes sure that the algorithm explores states in proportion to p(x)!
- Now, network permitting, the MCMC demo...



Metropolis convergence

- Claim: The Metropolis algorithm converges to the target distribution p(x).
- Proof: It satisfies detailed balance
 - For all $x,y \square X$, wlog assuming $p(x) \square p(y)$

$$p(x)T(x,y) = p(x)q(y \mid x) \qquad \text{candidate is always} \\ = p(x)q(x \mid y) \qquad \text{q is symmetric}$$

$$= p(y)q(x \mid y) \frac{p(x)}{p(y)}$$

$$= p(y)T(y,x) \qquad \text{transition prob b/c } p(x)\Box p(y)$$

Metropolis-Hastings

- The symmetry requirement of the Metropolis proposal distribution can be hard to satisfy
- Metropolis-Hastings is the natural generalization of the Metropolis algorithm, and the most popular MCMC algorithm
- We define a Markov chain with the following process:
 - Sample a candidate point x^* from a proposal distribution $q(x^*|x^{(t)})$ which is not necessarily symmetric
 - Compute the importance ratio:

$$r = \frac{p(x^*) q(x^{(t)} | x^*)}{p(x^{(t)}) q(x^* | x^{(t)})}$$

• With probability min(r,1) transition to x^* , otherwise stay in the same state $x^{(t)}$

MH convergence

- Claim: The Metropolis-Hastings algorithm converges to the target distribution p(x).
- Proof: It satisfies detailed balance
 - For all $x,y \square X$, wlog assume $p(x)q(y|x) \square p(y)q(x|y)$

$$p(x)T(x,y) = p(x)q(y \mid x)$$
 candidate is always accepted b/c p(x)q(y|x)\(\pred{D}p(y)q(x|y)\)
$$= p(x)q(y \mid x) \frac{p(y)q(x \mid y)}{p(y)q(x \mid y)}$$

$$= p(y)q(x \mid y) \frac{p(x)q(y \mid x)}{p(y)q(x \mid y)}$$
 transition prob b/c p(x)q(y|x)\(\pred{D}p(y)q(x|y)

Gibbs sampling

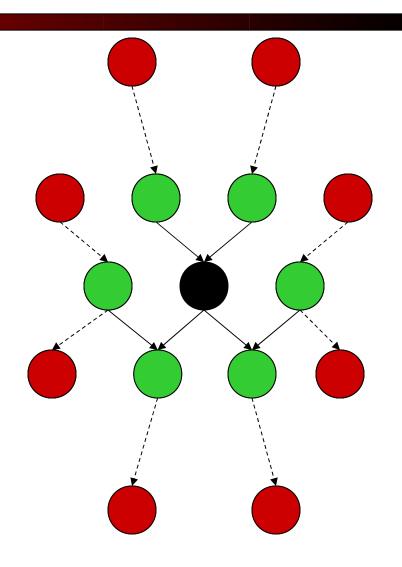
A special case of Metropolis-Hastings which is applicable to state spaces in which we have a factored state space, and access to the full conditionals:

$$p(x_j | x_1,...,x_{j-1},x_{j+1},...,x_n)$$

- Perfect for Bayesian networks!
- Idea: To transition from one state (variable assignment) to another,
 - Pick a variable,
 - Sample its value from the conditional distribution
 - That's it!
- We'll show in a minute why this is an instance of MH and thus must be sampling from the full joint

Markov blanket

- Recall that Bayesian networks encode a factored representation of the joint distribution
- Variables are independent of their non-descendents given their parents
- Variables are independent of everything else in the network given their Markov blanket!
- So, to sample each node, we only need to condition its Markov blanket $p(x_i | MB(x_i))$



Gibbs sampling

More formally, the proposal distribution is

$$q(x^* | x^{(t)}) = \begin{cases} p(x_j^* | x_{-j}^{(t)}) \mathbf{x}_{-j}^* = \mathbf{x}_{-j}^{(t)} \\ 0 & \text{otherwise} \end{cases}$$

The importance ratio is

$$r = \frac{p(x^{*}) q(x^{(t)} | x^{*})}{p(x^{(t)}) q(x^{*} | x^{(t)})}$$

$$= \frac{p(x^{*}) p(x_{j}^{(t)} | x_{-j}^{(t)})}{p(x^{(t)}) p(x_{j}^{*} | x_{-j}^{*})}$$

$$= \frac{p(x^{*}) p(x_{j}^{(t)}, x_{-j}^{(t)}) p(x_{-j}^{*})}{p(x^{(t)}) p(x_{j}^{*}, x_{-j}^{*}) p(x_{-j}^{(t)})}$$

$$= \frac{p(x_{-j}^{*})}{p(x_{-j}^{(t)})} = 1$$

So we always accept!

Dfn of conditional probability

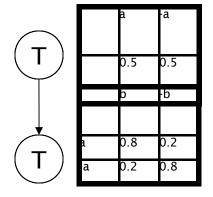
Dfn of proposal

distribution

B/c we didn't change other vars

Gibbs sampling example

Consider a simple, 2 variable Bayes net



		b	-b
a	1	1	
·a	1	1	

- Initialize randomly
- Sample variables alternately

Practical issues

- How many iterations?
- How to know when to stop?
- What's a good proposal function?

Advanced Topics

- Simulated annealing, for global optimization, is a form of MCMC
- Mixtures of MCMC transition functions
- Monte Carlo EM (stochastic E-step)
- Reversible jump MCMC for model selection
- Adaptive proposal distributions

Cutest boy on the planet

