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Learning (in this context)

eProcess
e Input: dataset and prior information
e Output: Bayesian network

+Prior information: background knowledge
e a Bayesian network (or fragments of it)
e time ordering
e prior probabilities

Represents

*P(E,B,R,S,C
@D @D ™ )
“:> « Independence
o o Statements
« Causality
O
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Data +
Prior information

‘ Why learning?

eFeasibility of learning
e Availability of data and computational power
+Need for learning
e Characteristics of current systems and processes
* Defy closed form analysis
=need data-driven approach for characterization
* Scale and change fast
=need continuous automatic adaptation
eExamples:

e communication networks, economic markets, illegal
activities, the brain...
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Why learn a Bayesian network?

+Combine knowledge engineering and statistical
induction

e Covers the whole spectrum from knowledge-intensive
model construction to data-intensive model induction

+More than a learning black-box
e Explanation of outputs
e Interpretability and modifiability

¢ Algorithms for decision making, value of information,
diagnosis and repair

oCausal representation, reasoning, and discovery
e Does smoking cause cancer?
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What will | get out of this tutorial?

+An understanding of the basic concepts behind the
process of learning Bayesian networks from data so that
you can

e Read advanced papers on the subject
e Jump start possible applications

e Implement the necessary algorithms

e Advance the state-of-the-art
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e¢Introduction

»Bayesian networks: a review
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o What are Bayesian networks?
o What can we do with Bayesian networks?
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eParameter learning: Complete data
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el earning causal relationships

o Structure learning: Incomplete data
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Probability 101

+Bayes rule
PWY | X) P(X)
P =
(X 1Y) PY)
+Chain rule

P(Xl,...,Xn):/D(Xl)P(Xz |X1)/D(Xn |X1""'X/7—1)
eIntroduction of a variable (reasoning by cases)

PXIV)=YPX|ZY)PZI|Y)
z
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Representing the Uncertainty in a Domain

#A story with five random variables:

e Burglary, Earthquake, Alarm, Neighbor Call,
Radio Announcement

¢ Specify a joint distribution with 22-7 =31 parameters

maybe...

+An expert system for monitoring intensive care patients

e Specify a joint distribution over 37 variables with
(at least) 237 parameters

no way!!!
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Probabilistic Independence: a Key for
Representation and Reasoning

+Recall that if X and Y are independent given Z then
- AXIZY)=AX|2)
oIn our story...if

e burglary and earthquake are independent
e burglary and radio are independent given earthquake

+then we can reduce the number of probabilities needed
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Probabilistic Independence: a Key for
Representation and Reasoning

oIn our story...if
e burglary and earthquake are independent
e burglary and radio are independent given earthquake

othen instead of 15 parameters we need 8

RAREB-RAREA-AREB-AEIB-AB

RAREB=RAE B RRIEYRE)YRB

Need a language to represent independence statements
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Bayesian Networks

Computer efficient representation of probability
distributions via conditional independence

L Bu,y/ap
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Bayesian Networks

Qualitative part: statistical
independence statements
(causality!)

+ Directed acyclic graph <
(DAG)

e Nodes - random
variables of interest
(exhaustive and mutually \_

e
Earthquake

Bu,y/ar

exclusive states) oQuantithive part: Local
« Edges - direct (causal) probability models. Set
influence of conditional probability
distributions.
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Bayesian Network Semantics
Ced> &> Qualitative part Quantitative part
conditional ocal Unique joint
CORED, independence | oo = distribution
statements Pr‘r?\f;zzllgfy over domain
CO in BN structure

+Compact & efficient representation:
e nodes have <k parents = O(2%n) vs. O(2") params
e parameters pertain to local interactions

i [P(C.A.R,E.B) = P(B)*P(EIB)*P(RIE,B)*P(AIR,B,E)*P(C| A.R,B,E) '
| versus :
:P(C,A,R,E,B) = P(B)*P(E) * P(R|IE) * P(AIB,E) * P(C|A) :
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Monitoring Intensive-Care Patients

The “alarm” network
37 variables, 509 parameters (instead of 237)
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Qualitative part

+Nodes are independent of non-descendants given their
parents
o P(R[E=y,A) = P(R|E=y) for all values of R A,E
Given that there is and earthquake,
| can predict a radio announcement
regardless of whether the alarm sounds

«+d-separation: a graph theoretic criterion
for reading independence statements

Can be computed in linear time
(on the number of edges)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 6




d-separation
+Two variables are independent

if all paths between them are
blocked by evidence Blocked Unblocked

Three cases:
e Common cause

e Intermediate cause

e Common Effect
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Example

o I(X Y/Z)denotes Xand Yare independent given Z

o I(RB)

o ~I(RB/A)
o I(RBIEA) RN
o ~I(RC/B)
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‘ I-Equivalent Bayesian Networks

+Networks are I-equivalent if
their structures encode the same independence
statements

+Theorem: Networks are |-equivalent iff
they have the same skeleton and the same “V” structures

% NOT l-equivalent %
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Quantitative Part

+Associated with each node X; there is a set of conditional
probability distributions P(X||Pa,:©)
o If variables are discrete, © is usually multinomial

@ Burglary

e Variables can be continuous, ® can be a linear Gaussian

e Combinations of discrete and continuous are only
constrained by available inference mechanisms
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What Can We Do with Bayesian
Networks?

+Probabilistic inference: belief update
e PE=YIR=Y,C=Y)

+Probabilistic inference: belief revision
o Argmax 5 Ple, b [ C=Y)

+Qualitative inference
o I(RC| A)

+Complex inference

e rational decision making
(influence diagrams)

e value of information

e sensitivity analysis
«+Causality (analysis under interventions)

Burglary
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Bayesian Networks: Summary

+Bayesian networks:
an efficient and effective representation of probability
distributions

oEfficient:
e Local models
¢ Independence (d-separation)
oEffective: Algorithms take advantage of structure to
e Compute posterior probabilities
e Compute most probable instantiation
e Decision making
+But there is more: statistical induction = LEARNING
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Learning Bayesian networks (reminder)

GECD,
Data + “:>
Prior information CORED
D,
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The Learning Problem

Known Structure | Unknown Structure

Complete Data Statistical Discrete optimization
parametric over structures
estimation (discrete search)

(closed-form eq.)

Incomplete Data Parametric Combined
optimization (Structural EM, mixture
(EM, gradient models....)
descent...)
© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1-24
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B, A
<Y,N,N>
<Y,Y,Y> )
NNY> @& &
<N,Y,Y>
<N,Y,Y>
O &
%
CAD
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,N> ~
<Y,?,Y>
<NNY> & &
<N,Y,?>
<2Y,Y>
O &
%
4D
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,N> ~
<Y,Y,Y>
<NNY> & &
<N,Y,Y>
<N,Y,Y>

@D

@ D

5%
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Learning Problem

Known Structure

Unknown Structure

<?,Y,Y>

<N,Y, 7>

Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,N> ~
<Y,?,Y>
<NNY> & &

@D

@ D

5%
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Known Structure

Unknown Structure

Complete data

Outline F

eIntroduction Incomplete data

e+Bayesian networks: a review

»Parameter learning: Complete data
o Statistical parametric fitting
e Maximum likelihood estimation
e Bayesian inference

eParameter learning: Incomplete data
+Structure learning: Complete data
eApplication: classification

el earning causal relationships
oStructure learning: Incomplete data
+Conclusion
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Example: Binomial Experiment
(Statistics 101)

< N

Head Tail

+When tossed, it can land in one of two positions: Head or Tail

+We denote by 6 the (unknown) probability A(H).

Estimation task:

+Given a sequence of toss samples x[1], x[2], ..., x[M] we
want to estimate the probabilities P(H)=6 and P(T) =1-6

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Statistical parameter fitting

+Consider instances x[1], x[2], ..., x[M] such that
e The set of values that x can take is known iid
e Each is sampled from the same distribution [~ __

_ samples
e Each sampled independently of the rest

+The task is to find a parameter © so that the data can be
summarized by a probability P(x/j]/ © )
e The parameters depend on the given family of probability
distributions: multinomial, Gaussian, Poisson, etc.
e We will focus on multinomial distributions
e The main ideas generalize to other distribution families
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The Likelihood Function

+ How good is a particular 67
It depends on how likely it is to generate the observed

data

L(8:D)=P(D|6)=]]P(xm]|6)

+Thus, the likelihood for the sequence H, T, T, H, H is

AN

L(6:D)=8-(1-0)-(1-0)-0-6

L(O:D)

1 1 1 1
0 0.2 0.4 6 06 0.8 1
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Sufficient Statistics

+To compute the likelihood in the thumbtack example we
only require N,,and N
(the number of heads and the number of tails)
L(6:D) =N . (1-0)V
N, and Nrare sufficient statistics for the binomial
distribution

<A sufficient statistic is a function that summarizes, from
the data, the relevant information for the likelihood

o If (D) =s(D’), then L(® | D) = L(® | D)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 33

Maximum Likelihood Estimation

MLE Principle:

Learn parameters that maximize the likelihood
function

This is one of the most commonly used estimators in statistics

Intuitively appealing

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 34
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Maximum Likelihood Estimation (Cont.)

+Consistent

e Estimate converges to best possible value as the
number of examples grow

+Asymptotic efficiency

e Estimate is as close to the true value as possible
given a particular training set

+Representation invariant

e A transformation in the parameter representation
does not change the estimated probability distribution

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 35

Example: MLE in Binomial Data

+Applying the MLE principle we get

(Which coincides with what one would expect)

1
Example: :
(NuN7)=(3.2) ) |
X 1
sl 1
MLE estimate is 3/5 = 0.6 I !
I
1
1 L 1 L
0 0.2 04 0.6 0.8 1

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 36

18



Learning Parameters for the Burglary
Story

E[] A1l Al D D
b= : : : CAD
EIM) BM AM] CIM) A
i.i.d. samples
L(©: D)=] [P(ELm), Bim),Am),CTm]: ©) Network factorization

=[TACIm)| Am): 6 ,,) AAm)| Bim),ETM): © 45 2)- A(BLm): ©g)- P(ETm]: OF)
=[TAcTml Am): 6,4, )] [A(AmI| Bim),EIMI: © 4 )] [ABIm): ©)- T TAELm): ©F)
M m m m

We have 4 independent estimation problems

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 37

General Bayesian Networks

We can define the likelihood for a Bayesian network:
L©:D)=]]P(x[m)...., x,[m]: ©)

—HHmP(X'[m]IPa'[m]' GI)AG\Ietwork factorization:|
iy / / /

=[IT1P(x;[m]| Pa;[m]: ©;)

= H 4'(6/ : D)
;
The likelihood decomposes according to the structure of the
network.
© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 -38
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General Bayesian Networks (Cont.)

Decomposition = Independent Estimation Problems

If the parameters for each family are not related, then they can
be estimated independently of each other.

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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From Binomial to Multinomial

oFor example, suppose X can have the values 7,2,... K
+We want to learn the parameters 6, 0, ..., 6

Sufficient statistics:

oN;, Ny, ..., Ni- the number of times each outcome is
observed

Likelihood function: p
k=1

2N,
/¢

MLE: ék

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Likelihood for Multinomial Networks

+When we assume that A X, / Pa;) is multinomial, we get
further decomposition:

,(©; : 0) =TT P(x,[m]| Pa,Lm): ©,)
“TT  T1Ptxlmll pa; :0,)

pa; mPa;[ml=pa;

_ H H P(x; | pa. - ©, )N(X/,Pa/) - H H eX/lqu(X,.,P%)

pa; x; pa; X;

+For each value pa; of the parents of X;we get an
independent multinomial problem
eTheMLEis 5  _N(x;,pq)
x;|\pa; — N(,Da,)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 41

Is MLE all we need?

+Suppose that after 10 observations,
ML estimates P(H) = 0.7 for the thumbtack

e Would you bet on heads for the next toss?

+Suppose now that after 10 observations,
ML estimates P(H) = 0.7 for a coin

e Would you place the same bet?

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 42
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Bayesian Inference

+MLE commits to a specific value of the unknown
parameter(s)

VS.

Coin Thumbtack

#MLE is the same in both cases
e+Confidence in prediction is clearly different

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 43

Bayesian Inference (cont.)

Frequentist Approach:

+Assumes there is an unknown but fixed parameter 6
oEstimates 6 with some confidence

+Prediction by using the estimated parameter value

Bayesian Approach:
+Represents uncertainty about the unknown parameter
+Uses probability to quantify this uncertainty:

e Unknown parameters as random variables
+Prediction follows from the rules of probability:

e Expectation over the unknown parameters

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 44
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Bayesian Inference (cont.)

+\We can represent our uncertainty about the sampling
process using a Bayesian network

@ S TTIIILLL
— g A\ J

Observed data Query

e The observed values of X are independent given 6

¢ The conditional probabilities, Ax/m]| 6), are the
parameters in the model

e Prediction is now inference in this network

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 45

Bayesian Inference (cont.)

O,
+Prediction as inference in this network
P(xIM+11| x[11,..., xIM]) ‘ 2--..... g ‘

.....

= [P(xIM+1116,x[1],... xIMDP(O | x[1],..., X[M])cb
= [P(xIM+1110)P(0] X[1],..., xIM])cb

where Likelihood

P(o| x[1],... x[m]) = LKL XIM11 ©)P(6)

P(x[1],... x[M])
Probability of data

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 46
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Example: Binomial Data Revisited

+Suppose that we choose a uniform prior A8) = 1 for #in [0,1]
«Then A8 | D) is proportional to the likelihood L(8:D)

AB|AL),... M) AAL,.. M| 6)- AB)

*(NuNr)= (40

e MLE for AX =H)is4/5=0.8
e Bayesian prediction is

0 0.2 0.4 0.6 0.8 1

PIXIM+1)=H D) = [0.£(0] D)= = 07142 ..
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Bayesian Inference and MLE

«In our example, MLE and Bayesian prediction differ
But...

If prior is well-behaved

+Does not assign 0 density to any “feasible” parameter
value

Then: both MLE and Bayesian prediction converge to
the same value

+Both converge to the “true” underlying distribution
(almost surely)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 48
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Dirichlet Priors

oRecall that the likelihood function is p
k=1

+A Dirichlet prior with hyperparameters «,,...,ay is defined as

K
P(O) < [T0,%!
() /E[l K forlegal 6 4,..., 0 ¢

Then the posterior has the same form, with hyperparameters

0!]+N J/--'/O‘/("'NK
P(©]D) = P(G)P(D|0O)

K K K
o, -1 N, _ oy +N, -1
ocllekk Ilekk_llekkk

k=1 k=1 k=1
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Dirichlet Priors (cont.)

+\We can compute the prediction on a new event in closed
form:
o If A®) is Dirichlet with hyperparameters «,..., o then
Ok

2.0

14

P(XT1]= k)= [0, P(O)O =

Since the posterior is also Dirichlet, we get
oy + N,

P(XIM+1]=k|D)= [0, ~P(G)|D)09=m

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 50
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Priors Intuition

+The hyperparameters ¢;,...,ay can be thought of as
“‘imaginary” counts from our prior experience

eEquivalent sample size = o+...+oy

«oThe larger the equivalent sample size the more
confident we are in our prior

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 51

Effect of Priors

Prediction of AX=H') after seeing data with N, = 0.25-N-
for different sample sizes

0.55 0.6

05 Different strength o, + o1 0.5 Fixed strength o, + o

045 Fixed ratio a7,/ o1 Different ratio o,/ o
0.4

0.35
0.3
0.25
0.2

0.15
0 20 40 60 80 100
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Effect of Priors (cont.)

+In real data, Bayesian estimates are less sensitive to
noise in the data

07 MLE —
Dirichlet(.5,.5) —

~ 06 Dirichlet(1,1) ——
Q Dirichlet(5,5) =—
< o5 Dirichlet(10,10) ——

0.2

L .
5 10 15 20 25 30 35 40 45 50

1
Toss Result

0
N
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Conjugate Families

+The property that the posterior distribution follows the
same parametric form as the prior distribution is called
conjugacy

e Dirichlet prior is a conjugate family for the multinomial likelihood

+Conjugate families are useful since:

e For many distributions we can represent them with
hyperparameters

e They allow for sequential update within the same representation
e In many cases we have closed-form solution for prediction

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 54
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Bayesian Networks and Bayesian
Prediction

Plate notation
Observed data Query

#Priors for each parameter group are independent

eData instances are independent given the unknown
parameters

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 55

Bayesian Networks and Bayesian
Prediction (Cont.)

Observed data Query

oWe can also “read” from the network:

Complete data =
posteriors on parameters are independent

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 56
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Bayesian Prediction(cont.)

+Since posteriors on parameters for each family are
independent, we can compute them separately

ePosteriors for parameters within families are also
independent:

Refined model

+Complete data = the posteriors on 6y,y-,and 6 yx., are
independent

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 57

Bayesian Prediction(cont.)

+Given these observations, we can compute the posterior
for each multinomial 6 y; , ,,,independently

e The posterior is Dirichlet with parameters
a(X=1lpa)*N (X=1/pa),.., a(X=k[pa)+N (X=k[pa,)

+The predictive distribution is then represented by the
parameters

5 _ox.pg)+ N, pg)
Ve a(pa)+N(pa)
which is what we expected!

The Bayesian analysis just made the assumptions
explicit

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 58
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Assessing Priors for Bayesian Networks

We need thea(x;,pa;) for each node x;
+We can use initial parameters 6, as prior information
o Need also an equivalent sample size parameter M,

e Then, we let a(x,pa;) = MyeP(x,pa;/O,)

+This allows to update a network using new data

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 59

Learning Parameters: Case Study (cont.)

oExperiment:
e Sample a stream of instances from the alarm network
e Learn parameters using
* MLE estimator

» Bayesian estimator with uniform prior with different
strengths

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 60
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Learning Parameters: Case Study (cont.)

Comparing two distribution AP(x) (true model) vs. Q(x)
(learned distribution) -- Measure their KL Divergence

P(x)
QAx)

e 1 KL divergence (when logs are in base 2) =
* The probability P assigns to an instance will be, on average,
twice as small as the probability Q assigns to it
o KL(PIIQ)=0
e KL(P//Q) = Oiff are P and @ equal

KUPIIQ)= Z/’(X)log

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 61

Learning Parameters: Case Study (cont.)

14 MLE —
' Bayes w/ Uniform Prior, M'=5 ——
12 Bayes w/ Uniform Prior, M'=10 —|
. Bayes w/ Uniform Prior, M'=20 —
Q Bayes w/ Uniform Prior, M'=50 —|
S
()
208
()
=
0 0.6
-
X 04
0.2
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
M
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Learning Parameters: Summary

oEstimation relies on sufficient statistics
e For multinomial these are of the form N (x, pa,)
e Parameter estimation

é :N(X/'pa/) 'é’ _ OL(X/-,,DG/-)+N(X/-,,DG,-)
X;pa; N(pa;) x;|pa; o(pa;) + N(pa;)
MLE Bayesian (Dirichlet)

+Bayesian methods also require choice of priors

+Both MLE and Bayesian are asymptotically equivalent and
consistent

+Both can be implemented in an on-line manner by
accumulating sufficient statistics

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 63

Known Structure | Unknown Structure

Outline

Complete data

eIntroduction incompiete data | @Y
e+Bayesian networks: a review

eParameter learning: Complete data
»Parameter learning: Incomplete data
+Structure learning: Complete data
+Application: classification

eLearning causal relationships

#Structure learning: Incomplete data
+Conclusion

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 64
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Incomplete Data

Data is often incomplete
+Some variables of interest are not assigned value

This phenomena happen when we have
+Missing values
eHidden variables

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 _65
Missing Values
eExamples:
eSurvey data
eMedical records
¢ Not all patients undergo all possible tests
© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 _66
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Missing Values (cont.)

Complicating issue:
o The fact that a value is missing might be indicative of its
value

e The patient did not undergo X-Ray since she complained
about fever and not about broken bones....

To learn from incomplete data we need the following
assumption:

Missing at Random (MAR):

+The probability that the value of X is missing is independent
of its actual value given other observed values

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 67

Missing Values (cont.)

+|f MAR assumption does not hold, we can create new
variables that ensure that it does

+\We now can predict new examples (w/ pattern of ommisions)
+\We might not be able to learn about the underlying process

D

Data Augmented Data
Obs-X| Obs-Y| Obs-Z

4IIT AT |x

44TV
4ITAHT |x

44T vV |«

z
T
?
?
T
H

<<X<ZZ
X<XZZX<

THvVH|N
XXX XX

YD
@& \ &P
@
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Hidden (Latent) Variables

+Attempt to learn a model with variables we never observe
e In this case, MAR always holds

+Why should we care about unobserved variables?

) & %) ‘@ (%)
T ’1
W W O DL DL D
\/V
17 parameters 59 parameters

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 69

Hidden Variables (cont.)

+Hidden variables also appear in clustering

eAutoclass model:

e Hidden variables assigns
class labels

e Observed attributes are
independent given the class

Observed

possible missing values

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 70
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Learning Parameters from Incomplete
Data

Complete data:
+Independent posteriors for 8y, 6y/x-,,and 6y .1
Incomplete data:
+Posteriors can be interdependent
+Consequence:

e ML parameters can not be computed separately for each

multinomial
e Posterior is not a product of independent posteriors

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 71

Example
O—D

+ Simple network:
*P(X)assumed to be known
o Likelihood is a function of 2 parameters: A(Y=H/X=H), P(Y=H/X=T)

+ Contour plots of log likelihood for different number of missing values of X'

M = 8):

I
X
I

S \—

S M

P(Y=H|X=T) P(Y=HIX=T) P(Y=HIX=T)
no missing values 2 missing value 3 missing values
© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SRI International. All rights reserved. MP1 _72
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Learning Parameters from Incomplete
Data (cont.).

+In the presence of incomplete data, the likelihood can have

multiple global maxima
@@—>D

oExample:
e \We can rename the values of hidden variable H
e If H has two values, likelihood has two global maxima

+Similarly, local maxima are also replicated
+Many hidden variables = a serious problem

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 73

MLE from Incomplete Data

oFinding MLE parameters: nonlinear optimization problem

A

L(©/D)

I;i;?;?:?j?j?j?ij?j?j?j?j?j?j-j-j-j-j-

[
»

Bumatntmsd\dmmlzatlon (EM): S
oHmiwgwmmn@nﬁaéuwraltﬁfrwfmfémgon (which is “nice”)
* Ruquarsseaiphen Stizsgitng draxbuuent dgshce

+Require computatlons in each iteration

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 74
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Gradient Ascent

+oMain result alog P(D | @) _ 1 ZP(X. pa; | 0[/77] 9)
an/:Pa,' GX/:P"/ m o |

+Requires computation: P(x,Pa;/o/m].©) for all i, m

+Pros:
e Flexible
o Closely related to methods in neural network training

+Cons:
o Need to project gradient onto space of legal parameters

e To get reasonable convergence we need to combine with “smart”
optimization techniques

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 75

Expectation Maximization (EM)

#A general purpose method for learning from incomplete data
Intuition:

«|f we had access to counts, then we can estimate parameters
eHowever, missing values do not allow to perform counts
+“‘Complete” counts using current parameter assignment

Data Expected Counts

P(Y=H|X=H,Z=T,©)= 0.3

e

Current
model

y
~?

NXY)
#

1.3
0.4
1.7
1.6

THvVvH|N
AT 4T |x
A4 I |~<

44TV

P(Y=H|X=T,©)=04
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EM (cont.) Reiterate

Initial network (6,0,)

Updated network (6,0
XD &) & Expected Counts pdated network (6,0,)
NG D @ ©

€D Computation N(X2) Reparameterize

> N(X3)
N(H, Xy, X;, X3)

QL & (E-step) N(Y,, H) (M-Step) o B

N(Y2, H)
- s B
Training
Data

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 77

EM (cont.)

Formal Guarantees:
*L(0.D)>L(©,D)
e Each iteration improves the likelihood

olf ©,.0,, then @, is a stationary point of L(©:D)
e Usually, this means a local maximum

Main cost:

+Computations of expected counts in E-Step

+Requires a computation pass for each instance in training set
e These are exactly the same as for gradient ascent!

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 78
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Example: EM in clustering

+Consider clustering example

E-Step: @ &

e Compute P(C[/m]/ X, /m]... X [m]O)
e This corresponds to “soft” assignment to clusters
e Compute expected statistics:

E[N(x;,¢)1= > P(c|lxm]..., x,[m],©)

m.X;[ml=x;

M-Step
e Re-estimate P(X//C), P(C)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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EM in Practice

Initial parameters:

+Random parameters setting
+“Best” guess from other source
Stopping criteria:

+ Small change in likelihood of data

+ Small change in parameter values
Avoiding bad local maxima:
+ Multiple restarts

« Early “pruning” of unpromising ones
Speed up:

+various methods to speed convergence

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Error on training set (Alarm)

-6.8 T T T T T T T

-6.85 [

-6.9

-6.95 |-

Avg log likelhood

~

=3

&
T

-7.15 |

72 1 I 1 1
0 60 100 120 160

80
Iteration

Experiment by Baur, Koller and Singer [UAI97]
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Test set error (alarm)
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Avg log likelihood

-7.05 |

-7.15 -
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lteration

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

140

160

MP1-82

41



Parameter value (Alarm)
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Parameter value (Alarm)
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Parameter value (Alarm)
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Bayesian Inference with Incomplete Data

Recall, Bayesian estimation:
P(xIM+1]1D) = [ P(x[M +1]]0)P(6| D)ab
Complete data: closed form solution for integral

Incomplete data:

+No sufficient statistics (except the data)
+Posterior does not decompose

+No closed form solution

=Need to use approximations

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 86
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MAP Approximation

+Simplest approximation: MAP parameters
o MAP --- Maximum A-posteriori Probability

P(x[M+1]1| D) = P(x[M +1]] B)

where 8 = argmax, P(6 | D)

Assumption:
esPosterior mass is dominated by a MAP parameters

Finding MAP parameters:
+Same techniques as finding ML parameters
eMaximize P(8/D)instead of L(6:D)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 87

Stochastic Approximations

Stochastic approximation:
+Sample 6,, ..., 6, from P6/D)
eApproximate

P(x[M+1]1]| D) = /{'2 P(xIM+11]9;)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 88
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Stochastic Approximations (cont.)

How do we sample from P(6/D)?

Markov Chain Monte Carlo (MCMC) methods:

+ Find a Markov Chain whose stationary probability Is 2(8/D)

+ Simulate the chain until convergence to stationary behavior

+ Collect samples for the “stationary” regions

Pros:

+Very flexible method: when other methods fails, this one usually works
+ The more samples collected, the better the approximation

Cons:
+ Can be computationally expensive
+How do we know when we are converging on stationary distribution?

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 89

Stochastic Approximations:
Gibbs Sampling

Gibbs Sampler:

+A simple method to construct
MCMC sampling process

Start:
+Choose (random) values for all unknown variables
Iteration:
+Choose an unknown variable
e A missing data variable or unknown parameter
e Either a random choice or round-robin visits

+Sample a value for the variable given the current values of all
other variables

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 90
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Parameter Learning from Incomplete
Data: Summary

+Non-linear optimization problem

+Methods for learning: EM and Gradient Ascent
e Exploit inference for learning

Difficulties:

«+Exploration of a complex likelihood/posterior
e More missing data = many more local maxima
e Cannot represent posterior = must resort to approximations

eInference
e Main computational bottleneck for learning

e Learning large networks
= exact inference is infeasible
= resort to stochastic simulation or approximate inference
(e.g., see Jordan’s tutorial)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 91

Known Structure | Unknown Structure

O utl ine Complete data -

eIntroduction incomplete data
eBayesian networks: a review
eParameter learning: Complete data
eParameter learning: Incomplete data

»Structure learning: Complete data
» Scoring metrics
e Maximizing the score
e Learning local structure

+Application: classification

el earning causal relationships
#Structure learning: Incomplete data
esConclusion

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 92
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Benefits of Learning Structure

«Efficient learning -- more accurate models with less data
e Compare: P(A)and P(B)vs joint P(A,B)
former requires less datal
e Discover structural properties of the domain
e |dentifying independencies in the domain helps to
* Order events that occur sequentially
« Sensitivity analysis and inference
+Predict effect of actions
e Involves learning causal relationship among variables
—=defer to later part of the tutorial

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 93

‘ Why Struggle for Accurate Structure

Adding an arc Missing an arc
= @ € G D Eore
L <

+ Cannot be compensated by
accurate fitting of parameters

+ Also misses causality and
domain structure

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 94

« Increases the number of
parameters to be fitted

+\Wrong assumptions about
causality and domain structure

47
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Approaches to Learning Structure

+Constraint based
e Perform tests of conditional independence

e Search for a network that is consistent with the observed

dependencies and independencies

+Score based

¢ Define a score that evaluates how well the
(in)dependencies in a structure match the observations

e Search for a structure that maximizes the score

MP1-95

Constraints versus Scores

+Constraint based
o Intuitive, follows closely the definition of BNs

e Separates structure construction from the form of the
independence tests

e Sensitive to errors in individual tests

eScore based
¢ Statistically motivated
e Can make compromises

+Both

e Consistent---with sufficient amounts of data and
computation, they learn the correct structure

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 96
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Likelihood Score for Structures

First cut approach:
e Use likelihood function

oRecall, the likelihood score for a network structure and
parameters is

L(&,0s:D)=]] P(xy[m],..., x,[m]:6,0,)

= HHP(X,-[/W]IPa,-g[m]:é,(a@,,)

+Since we know how to maximize parameters from now we

2SI 16 D) = maxe, L(6.0, : D)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 97

Likelihood Score for Structure (cont.)

Rearranging terms:

/(6 :D)=log L(6& :D)
> (T (xX;:Paf)-H (X))

where
*H(X)is the entropy of X
« I(XY)is the mutual information between Xand Y
e I(X'Y) measures how much “information” each
variables provides about the other
o I(X)V)20
o I(X'Y) = Oiff Xand Y are independent
o I(X'Y) = H(X)iff Xis totally predictable given ¥

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 98
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Likelihood Score for Structure (cont.)
/(6 :D)=MY (T(X,:Paf)-H (X))

Good news:

#Intuitive explanation of likelihood score:

e The larger the dependency of each variable on its parents, the
higher the score

e Likelihood as a compromise among dependencies, based on
their strength
Bad news:

+Adding arcs always helps
o I(X)YV)<I(XYVZ)
e Maximal score attained by “complete” networks

e Such networks can overfit the data --- the parameters they learn
capture the noise in the data

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 99

Avoiding Overfitting
“Classic” issue in learning.

Standard approaches:
+Restricted hypotheses

e Limits the overfitting capability of the learner

e Example: restrict # of parents or # of parameters
+Minimum description length

e Description length measures complexity

e Choose model that compactly describes the training data
+Bayesian methods

e Average over all possible parameter values

e Use prior knowledge

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 00
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Avoiding Overfitting (cont..)

Other approaches include:

eHoldout/Cross-validation/Leave-one-out
¢ Validate generalization on data withheld during training

o Structural Risk Minimization
e Penalize hypotheses subclasses based on their VC
dimension

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 01

‘ Minimum Description Length

Rationale:
eprefer networks that facilitate compression of the data

+Compression = summarization = generalization

Data
Base

Encoding Compressed Data
Scheme :> Data Base

Decoding

Scheme

A1

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 02
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Minimum Description Length (cont.)

+Computing the description length of the data, we get

DL(D:6)=DL(E)+ "9 M dim( 6)-1(6 : D)

2
# bits to encode & .
# bits to encode D

# bits to encode @, using (6,6,)

+Minimizing this term is equivalent to maximizing

log M
2

MDL (6 :D)=/(6:D)- dim( &) - 0L (&)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 03

Minimum Description: Complexity
Penalization

MDL (6 :D) = /(6 : D)9 M

dim( 6)-0L (&)

eLikelihood is (roughly) linear in M
/(6 :D) =Y log P(x[m]| &,0)
m
~ M -Ellog P(x | 6,0)]

+Penalty is logarithmic in M

As we get more data, the penalty for complex structure is
less harsh

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 04

52



Minimum Description: Example

eldealized behavior:

-16
1
-18 ,
1
|
s |
§ -20 !
S — [(6:D) = -15.12*M, dim(6) = 509
22 — L(6:D) = -15.70*M, dim(6) = 359
| — L(6:D) = -17.04*M, dim(6) = 214
1
24 !
1
0 500 1000 1500 2000 2500 3000
M
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Minimum Description: Example (cont.)

Real data illustration with three network:
+“True” alarm (509 param), simplified (359 param), tree (214 param)

-16
1
-18 ;
1
1
N ] .
§ 20 / !
% i ' === True Network
1
-22 | ' = Simplified Network
! 1
' ! = Tree network-
! 1
24 ' !
! 1
1 ! 1 . ! . !
0 500 1000 1500 2000 2500 3000
M
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53



Consistency of the MDL Score

MDL Score is consistent

+As M — the “true” structure &* maximizes the score
(almost surely)

oFor sufficiently large M, the maximal scoring structures are
equivalent to 6*

Proof (outline):
+ Suppose G implies an independence statement not in G*, then
as M —oo, (6:D)— [(G*:D) - eM (edepends on 6)
so MDL(6*:D) - MDL(6:D)— eM - (dim(6*)-dim(G))/2 log M
+ Now suppose G* implies an independence statement not in G, then
as M —o, [(6:D)— I(6*:D)
so MDL(G:D) - MDL(6*:D) — (dim(6)-dim(6*))/2 log M

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 07

Bayesian Inference

+Bayesian Reasoning---compute expectation over unknown &

P(x[M+1]11D) =D P(xIM+1]| D,6)P(& | D)
Z

where %gimwj Prior over structures
P(&|D) = P(D|&)P(5)

= jP(D | 6,0)P(6| 6)BP(&)
Posterior score
Likelihood Prior over parameters

Assumption: &s are mutually exclusive and exhaustive

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 08
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Marginal Likelihood: Binomial case

+Assume we observe a sequence of coin tosses....
By the chain rule we have:

P(x[1],...,.x[M]) =
P(xIDP(x[2]| x[11)-+ P(x[M]| x[1],..., x[M -1])

recall that

P(x[m+1]1=H | x[1],....,x[m]) =

where A, is the number of heads in first m examples.

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 Og

Marginal Likelihood: Binomials (cont.)

P(x[1],..., x[M]) =

oy  Ny-l+a,
oy +or Ny-l+oay,+or

oy Ny -1+o0,
Ny +oy+or Ny +Np-1+o,+or

I'(N + o)

We simplify this by using (o)1 +a)-- (N -1+a) = o)

P(x[1],...,x[M]) =
Thus
(o, +o5) (o +Ny) Tlor +NF)
I(o, +or +Ny +N-)  T(oy) (o)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 1 0

55



(Log P(D))/M

0.7

-0.8

0.9

Binomial Likelihood: Example

eldealized experiment with A(H) = 0.25

-0.6

MDL —
Dirichlet(.5,.5) ——
Dirichlet(1,1) —
Dirichlet(5,5) —

1.3 “
0 5 10 16 20 25 30 35 40 45 50
M
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Marginal Likelihood: Example (cont.)
#Actual experiment with P(H) = 0.25
-0.6
-0.7
S o8
N
a
Q -0.9
N—
& -1
% MDL —
3 1 Dirichlet(.5,.5) —
Dirichlet(1,1) —
1.2 Dirichlet(5,5) =——
-1.3
o] 5 10 15 20 25 30 35 40 45 50
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Marginal Likelihood: Multinomials

The same argument generalizes to multinomials with Dirichlet
prior

+A©) is Dirichlet with hyperparameters «,..., 0
+Dis a dataset with sufficient statistics N,,..., Ny

Then

2]
P(D) = ‘ HF(?E; /)Ve)
F[z(ocp+N/)] ¢ ‘
0

)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 1 3

Marginal Likelihood: Bayesian Networks
1 2 3 4 5 6 7

oNetwork structure
determines form of X IH|[T|T|H]|T|H]|H
marginal likelihood »

YIHI|T|H|H]|]T]|T

Network 2:

o Ttwe ® DichdblethargigiidlKiéiibodsis

SPX[1],.... X[7]) ey el G
»POY[1] YPH]7)6 hddelpp et

P(Y[2]Y[3].Y[5]) —_—
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Marginal Likelihood (cont.)

In general networks, the marginal likelihood has the form:

P016) =TI T r(a(pa®)) T(ox;, pa®)+ N(x;, pa®))
i pae Tlolpa®)+ N(pa®)), M(o(x,, pa®))
— !
—
Dirichlet Marginal Likelihood
For the sequence of values of X, when
Xs parents have a particular value

ewhere

oN(..) are the counts from the data
+o/(.)are the hyperparameters for each family given 6

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 1 5

Priors and BDe score

+We need: prior counts «(..)for each network structure &

+This can be a formidable task
e There are exponentially many structures...

Possible solution: The BDe prior
e Use prior of the form M, B,=(6,, 6,)
+ Corresponds to M, prior examples distributed according to 2,
o Set OC(X,-,,U a/'g) = /MO P (X//pa/'g/ 50/ @0)
* Note that pa? are, in general, not the same as the parents of X;in
6, We can compute this using standard BN tools

e This choice also has desirable theoretical properties
» Equivalent networks are assigned the same score

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 1 6




Bayesian Score: Asymptotic Behavior

+ The Bayesian score seems quite different from the MDL score
+However, the two scores are asymptotically equivalent

Theorem: If the prior P(© /6)is “well-behaved”, then

log M

log P(D16)=1(6:0) -2

dim( &)+ 0(1)

Proof:
+(Simple) Use Stirling’s approximation to 7{")
e Applies to Bayesian networks with Dirichlet priors

+(General) Use properties of exponential models and
Laplace’s method for approximating integrals
e Applies to Bayesian networks with other parametric families

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 1 7

Bayesian Score: Asymptotic Behavior

Consequences:
eoBayesian score is asymptotically equivalent to MDL score

e The terms /fog P(6) and description length of G are
constant and thus they are negligible when M is large.

+Bayesian score is consistent
e Follows immediately from consistency of MDL score

+Observed data eventually overrides prior information

e Assuming that the prior does not assign probability 0 to
some parameter settings

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 1 8
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Scores -- Summary

eLikelihood, MDL and (log) BDe have the form

Score (6 :D) =Y Score (X, | Pa® : N(X;Pa,))

+BDe requires assessing prior network. It can naturally
incorporate prior knowledge and previous experience

+Both MDL and BDe are consistent and asymptotically

equivalent (up to a constant)

#All three are score-equivalent---they assign the same score

to equivalent networks

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Known Structure

Unknown Structure

O utl ine Complete data

eIntroduction Incomplete data

eBayesian networks: a review
eParameter learning: Complete data
eParameter learning: Incomplete data

»Structure learning: Complete data
e Scoring metrics
» Maximizing the score
e Learning local structure

e+Application: classification
eLearning causal relationships
oStructure learning: Incomplete data
+Conclusion

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Optimization Problem

Input:
e Training data
e Scoring function (including priors, if needed)
e Set of possible structures
* Including prior knowledge about structure
Output:
e A network (or networks) that maximize the score

Key Property:
o Decomposability: the score of a network is a sum of
terms.

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 21

Learning Trees

oTrees:
e At most one parent per variable

oWhy trees?
e Elegant math
=we can solve the optimization problem
e Sparse parameterization
=avoid overfitting

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 22
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Learning Trees (cont.)

eLet p(i)denote the parent of X, or 0 if X, has no parents
+We can write the score as

Score(6 : D)= Score(X; : Pa;)

= Y Score(X; : X )+ Y, Score(X;)

i p(i)>0 i.p(i)=0
= Y (Score (X : Xp(,)) — Score (X, ))+ Y, Score(X;)
i p(7)>0 i
— _\ J
— v

Improvement over s " "
" " core of “empt
empty” network network PTY

#Score = sum of edge scores + constant

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 23

Learning Trees (cont)

Algorithm:

+Construct graph with vertices: 1, 2, ...

*Set w(i—j)be Score( X; [ X;) - Score(X))
oFind tree (or forest) with maximal weight

e This can be done using standard algorithms in low-order
polynomial time by building a tree in a greedy fashion
(Kruskal’'s maximum spanning tree algorithm)

Theorem: This procedure finds the tree with maximal score

When score is likelihood, then w(7—,) is proportional to
I(X; X)this is known as the Chow & Liu method

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 24
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Learning Trees: Example

Tree learned from
alarm data

+Green -- correct
arcs

+Red -- spurious
arcs

+Not every edge in tree is in the the original network

«Tree direction is arbitrary --- we can’t learn about arc
direction

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Beyond Trees

When we consider more complex network, the problem is not
as easy

+Suppose we allow two parents

#A greedy algorithm is no longer guaranteed to find the
optimal network

+In fact, no efficient algorithm exists

Theorem: Finding maximal scoring network structure with at
most k parents for each variables is NP-hard for & > /

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Heuristic Search

+\We address the problem by using heuristic search

+Define a search space:
e nodes are possible structures
e edges denote adjacency of structures
e Traverse this space looking for high-scoring structures

Search techniques:
e Greedy hill-climbing
e Best first search
e Simulated Annealing

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 27

Heuristic Search (cont.)

e Typical operations: 3 OO
Add € —D CED

— &

Reverse € —»E

N

Remove € £

%@
> -

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 28
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Exploiting Decomposability in Local
Search

A Ny

>

+Caching: To update the score of after a local change, we
only need to re-score the families that were changed in
the last move

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 29

Greedy Hill-Climbing

Simplest heuristic local search

e Start with a given network
* empty network
* best tree
» a random network
e At each iteration
 Evaluate all possible changes
* Apply change that leads to best improvement in score
* Reiterate

e Stop when no modification improves score

eEach step requires evaluating approximately #» new changes

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 30
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Greedy Hill-Climbing (cont.)

+Greedy Hill-Climbing can get struck in:
e Local Maxima:
+ All one-edge changes reduce the score
¢ Plateaus:
* Some one-edge changes leave the score unchanged

+Both are occur in the search space

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 31

Greedy Hill-Climbing (cont.)

To avoid these problems, we can use:

+TABU-search
o Keep list of K most recently visited structures
o Apply best move that does not lead to a structure in the list

e This escapes plateaus and local maxima and with “basin” smaller
than K structures

e¢Random Restarts

e Once stuck, apply some fixed number of random edge changes and
restart search

e This can escape from the basin of one maxima to another

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 32
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Greedy Hill-Climbing

+Greedy Hill Climbing with TABU-list and random restarts on

alarm
-15.8

-16

f

-16.2

-16.4 |

Score/M

-16.6]

-16.8]

-17

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

0 100 200 300 400

step #

500 600

700
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Other Local Search Heuristics

+Stochastic First-Ascent Hill-Climbing

e Evaluate possible changes at random
o Apply the first one that leads “uphill”
e Stop when a fix amount of “unsuccessful” attempts to change the

current candidate

+Simulated Annealing

e Similar idea, but also apply “downhill” changes with a probability that
is proportional to the change in score

e Use a temperature to control amount of random downhill steps

o Slowly “cool” temperature to reach a regime where performing strict

uphill moves

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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I-Equivalence Class Search

So far, we seen generic search methods...
+Can exploit the structure of our domain?

Idea:
+Search the space of I-equivalence classes

oEach l-equivalence class is represented by a PDAG (partially
ordered graph) -- skeleton + v-structures

Benefits:
oThe space of PDAGs has fewer local maxima and plateaus
oThere are fewer PDAGs than DAGs

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 35

I-Equivalence Class Search (cont.)

Evaluating changes is more expensive

Original PDAG
O>—DD® D

N New PDAG
Add y---Zz ,

DO>—@>—D>D

SN

|:Consistent DAG L CO—OPDHO—2

SN

e+ These algorithms are more complex to implement

Score

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 36
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Search and Statistics

+Evaluating the score of a structure requires the
corresponding counts (sufficient statistics)
+Significant computation is spent in collecting these counts
e Requires a pass over the training data
+Reduce overhead by caching previously computed counts

e Avoid duplicated efforts
e Marginalize counts: N(X,Y) -N(X)

Training
Data

Statistics
Cache

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

o

Search

Score

MP1-137

Learning in Practice: Time & Statistics

+Using greedy Hill-Climbing on 10000 instances from alarm

14 3500
16 3000
18 ﬁ
N 2500
-20
: 2
Q2 ﬁ 2000
D24 T 1500
(&}
-26
1000
-28
-30 500

40 60 80

100 120 140 160 180 200

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

40 60 80 100 120 140 160 180 200
Seconds

MP1-138

69



Learning in Practice: Alarm domain
2
True Structure/BDe M' = 10 =—
Unknown Structure/BDe M' = 10 =—
True Structure/MDL =—
Unknown Structure/MDL =——
15
[0]
(8]
C
(0]
o
5 1
=
[a)
-
<
0.5
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
©1998‘ Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SRI International. All rights reserved. M MP1_1 39

Model Averaging

+Recall, Bayesian analysis started with
P(x[M+1]|D) = Z P(x[M+1]1|D,6)P(& | D)
6

e This requires us to average over all possible models

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 40
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Model Averaging (cont.)

+So far, we focused on single model
¢ Find best scoring model
e Use it to predict next example
eImplicit assumption:
e Best scoring model dominates the weighted sum

oPros:
o We get a single structure
o Allows for efficient use in our tasks
+Cons:
o We are committing to the independencies of a particular structure
e Other structures might be as probable given the data

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 41

Model Averaging (cont.)

Can we do better?
oFull Averaging
e Sum over all structures
e Usually intractable---there are exponentially many structures

esApproximate Averaging
e Find K largest scoring structures
e Approximate the sum by averaging over their prediction
e Weight of each structure determined by the Bayes Factor

P(&1D) _ P(E)P(D|6G) |
PG'|D) P(E)P(DIG) B

The actual score we compuTZl

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 42
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Search: Summary

eDiscrete optimization problem

#In general, NP-Hard
o Need to resort to heuristic search

e In practice, search is relatively fast (~100 vars in ~10

min):
* Decomposability
« Sufficient statistics

+In some cases, we can reduce the search problem to an

easy optimization problem
e Example: learning trees

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Known Structure

Unknown Structure

Outline

Complete data

eIntroduction Incomplete data

eBayesian networks: a review
eParameter learning: Complete data
eParameter learning: Incomplete data

»Structure learning: Complete data
e Scoring metrics
o Maximizing the score
» Learning local structure

esApplication: classification

el earning causal relationships
oStructure learning: Incomplete data
+Conclusion

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Local and Global Structure

Global structure

Local structure

4 parameters

Explicitly represents

P(ElA) - P(E) 0.05 0.20
Explicitly represents
P(S|A =0) = P(S|B,E,A=0)
© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 _1 45

Local structure: Decision trees

+Capture properties of context specific independence
e Band Sare independent given A = false

eInternal nodes: A tests on X’s parents values
el eafs: Distribution on X

Burglary

4 parameters

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 _1 46
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Learning decision trees

4 parameters

eParameter learning: .0/-\
¢ As with tabular representations oo ‘o/.'i
e Multinomial distribution at each leaf N
e Counts are at the level of leaves N 0»5/.\04_20

+Structure learning
e Define the MDL or marginal likelihood
e General structure similar to scores of Bayesian networks

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 47

Effects on learning

+Global structure:
e Enables decomposability of the score
*Search is feasible
eLocal structure:
e Reduces the number of parameters to be fitted
* Better estimates
* More accurate global structure!

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 48




Local Structure — More Accurate Global
Structure

Without local structure...

Adding an arc may imply an exponential increase on
the number of parameters to fit,
independently of the relation between the variables

The score balancing act

rmat) Qarm 52) Gtrn 523
@ verste @ *preferred model

model complexity

fitness

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 49

Local structure: Noisy Or

#Intuition: Causal Independence
e Many possible causes that do not interact

» Several diseases can cause fever;
If one “succeeds”, the patient has the symptom

Disease 1

Disease 1 Disease 2

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 50
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Local structure: Noise-Or decomposition

D/sease 3

D /sease
Fever

Local or gate

fixed in advance

+Benefits:
e Linear number of parameters
e Good approximation for many domains
e Training:
e Using missing data methods
e Or gate parameters are fixed and not retrained

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SRI International. All rights reserve
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Other Types of Local Structure

+Extensions of trees: Graphs

oExtensions of Noisy-or: Noisy-max, Causal independence
eRegression

eNeural nets

+Continuous representations, such as Gaussians
Any type of representation that reduces the number
of parameters to fit

oTo “plug in” a different representation, we need the following
o Sufficient Statistics
e Estimation of parameters
e Marginal likelihood

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 52
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Outline

eIntroduction

e+Bayesian networks: a review
eParameter learning: Complete data
eParameter learning: Incomplete data
+Structure learning: Complete data
»Application: classification

eLearning causal relationships
#Structure learning: Incomplete data
+Conclusion

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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The Classification Problem

+From a data set describing objects by vectors of features

and a class

oQd>
X0
S=0T0~00>0)
VW~
—0"0~+00—0T()
~pQOcao0—m
oOom
00 IXOZ

Vector,= <49, 0, 2, 134, 271, 0,0, 162,0, 0
Vector,= <42, 1, 3, 130, 180, 0, 0, 150,0, O
Vector,=<39, 0, 3, 94,199,0,0,179,0, 0
Vector,=<41,1, 2, 135, 203, 0,0, 132,0, 0
6
0
1

Vector,= <56, 1, 3, 130, 256, 1, 2, 142,1, 0.6, 2, 1,

Vector,= <70, 1, 2, 156, 245, 0, 2, 143, 0,
Vector,= <56, 1, 4, 132, 184, 0, 2, 105, 1, 2.

~o0va—-0
oupon—0 ~- 00T

2,0, 3> Presence
1,0, 3> Presence
1,0, 3 > Presence
2,0, 6 > Absence
2,1, 6 > Absence
1,0, 3 > Presence
2,1, 6 > Absence

+Find a function F: features — class to classify a new object

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Examples

+Predicting heart disease
e Features: cholesterol, chest pain, angina, age, etc.
o Class: {present, absent}

+Finding lemons in cars

e Features: make, brand, miles per gallon, acceleration,etc.

e Class: {normal, lemon}
+Digit recognition
e Features: matrix of pixel descriptors
e Class: {1,2,3,4,5,6,7,8,9, 0}
+Speech recognition
e Features: Signal characteristics, language model
o Class: {pause/hesitation, retraction}

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

MP1-155

Approaches

+Memory based
¢ Define a distance between samples
e Nearest neighbor, support vector machines

eoDecision surface
e Find best partition of the space
e CART, decision trees

+Generative models
¢ Induce a model and impose a decision rule
e Bayesian networks

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Generative Models

+Bayesian classifiers
¢ Induce a probability describing the data
P(F,,....F,,C)
e Impose a decision rule. Given a new object < f,,....f >
c=argmax, P(C=c|f,...f)

+We have shifted the problem to learning P(F,,...,F,,C)

eLearn a Bayesian network representation for P(F,,...,F,,C)

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 57

Optimality of the decision rule

Minimizing the error rate...
el et ¢, be the true class, and let lj be the class returned by

the classifier.

A decision by the classifier is correct if ¢;=/, and in error
if c;# 1,
+The error incurred by choose label /; is
E(c 1L)=YMe; 1 1)PU, | FY=1-P(; | F)
J=1

#Thus, had we had access to P, we minimize error rate by

choosing /; when

PUiLEY>PU LIV =i
which is the decision rule for the Bayesian classifier

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 58
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Advantages of the Generative Model
Approach

+Output: Rank over the outcomes---likelihood of present
vs. absent

+Explanation: What is the profile of a “typical” person with
a heart disease

+Missing values: both in training and testing

+Value of information: If the person has high cholesterol
and blood sugar, which other test should be conducted?

+Validation: confidence measures over the model and its
parameters

+Background knowledge: priors and structure

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 59

Advantages of Using a Bayesian Network

«Efficiency in learning and query answering

e Combine knowledge engineering and statistical
induction

e Algorithms for decision making, value of information,
diagnosis and repair

Heart disease
Accuracy = 85%
Data source
UCI repository

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 60
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The Naive Bayesian Classifier

Diabetes in >
Pima Indians
(from UCI repository)

Eo Eo Fo o o D

pregnant age insulin dpf mass glucose

oFixed structure encoding the assumption that features are
independent of each other given the class.

PICIA,....)<P(A|C)e P(F | C)e---0 P(F, | C)e P(C)

el earning amounts to estimating the parameters for each
P(F|C) for each F;.

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 61

The Naive Bayesian Classifier (cont.)

& & B
+Common practice is to estimate
5 _N(a.c)
ale = N(e)

o These estimate are identical to MLE for multinomials

oEstimates are robust consisting of low order statistics
requiring few instances

+Has proven to be a powerful classifier

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 62
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Improving Naive Bayes

+Naive Bayes encodes assumptions of independence that
may be unreasonable:
Are pregnancy and age independent given diabetes?
Problem: same evidence may be incorporated multiple
times

+The success of naive Bayes is attributed to
e Robust estimation
e Decision may be correct even if probabilities are inaccurate
eldea: improve on naive Bayes by weakening the
independence assumptions
Bayesian networks provide the appropriate mathematical
language for this task

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 63

Tree Augmented Naive Bayes (TAN)

pregnant ~glucose

insulin

PICIA,...F)=P(RIC)s PR | R.C) oo P(F | F,.C) e P(C)

esApproximate the dependence among features with a tree
Bayes net

+Tree induction algorithm
e Optimality: maximum likelihood tree
¢ Efficiency: polynomial algorithm
+Robust parameter estimation

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 64
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Evaluating the performance of a
classifier: n-fold cross validation

D1 D2 D3 Dn
Run 1
Run 2
Run 3
| Runn
—

Original data set

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

+ Partition the data setinn
segments

o Do ntimes

e Train the classifier with the
green segments

e Test accuracy on the red
segments

+ Compute statistics on the n runs
* Variance
* Mean accuracy

+ Accuracy: on test data of size m

m
e Acc = G |/./)
k=L
m

MP1-165

Performance: TAN vs. Naive Bayes

100
+25 Data sets
95 | from UCI
repository
i e® | .
o 90 Medical
> o * . Signal
a °° | processing
Q Y [ . .
2 80 o o ©® Financial
5 Games
4
75 °
+ Accuracy based
70 o on 5-fold cross-
validation
65 : ‘ : \ ‘ ‘
65 70 75 80 85 90 95 100° No.parameter
TAN tuning
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Performance: TAN vs C4.5

100 ‘ ‘ ‘ ]
95 | *®
90 |

85 |

C4.5
°

80 |
75
70 o

65 ‘ ‘ ‘ ‘
65 70 75 80 85 90 95 100
TAN

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

+25 Data sets

from UCI

repository
Medical
Signal

processing

Financial
Games

+ Accuracy based
on 5-fold cross-
validation

+No parameter
tuning

MP1-167

Beyond TAN

+Can we do better by learning a more flexible structure?

eoExperiment: learn a Bayesian network without restrictions on

the structure

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Performance: TAN vs. Bayesian

Networks
100 ‘
° +25 Data sets
s I ° ] from UCI
=< 95 . repository
o .
3 90 1 Medical
° Signal
4 ° ° .
- 85 | 1 processing
5 . Financial
o 80 | Games
>
0 [ J
m 75 Lo
+ Accuracy based
70 ' ° ] on 5-fold cross-
validation

65 ‘ ‘ : : + No parameter
65 70 75 80 85 90 95 100 {yning

TAN
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‘ What is the problem?

+Objective function
e Learning of arbitrary Bayesian networks optimizes P(C, F,,...,F,)

e It may learn a network that does a great job on P(F,....F) but a
poorjobon P(C|F,,...,F,)
(Given enough data... No problem...)

e We want to optimize classification accuracy or at least
the conditional likelihood P(C | F,,...,F,)

» Scores based on this likelihood do not decompose
= learning is computationally expensive!

» Controversy as to the correct form for these scores

+Naive Bayes, Tan, etc circumvent the problem by forcing
a structure where all features are connected to the class

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 70




Classification: Summary

+Bayesian networks provide a useful language to
improve Bayesian classifiers

e Lesson: we need to be aware of the task at hand, the amount
of training data vs dimensionality of the problem, etc

e+Additional benefits
e Missing values
e Compute the tradeoffs involved in finding out feature values
e Compute misclassification costs

+Recent progress:

o Combine generative probabilistic models, such as Bayesian
networks, with decision surface approaches such as Support
Vector Machines

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 1 71

Outline

eIntroduction

eBayesian networks: a review
+Parameter learning: Complete data
eParameter learning: Incomplete data
o Structure learning: Complete data
+Application: classification

»Learning causal relationships
e Causality and Bayesian networks
e Constraint-based approach
e Bayesian approach

o Structure learning: Incomplete data
+Conclusion
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Learning Causal Relations

(Thanks to David Heckerman and Peter Spirtes for the slides)

+Does smoking cause cancer?

+Does ingestion of lead paint decrease 1Q?

+Do school vouchers improve education?

+Do Microsoft business practices harm customers?

MP1-173

Causal Discovery by Experiment

randomize

/ \ don’t
smoke
smoke

measure rate measure rate
lung cancer lung cancer

Can we discover causality from observational data alone?

MP1-174
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What is “Cause” Anyway?

Probabilistic question:

What is p( lung cancer | yellow fingers ) ?

Causal question:

What is p( lung cancer | set(yellow fingers) ) ?

MP1-175

Probabilistic vs. Causal Models

Probabilistic question:
What is p( lung cancer | yellow fingers ) ?

Causal question:
What is p( lung cancer | set(yellow fingers) ) ?

Smoking

N

Yellow
Fingers

Lung
Cancer

Smoking

N

Yellow Lung
Fingers Cancer
MP1-176
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To Predict the Effects of Actions:
Modify the Causal Graph

Smoking

N\

Yellow Lung
Fingers Cancer

—_—

set
yellow
fingers

Yellow
Fingers

Smoking

\

Lung
Cancer

p( lung cancer | set(yellow fingers) ) = p(lung cancer)

MP1-177

Causal Model

Pa,

MP1-178
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Yellow
Fingers

Smoking

SN\

Lung
Cancer

Ideal Interventions

Smoking
—_—
set
yellow Yellow Lung
fingers Fingers Cancer

ePearl: ideal intervention is primitive, defines cause
+Spirtes et al.: cause is primitive, defines ideal intervention
eHeckerman and Shachter: from decision theory one could

define both
MP1-179
How Can We Learn Cause and Effect
from Observational Data?
A—B
or A< B
4B = o AL
A B
H—H
or ¥ X
A B
etc.
MP1-180
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Learning Cause from Observations:
Constraint-Based Approach

Smoking Smokin
? /
—_—
Yellow Lung Yellow Lung
Fingers Cancer Fingers Cancer
(cond independencies (causal assertions)
from data)

Bridging assumptions:
+Causal Markov assumption
oFaithfulness

MP1-181

Causal Markov assumption

We can interpret the causal graph as a probabilistic one

Smoking Smoking
Yellow Lung Yellow Lung
Fingers Cancer Fingers Cancer

i.e.: absence of cause = conditional independence
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Faithfulness

There are no accidental independencies

E.g., cannot have:

Lung

I(smoking,lung cancer
Cancer and ( g,lung )

Smoking —

i.e.: conditional independence = absence of cause

Other assumptions

¢All models under consideration are causal
+All models are acyclic

MP1-184
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All models under consideration are causal

No unexplained correlations

coffee lung
consumption cancer
smoking
coffee lung
consumption cancer

MP1-185

Learning Cause from Observations:
Constraint-based method

—
X>Y~>Z X>Y—>Z
—
XY Z X>Y Z
—
X Y—»>Z X Y—»>Z
—
X Y Z X Y Z

Assumption: These are all the possible models
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Learning Cause from Observations:
Constraint-based method

—
X>Y~>Z X>Y—>Z
—
XY Z XY Z
—
X Y—»>Z X Y—»>Z
—
X Y Z X Y Z

Data: The only independence is I(X,Y)

Learning Cause from Observations:
Constraint-based method

only
I(X,Y)

CMA: Absence of cause = conditional independence
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Learning Cause from Observations:
Constraint-based method

X><Z I(X,Y)

Faithfulness: Conditional independence = absence of cause

‘ Learning Cause from Observations:
Constraint-Based Method

X><Z Ol’lly
1(X,2)

Conclusion: X and Y are causes of Z
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Cannot Always Learn Cause

A—B
or A<+ B
A
or )
hidden
—1(4.B) — A B common
He 1" causes
or ¥ M
A B
A B selection
or >‘0'( bias
etc. MP1-191

But with four (or more) variables...

Suppose we observe the independencies & dependencies
consistent with

X\ ‘Y I(X)Y)
Z that is... I(X &Y. W\2)
M —I(X.Y]Z)
W etc.

Then, in every acyclic causal structure not excluded by
CMA and faithfulness, there is a directed path from Z to W.

/Z causes W

MP1-192
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Constraint-Based Approach

+Algorithm based on the systematic application of

¢ Independence tests
e Discovery of “Y” and “V” structures

«Difficulties:
¢ Need infinite data to learn independe

nce with certainty

* What significance level for independence tests should

we use?

* Learned structures are susceptible to errors in

independence tests

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

MP1-193

The Bayesian Approach

X>Y~>/Z p(6)=025
X>Y 7 p6)-025
—» p = .
? Data d
T
X Y+Z p)=025
T
X Y Z p6,)=025

p(5, 1d)=0.01
p(6, |d)=0.1

p(6, 1d)=0.09

One conclusion: p(X and Y cause Z|d)=0.01+0.8=0.81
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The Bayesian approach

/\

X>Y~>Z p(5)=025 p(&, |d)=0.01
/\

X>Y Z p6)=025 p(6 |d)=0.1

Data d

>
X Y~Z p6)=025 p(6, |d)=0.8

X Y Z p6,)=025 p(6, |d) =0.09

p(Z | set(y),d)=> p(Z | set(y).d.& ) p(& /d)
G

Assumptions

Smaking
Data _?, / \

Yellow Lung
Fingers Cancer

(causal assertions)

#Causal Markov assumption

oFaithfulness

+All models under consideration are causal
ectc.

MP1-196
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Definition of Model Hypothesis G

The hypothesis corresponding to DAG model G:
em is a causal model

+(+CMA) the true distribution has the independencies
implied by m

DAG model G: Hypothesis G:
Smoking Smoking Smoking
and
Yellow Lung Yellow Lung Yellow Lung
Fingers Cancer Fingers Cancer Fingers Cancer
MP1-197
Faithfulness

p(@ | G ) is a probability density function for every G

\

the probability that faithfulness is violated = 0

Example: DAG model G: X->Y
pXLY|& )=0

MP1-198

99



Causes of publishing productivity
Rodgers and Maranto 1989

Measure of ability (undergraduate)
Graduate program quality

REPROD) Measure of productivity

Quality of first job

Sex

Citation rate

JEEPEEE

Publication rate

MP1-199

Causes of publishing productivity

Assumptions:
+No hidden variables
oTime ordering:

+Otherwise uniform distribution on structure
+Node likelihood: linear regression on parents

MP1-200

10



Results of Greedy Search...

MP1-201

PC (0.1) PC (0.05)
MP1-202

10



Bayesian Model Averaging

parents of PUBS prob
SEX, QFJ, ABILITY, PREPROD 0.09
SEX, QFJ, ABILITY 0.37
SEX, QFJ, PREPROD 0.24
SEX, QFJ 0.30

MP1-203

Challenges for the Bayesian Approach

«Efficient selective model averaging / model selection
eHidden variables and selection bias

e Prior assessment

o Computation of the score (posterior of model)

e Structure search
+Extend simple discrete and linear models

MP1-204

10



Benefits of the Two Approaches

Bayesian approach:
+Encode uncertainty in answers
+Not susceptible to errors in independence tests

Constraint-based approach:
+More efficient search
eldentify possible hidden variables

MP1-205

Summary

+The concepts of
e Ideal manipulation
e Causal Markov and faithfulness assumptions

enable us to use Bayesian networks as causal graphs

for causal reasoning and causal discovery

eUnder certain conditions and assumptions, we can
discover causal relationships from observational data

+The constraint-based and Bayesian approaches have

different strengths and weaknesses

MP1-206
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Known Structure

Unknown Structure

Outline

Complete data

eIntroduction Incomplete data

e+Bayesian networks: a review
eParameter learning: Complete data
eParameter learning: Incomplete data
+Structure learning: Complete data
+Application: classification

eLearning causal relationships
»Structure learning: Incomplete data
+Conclusion

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

MP1-207

Learning Structure for Incomplete Data

Distinguish:

el earning structure for given set of random variables

e Hard search problem

eIntroducing new hidden variables

e How to recognize the need for a new hidden variable?
e Where to introduce the hidden variable in current

structure?
e Open ended...

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

MP1-208
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Incomplete Data : Structure Scores

MDL
log M

MOL (6 :D)=1/(6:D)- >

dim( 6) - 0L (&)

eUse same MDL formula with probability of the data
+Requires finding maximum likelihood parameters
e Using methods for parameter learning (e.g., EM)

e Theoretical results show that penalty should be adjusted

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 209

Incomplete Data : Structure Scores (cont.)

Bayesian:

PG| D)= P(&)P(DI|6)
= P(6)[P(D| 6,0)P(O] )b

+\We cannot evaluate the marginal likelihood
+\We have to resort to approximations:
e Asymptotic approximations
* Evaluate score around MAP parameters
* Need to find MAP parameters (e.g., EM)
e Stochastic approximations
* Apply stochastic integration methods
* Much slower

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 21 0
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Parametric
optimization

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

-211

Problem

Such procedures are computationally expensive!

+Computation of optimal parameters, per candidate, requires

non-trivial optimization step

+Spend non-negligible computation on a candidate, even if it

is a low scoring one

In practice, such learning procedures are feasible only when

we consider small sets of candidate structures

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Structural EM

eldea: Use parameters found for previous structures to help

evaluate new structures.

#Scope: searching over structures over the same set of

random variables.
Outline:
oPerform search in (Structure, Parameters) space.

+Use EM-like iterations, using previously best found solution

as a basis for finding either:
e Better scoring parameters --- “parametric’ EM step
or
e Better scoring structure --- “structural” EM step

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

MP1-213

Structural EM

+Recall, in complete data we had
e Decomposition = efficient search

Idea:
eInstead of optimizing the real score...
+Find an alternative score that is amenable to search
+Such that
e \We recover decomposability and sufficient statistics
e Maximizing new score = improvement in real score

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Expected scores Data: | x ¥ 2 ﬂ
H
elLet O denote the observed data ;'
eoLet Hdenote the hidden variables HI?2/T
H H
T H“<@

«If we have a distribution Q(H), then “complete” data

EqlScore(M:O,H) =Y Q(H)5core(M: O, H)
H

+Since 0, Hdescribe complete data

EqlScore(M| O, H)]=EglY, Score Ny, rag )]

X;|Paf (
= Z EglScore X, 1P N X Paf )]

+The expected score is decomposable!

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 21 5

How do we choose Q(H)?

Theorem: If Q(H) = P(H/O M) then
Score(M | O)— Score(My | O) >
EglScore (M| H,0)]-EglScore (My | H,0)]

Consequences:

+M s better than M, according to expected score,
= M s also better according to true score

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 21 6
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Structural EM for MDL

oFor the MDL score, we get that

E[MDL( 8:D *)|D,8, ]
=E[logP( 0" | B) | D,B, ] - Penalty(B)
= E[Y, N(X;.Pa;)log P(X; | Pa;)| D,By]- Penalty( B)

= 2 EIN(X;,Pa;)|D,Byllog P(X; | Pa;)—Penalty( B)

Consequence:

+\We can use complete-data methods, were we use expected
counts, instead of actual counts

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

MP1-217
Score
Computation | Expected Counts &
m&ﬂ) Parameterize
XY XD & 2
mg—(ls)x X1, X3)
A RS VRAX]
(0 N(Y,, H)
_> N(Y,, H) _>
DEDBDED N(Y;, H)
+
N(Xz X;)
/\ N(H, Xlr X3)
v N(yll XZ)
N(Y2, ¥4, H)
XD &
Training
Data &
Q> D
© 1988, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SRI International. All rights reserved. MP1 _21 8
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Structural EM in Practice
In theory:

+E-Step: compute expected counts for all candidate structures
+M-Step: choose structure that maximizes expected score

Problem: there are (exponentially) many structures
+We cannot computed expected counts for all of them in advance

Solution:

+M-Step: search over network structures (e.g., hill-climbing)
+E-Step: on-demand, for each structure G examined by M-

Step, compute expected counts

+Use smart caching schemes to minimize overall

computations

© 1998, Nir Friedman, U.C Berkeley, and Moises Goldszmidt, SRI International. All rights reserved. MP1 _21 g
The Structural EM Procedure
Input: B, = (G,,0,)
loop for n =0, 1,... until convergence
Improve parameters:
O, =Parametric-EM (G,,,0,,)
let B',= (G,.0,)
Improve structure:
Search for a network B,,; = (G,,1,0,./) s.t.
E[Score(B,,:D) | B',] > E[Score(B",:D) | B*,]
esParametric-EM() can be replaced by Gradient Ascent,
Newton-Raphson methods, or accelerated EM.
oEarly stopping parameter optimization stage avoids
“‘entrenchment” in current structure.
© 1998, Nir Friedman, U.C Berkeley, and Moises Goldszmidt, SRI International. All rights reserved. MP1 _220
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Structural EM: Convergence Properties

Theorem: The SEM procedure converges in score:
The limit lim,_, Score(B,:D)  exists.

Theorem: Convergence point is a local maxima:

If G, = G infinitely often, then, B4, the limit of the
parameters in the subsequence with structure G, is a
stationary point in the parameter space of G.

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 221

Learning Structure from Incomplete
Data: Summary

eHard problem!

eInitial progress:
e EM-like search techniques
*6 CPU years = 6 CPU hours

oProblems:

e Escaping local maxima
e Inducing new variables

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 222

11



Outline

eIntroduction
e+Bayesian networks: a review

eParameter learning: Complete data
eParameter learning: Incomplete data
+Structure learning: Complete data

+Application: classification
eLearning causal relationships

#Structure learning: Incomplete data

»Conclusion

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.

MP1-223

Summary: Learning Bayesian Networks

Inducer
Sufficient
Statistics
Data + Generator
Prior information “:>
Structure Parameter
Search Fitting

eoParameters: Statistical estimation
oStructure: Search optimization
esIncomplete data: EM

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Untouched issues

eoFeature engineering
e From measurements to features

eFeature selection
e Discovering the relevant features

+Smoothing and priors
e Not enough data to compute robust statistics

+ Representing selection bias
o All the subjects from the same population

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 225

Untouched Issues (Cont.)

eUnsupervised learning
o Clustering and exploratory data analysis

elncorporating time
e Learning DBNs

+Sampling, approximate inference and learning
e Non-conjugate families, and time constraints

+On-line learning, relation to other graphical models

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 226
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Some Applications

+Biostatistics -- Medical Research Council (Bugs)
eoData Analysis -- NASA (AutoClass)
+Collaborative filtering -- Microsoft (MSBN)
oFraud detection -- ATT

+Classification -- SRI (TAN-BLT)

+Speech recognition -- UC Berkeley

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 227

Systems

+BUGS - Bayesian inference Using Gibbs Sampling
o Assumes fixed structure
o No restrictions on the distribution families
o Relies on Markov Chain Montecarlo Methods for inference
e Www.mrc-bsu.com.ac.uk/bugs

+AutoClass - Unsupervised Bayesian classification

e Assumes a naive Bayes structure with hidden variable at the root
representing the classes

e Extensive library of distribution families.
e ack.arc.nasa.gov/ic/projects/bayes-group/group/autoclass/

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 228
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Systems (Cont.)

+MSBN - Microsoft Belief Netwoks
e Learns both parameters and structure, various search methods
e Restrictions on the family of distributions
e www.research.microsoft.com/dtas/

oTAN-BLT - Tree Augmented Naive Bayes for supervised
classification
e Correlations among features restricted to forests of trees

o Multinomial, Gaussians, mixtures of Gaussians, and linear
Gaussians

e www.erg.sri.com/projects/LAS

+Many more - look into AUAI, Web etc.

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 229

Current Topics

eTime
e Beyond discrete time and beyond fixed rate

+Causality
e Removing the assumptions

eHidden variables
e Where to place them and how many?

+Model evaluation and active learning

e What parts of the model are suspect and what and
how much data is needed?

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 230
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Perspective: What’s Old and What’s New

+0lId: Statistics and probability theory

e Provide the enabling concepts and tools for parameter
estimation and fitting, and for testing the results

+New: Representation and exploitation of domain
structure
e Decomposability
Enabling scalability and computation-oriented methods
e Discovery of causal relations and statistical
independence
Enabling explanation generation and interpretability
e Prior knowledge

Enabling a mixture of knowledge-engineering and induction

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 231

The Future...

+Progress will parallel and leverage on extensions to
modeling

e More expressive representation languages

e Better continuous/discrete models

e Increase cross-fertilization with neural networks
+Range of applications

e Biology - DNA, control, financial, perception...
+Beyond current learning model

e Feature discovery

e Model decisions about the process: distributions, feature
selection

o Utilities
+Hybrid methods -- Bayesian networks as “glue”?

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved.
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Many thanks to...

+Gil Bejerano
eLise Getoor
+David Heckerman
+Daphne Koller
oUri Lerner

+Ron Parr

oPeter Spirtes
+Bikash Sabata
.....And remember

For current slides, additional material, and reading list see
http://www.cs.berkeley.edu/~nir/Tutorial

© 1998, Nir Friedman, U.C. Berkeley, and Moises Goldszmidt, SR International. Al rights reserved. MP1 233
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