
CAN A FUZZY RULE EXTRACTION FIND AN EXTREMELY TINY
NON-SELF REGION?

Akira Imada
Brest State Technical University

Moskowskaja 267, 224017 Brest, Republic of Belarus
Email: akira@bstu.by

Keywords: Network-intrusion-detection, fuzzy-neural-network, a-needle-in-a-haystack.

Abstract: This paper reports one snapshot of our on-going experiments in which a common target we calla-tiny-island-
in-a-huge-lake is explored with different methodsranging from a data-mining technique to an artificial immune
system. Our implicit interest is a network intrusion detection wherewe usually do not know what does an
illegal transaction pattern look like until it completed intrusion when it was too late.Hence our first interest
is (i) if it is possible to train the intrusion detection systemonly using legal patterns. From this context we
assume data floating in the lake are normal while ones found on the island is abnormal.Our second concern
is then (ii) to study the limit of the size of the detectable area, that is, when we decrease the size of the island
shrinking to zero until which size can the detector detect it. In this paper a fuzzy rule extraction implemented
by a neural network architecture is employed. for the purpose,

1 INTRODUCTION

A sultan has granted a commoner a chance to marry
one of his 100 daughters by presenting the daughters
one at a time letting him know her dowry that had
been defined previously. The commoner must immedi-
ately decide whether to accept or reject her and he is
not allowed to return to an already rejected daughter.
The sultan will allow the marriage only if the com-
moner picks the daughter with the highest dowry. —
“Sultan’s Dowry Problem” 1

In real world, we have many problems in which it is
easy to access to any one of the many candidate solu-
tions which could be the true solution but most likely
not, which we don’t know in advance.

The ultimate extreme is called a-needle-in-a-haystack
problem. The needle originally proposed by Hinton &
Nowlan (Hinton and Nowlan, 1987) was exactly the

1According to the author(s) of the web-page of Cun-
ningham & Cunningham, Inc. (http://c2.com) the problem
was probably first stated in Martin Gardner’s Mathemati-
cal Recreations column in the February 1960 issue of The
Scientific American. To explore the problem more in detail,
see, e.g., http://mathworld.wolfram.com. We thank Mariusz
Rybnik at University Paris XII for suggesting that the prob-
lem is reminiscent of our context.

one configuration of 20 binary bits. In other words,
the search space is made up of 220 points and only
one point is the target. No information such as how
close is a currently searching point to the needle.

Yet another problem, a-tiny-flat-island-in-a-huge-
lake — this is a problem we came across when we
had explored a fitness landscape defined on all the
possible synaptic weight values of a fully-connected
spiking neurons to give them a function of associative
memory (Imada, 2004). To simplify it we formalized
the problem in more general form as follows.

Test-function (A tiny flat island in a huge lake)2

Find an algorithm to locate a point in the region A
all of whose coordinates are in [−a, a] (a < 1) in an
universe of the n-dimensional hypercube all of whose
coordinate xi lie in [−1, 1] (i = 1, · · · , n).

Our implicit interest is a network intrusion detection
where we usually do not know what does an illegal
transaction pattern look like until it completes the in-
trusion when actually it is too late. Hence, our interest

2It is not necessarily to be said for the top of the island
to be “flat”, but the originally this was a test-bed for evolu-
tionary computations, and the fitness of the island region is
one and zero in a lake region, that is why.

is to train the intrusion detection system only using le-
gal patterns. From this context, we assume data float-
ing in the lake are normal while those found on the
island are abnormal.

In this paper, we approach the problem from this view
point. That is, we take it, more in general, just a pat-
tern classification problem, but under the constraint
that we have two classes one of which includes an
extremely few patterns while the other includes an al-
most infinite number of patterns. Or, we might as well
take it a task of discrimination of a few of non-self
cells as anomaly patterns from enormous amount of
self cells which represent normal patterns.

We have so far exploited the following lately reported
approaches: (i) artificial immune system approach, es-
pecially a negative selection algorithm in which con-
stant or variable sized hyper-sphere detectors detect
non-self cells (see, e.g. (Ji and Dasgupata, 2004)); (ii)
immuno-fuzzy approach where a set of fuzzy rules is
designed to cover non-self region (see, e.g. (J. Gomez
and Dasgupta, 2003)); (iii) evolutionary computation
approach where a set of detectors randomly created
at the beginning eventually evolves to detect non-self;
and so on.

In this paper, we study a fuzzy rule extraction using a
neural network proposed by Castellano et al. (Castel-
lano and Fanelli, 2000). The system they proposed
were neatly described in the paper, and it seems to be
very sound and efficient, except for the way in that
their normal/abnormal data are used to train and test
the system. They employed an Iris-flower-database
in a popular public domain. The database contains
three different classes of iris family and one class is
assumed to be self whilst the other two are assumed
to be non-self. The training samples are chosen at
random from these two classes and train the system.
Then system is tested using the rest of the data in the
database. The result was successful. We, however,
doubt the real applicability of the idea of using arti-
ficial data set in such a way, at least in a context of
intrusion detection. This is principally because of the
following two reasons: (i) we don’t know what does
a non-self datum look like until it completes its in-
trusion successfully; and (ii) the number of non-self
(anomaly) data available is extremely fewer than the
number of self (normal) data. Hence our current in-
terest is also two-fold. Firstly, (i) training should be
made only by self data; and secondly, (ii) the non-self
region should be tiny. We explore these two points
using two different fuzzy models.

2 METHODS

Two fuzzy models are as follows.

2.1 Preliminary Experiment —
Immuno-Fuzzy Model

A set of fuzzy rules is used to cover the non-self
patterns. As already mentioned, self/non-self sells
are represented by n-dimensional real valued vectors
each of whose coordinate lies in [−1, 1]. That is, the
self/non-self space is [−1,1]n, and a self/non-self pat-
tern is represented by a vector (x1, · · · , xn) where
xi ∈ [−1, 1]. Then a fuzzy rule to detect non-self
patterns is

If x1 is T1, · · · , and xn is Tn then x is non-self

where Ti is a fuzzy linguistic terms which is either of

{Low, Low-Middle, Middle, Middle-High, or High} .

Each of Ti maps the xi to a real value between 0
and 1, expressing the degree to how it is likely to the
linguistic value. This is calculated by a membership
function, which is defined here using fixed shaped tri-
angular and trapezoidal fuzzy membership functions.

0 1/6 12/6 3/6 4/6 5/6

1

0

L ML M MH H

Figure 1: Five fixed shaped membership functions
each of which describes how likely a coordinate
is either Low (L), Middle-Low (ML), Middle (M),
Middle-High (MH), or High (H). Note that the coor-
dinates in [−1, 1] are translated into [0, 1] with inter-
pretation being intact.

Then a genetic algorithm evolves these fuzzy rules,
with chromosomes being (T1, · · · , Tn), starting with
those chromosomes randomly created. To be more
specific, our chromosome is made up of n integer
genes whose value is chosen from {0, 1, 2, 3, 4}. The
fitness of a rule is evaluated by applying the rule to all
the self patterns x = (x1, · ·· , xn), one by one, and
calculated as

fitness(R) = 1− max
x∈Self

{ min
i=1,·· · ,n

{µTi
(xi)}}

which implies how the rule covers the non-self space.

2.2 A Fuzzy Neural Network
Approach

The goal is to classify the data taken from the n-
dimensional data-set into either of the pre-defined m
classes. For the purpose, Castellano et al. (Castellano
and Fanelli, 2000) used the inference mechanism of
the zero-order Takagi-Sugeno fuzzy model; then real-
ized the idea by a fuzzy neural network model. To
train the fuzzy neuronal network, they employed a
combination of (i) a competitive learning to deter-
mine the architecture of the fuzzy neural network at
first and (ii) a gradient descent learning to optimize
the synaptic weights afterwards. We, on the other
hand, employ an evolutionary computation technique
to train the network, since we already know the opti-
mal network structure under our current interest, and
as such, our concern is just to obtain the solution of
weight configuration of the fuzzy neural network.

In the following three sub-subsections, Takagi-
Sugeno fuzzy model, a realization of the model by
fuzzy neural network, and how we optimize the
weight of the fuzzy neural network by an evolutionary
computation are described more in detail.

2.2.1 Takagi-Sugeno Model.

Though Castellano et al. (Castellano and Fanelli,
2000) stated the method very clearly in their paper,
let us briefly describe it with an intention of making
this paper self-contained. Takagi-Sugeno fuzzy infer-
ence model is made up of a set of H rules, such as

Rk: IF (x1 is Ak
1) and · · · and (xn is Ak

n)

THEN (y1 is νk1) and · ·· and (ym

is νkm)

where Rk is the k-th rule (k = 1, · · · H), xi denotes
the i-th variable of the input data (i = 1, · · · , n), yj

denotes the j-th output variable (j = 1, · · · ,m), Ak
i

denotes a fuzzy set which is usually expressed by a
linguistic term such as “Medium-Large” but here ex-
pressed by a shape of membership function defined
one by one on the corresponding input variable, and
νkj denotes a fuzzy singleton each defined on the out-
put variables indicating the likeliness of how the input
belongs to the j-th class according to the k-th rule.

Ak
i is defined by Gaussian membership functions

µik (xi) = exp{−(xi − wik)2/σ2
ik}.

Then defuzzification for an input x0 = (x0
1, · · · , x0

n)
is via the equation:

y0
j = {

H∑

k=1

(µk(x0) · νkj)}/
H∑

k=1

µk(x0)

where

µk(x0) =
n∏

i=1

µik(x0
i)

is the results of application of the Larsen product op-
erator.

In other words, the procedure of inference is as fol-
lows. When an input x = (x1, · · · xn) is given, each
of the H rules evaluates the x and output the likeliness
of the class, from one class to the next, to which x be-
longs to. The evaluation by k-th rule of xi is by the
corresponding membership function µik (xi) which is
specified by giving two parameters wik and σik so
that it returns a value ranging from 0 to 1. See, e.g.,
Fig. 1 where the i-th coordinate of the input x is eval-
uated by Ak

i , the i-th antecedent of the IF part of the
Rulek , which is represented by a membership func-
tion not by a usual linguistic term like “Small”. The
returned membership value in this example in the fig-
ure is 0.71, suggesting, say, “The likeliness of if the
variable is “Medium Large” is 0.71.”
Using those n values of µik(xi), each of the H rules

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

xi = 0.348

(0.71)

w

σ
ik

ik

= 0.70

= 0.60

Figure 2: A fictitious sketch of an evaluation of xi, the
i-th entry of the input x, by the i-th antecedent part of
the k-th rule Ak

i .

calculates µk(x), and finally these H values are com-
bined to calculate m values of yj , the resultant de-
fuzzified value for each of the m classes.

2.2.2 Fuzzy Neural Network Implementation.

The procedure described in the previous sub-
subsection can be realized when we assume a neural
network architecture such as depicted in Fig. 2. The
1st layer is made up of n input neurons. The 2nd layer
is made up of H groups of a neuronal structure each
contains n neurons where the i-th neuron of the k-
th group has a connection to the i-th neuron in the
1st layer with a synaptic connection which has a pair
of weights (wik , σik). Then k-th group in the sec-
ond layer calculates the value µk(x) from the values
which are received from each of the n neurons in the
first layer. The 3rd layer is made up of m neurons

each of which collects the H values from the output
of the second layer, that is j-th neuron of the 3rd layer
receives the value from k-th output in the second layer
with the synapse which has the weight νkj

...

... ...

x1 x20

1 2 3

Rule1 Rule2

y y y

......

Figure 3: Architecture of the proposed fuzzy neural
network which infers how an input x = (x1, · · · xn)
is likely to belong to the j-th class by generating out-
puts yj each of which reflect the degree of the likeli-
ness. In this example, a 20-dimension data input will
be inferred to which of the 3 classes the input belongs
by using 2 rules.

2.2.3 How it learns?

Castellano et al. (Castellano and Fanelli, 2000) used
(i) a competitive learning to determine how many
rules are needed under initial weights created at ran-
dom. Then, in order to optimize the initial random
weight configuration, they use (ii) a gradient method
performing the steepest descent on a surface in the
weight space employing the same training data, that
is, supervised learning.

Here, on the other hand, we use a simple genetic
algorithm, since our target space is specific enough
to know the network structure in advance, i.e., only
unique rule is necessary. Our concern, therefore, is
just obtaining the solution of weight configuration of
the network. That is to say, all we want to know is
a set of parameters wik, σik and νkj (i = 1, ·· · n),
(k = 1, · · · H), (j = 1, · · · m) where n is the di-
mension of data, H is the number of rules, and m is
the number of outputs. Hence our chromosome has
those n × H × m genes. Starting with a population
of chromosomes whose genes are randomly created,
they evolve under simple truncate selection where
higher fitness chromosome are chosen, with uniform
crossover and occasional mutation by replacing some

of a few genes with randomly created other param-
eters, expecting higher fitness chromosomes will be
emerged. These settings are determined by trials and
errors experimentally.

3 EXPERIMENT

An experiment was carried out in the 20-
dimensional space. Our assumption is normal data
exist in the lake region while abnormal data in the
island region. We control the size of the island by
changing the parameter value a. Furthermore, it is
easy to guess that only one inference rule is enough
to classify an input into either of the two classes. The
architecture of the fuzzy network is, therefore, 20 in-
put nodes, 1 rules, and 2 output nodes.

4 RESULTS AND DISCUSSION

Though our experiments have sometimes reversed
our expectations depending on parameter setting, we
are obtaining a series of successful results.

4.0.4 Where is the tiny island?

In the preliminary experiment using a five fixed
shaped triangular and trapezoidal fuzzy membership
functions, evolution converges to the chromosome

{M,M,M, · · · ,M}
which implies

IF x1 is Middle, and · · · , and x20 is Middle THEN
no-self.

However, this holds only on the condition that the is-
land is fairly large.

4.0.5 How tiny island can be detected?

In Fig. 3, we showed an example of obtained mem-
bership function corresponding to one antecedent of
the rule (Left), as well as one of the output single-
tons obtained in the same experiment (Right). Train-
ing Samples are from the assumed legal data exist in
the lake region to identify the illegal data exists in the
tiny island region defined as a = 0.1. In the figure,
although only one example of membership function
is shown out of 20 others, the other 19 membership
factions are more or less similar to the one shown in
the figure. This suggest that

R1: IF all of xn is near the origin THEN (y1 is
HIGH) and (y2 is LAW).

Namely, the input belongs to the abnormal class.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

0.250 0.75 10.5

Figure 4: An example of experimental result of a
membership function of one antecedent membership
function of a rule (Left), and one of the two output
singletons of the same experiment (Right). Training
samples are from the assumed legal data exist in the
lake, while the illegal data is assumed to be in the tiny
island defined as a = 0.1.

5 SUMMARY

In this paper, we have reported our on-going inves-
tigations, that is, how already proposed methods work
on a special situation of what we call a-tiny-island-
in-a-huge-lake, suggesting to use it a test-function to
design a network intrusion system. When we increase
the difficulty of the problem by making the size of the
island shrink to zero, it will become what they call
a-needle-in-a-haystack . As far as we know, this is-
sue has resisted to be fully unveiled and still remains
open. Though our results so far has not been matured
yet, we hope a lot of experiments await our explo-
ration which might result in useful observations in
considering how we design a network intrusion de-
tection system.

REFERENCES

Castellano, G. and Fanelli, A. M. (2000). Fuzzy inference
and rule extraction using a neural network.In Neural
Network World Journal Vol. 3, pp. 361–371.

Hinton, G. E. and Nowlan, S. J. (1987). How learning can
guide evolution. InComplex Systems, 1, pp. 495–502.

Imada, A. (2004). How a peak on a completely-flatland-
elsewhere can be searched for? — a fitness landscape
of associative memory by spiking neurons. In Ad-
vanced Computer Systems (ACS) and Computer Infor-
mation Systems and Industrial Management Applica-
tions (CISIM), Vol.2, pp. 171–150.

J. Gomez, F. G. and Dasgupta, D. (2003). An immuno-
fuzzy approach to anomaly detection. In IEEE In-
ternational Conference on Fuzzy Systems, Vol. 2,
pp. 1219-1224.

Ji, Z. and Dasgupata, D. (2004). Augmented negative se-
lection algorithm with variable-coverage detectors.In
Congress on Evolutionary Computation. pp. 1081–
1088.

