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T his paper reportsone snapshot of our on-going experi mentsin which acommon target we calk-tiny-id and-

i n-a-huge-lakeisexplored with different methodsranging from adata-mining techni queto anartifici al i mmune
system. Our implicit interest is a network intrus on detecti on wherene usual ly do not know what does an
illegal transaction pattern | ook like until it compl eted intrus on when it was too | até-ence our first i nterest
is(i) if it ispossible to train the i ntrug on detection sygemonly using legal patterns From this context we
assume datafloating in thelake are normal while onesfound on the island is abnormal. Our second concern
isthen (ii) to study thelimit of the g ze of the detectabl e area, that is, when we decrease the size of theisland
shrinking to zero until which size can the detector detect it. In this paper afuzzy rule extraction implemented
by a neura network architecture is employed. for the purpose,

1 INTRODUCTION

A sultan has granted a conmoner a chance to marry
one of his 100 daughters by presenting the daughters
one at a time letting him know her dowry that had
been defined previously. The conmoner must i nmedi-
ately decide whether to accept or reject her and heis
not all owed to return to an al ready rejected daughter.
The sultan will allow the marriage only if the com
moner picks the daughter with the highest dowry. —

“Qultan’s Dowry Problem?” !

Inrea world, we have many problems in whichitis
easy to accessto any one of the many candidate solu-
tions which could be the true sol ution but maost likdy
not, which we don' t know in advance.

The timate extremeis caled a needle-in-a- haystack
problem. Theneedleoriginally proposed by Hinton &
Nowlan (Hinton and Nowlan, 1987) was exactly the

'Accordi ng to the author(9 of the web-page of Cun-
ningham & Cumningham, Inc. (http://c2.com) the problem
was probably firg stated in Martin Gardner’s Mathemati -
ca Recreati ons column in the February 1960 issue of The
Sci entific Ameri can. To explore the probl em more i ndetail ,
see, e.g., http://mathworld.wolfram.com. We thank Mari usz
Rybnik at Universty ParisXII for suggesti ng that the prob-
Iem i sreminiscent of our context.

ore configuration of 20 binary hits. In other words,
the search space is made up of 22° points and only
ore point isthe target. No information such as how
close is acurrently searching point to the neede.

Yet another problem, atiny-flat-island-in-a-huge-
lake — this is a problem we came across when we
had explored a fitness landscape defined on al the
passible synaptic weight values of a fully-connected
spiking neurons to give them af unction of assodative
memory (I mada, 2004). To simplify it we formalized
the problem in more general form asfadlows.

Test-function (A tiny flat isand in a huge lake)?
Find an algorithm to locate a point in the region A
all of whose coordinates arein [—a,a] (a < 1) inan
universe of the n-dimensional hypercube al of whose

coordinate z; liein [-1,1] (i = 1,--- ,n).

Our implicit interest is a network intrusion detection
where we usually do not know what does an illegal
transaction pattern look like until it completes the in-
trusion when actually itistoolate. Hence, our interest

2It isnot necessarily to be said for the top of the island
to be “flat”, but the originall y this was atest-bed for evol u-
tionary computations and the fitnessof theidand region is
oneandzeroin alakeregion, that iswhy.



istotrainthe intrusion detection system only using le-
gal patterns. From this context, we assume data fl oat-
ing in the lake are normal while those found on the
island are abnormal.

I nthis paper, we approach theproblem from this view
point. Thatis, wetake it, morein general, just apat-
tern classifi cation problem, but under the constraint
tha we have two classes one of which includes an
extremely few patternswhile the other includes an al-
most infi nitenumber of patterns. Or, wemight aswell
take it a tesk of discrimination of a few of nonself
cells as anomaly patterns from enormous amount of
self cellswhich represent normal patterns.

We have sofa explaitedthe following lately reported
approaches: (i) artificial inmune system gpproach, es-
pecially a negative selection algorithm in which con-
stant or variable sized hyper-sphere detectors detect
non-self cells (see, e.g. (Ji and Dasgupata, 2004)); (ii)
immuno-fuzzy approach where a set of fuzzy rulesis
designedto cover non-self region (see, e.g. (J. Gomez
and Dasgupta, 2003)); (iii) evolutionary computation
approach where a set of detectars randomly created
at the beginning eventually evaves to detect nor-self;
and so on.

I n this paper, we study a fuzzy rue extraction using a
neural network proposed by Castellano et al. (Castel-
lano and Fanelli, 2000). The system they proposed
were neatly described in the paper, and it seems to be
very sound and effident, except for the way in that
thar normal/abnormad dataare used to train and test
the system. They employed an Iris-flower-database
in a popuar public domain. The database contains
three dif ferent classes of iris family and one class is
assumed to be self whilst the other two are assumed
to be non-self. The training samples are chosen at
random from these two classes and train the system.
Then system is tested using the rest of the data in the
database. The result was successfu. We, however,
doubt the real applicability of the idea of using arti-
ficial data set in such a way, at least in a context of
intrusion detection. Thisis principally because of the
fdlowing two reasons. (i) we don't know what does
a non-self datum look like urtil it completes its in
trusion successfuly; and (ii) the number of non-self
(anomaly) data available is extremely fewer than the
number of sdf (normal) data. Hence our current in-
terest is also two-fdd. Firstly, (i) training should be
made only by self data; and secondly, (ii) the non self
region should betiny. We explare these two points
using two different f uzzy models.

2 METHODS

Two fuzzy modelsare asfdlows.

2.1 Prdiminary Experiment —
Immuno-Fuzzy M odel

A set of fuzzy rules is used to cover the non-self
paterns. As aready mentioned, self/non-self sells
are represented by n-dimensional real valued vectors
each of whose coordinate liesin [—1,1]. Thatis, the
self/non-self spaceis [—1,1]", and a self /non-self pat-
tern is represented by a vector (z1,--- ,z,) where
x; € [-1,1]. Then afuzzy rule to detect non-self
patternsis

IfzqisTy,---,and z,, isT, then x isnon-sdf
where T} isa fuzzy linguistic terms which is either of
{Low; Low-Midde, Middle, Middle-High, or High} .

Each of T; maps the x; to areal value beween 0
and 1, expressing the degree to how itislikely to the
linguistic value. This is calcuated by a membership
function, whichis defined here using fixed shaped tri-
angular and trapezoidal fuzzy membership fundions.

L ML M MH H

OO 1/6 2/6 3/6 4/6 5/6 1

Figue 1. Five fixed shaped membership functions
each of which describes how likdy a coordinate
is either Low (L), Midde-Low (ML), Midde (M),
Middle-High (MH), or High (H). Nate that the coor-
dinates in [—1, 1] are ranslated into [0, 1] with inter-
pretation being intact.

Then a geretic algorithm evolves these fuzzy rules,
with chromosomes beng (71, --- ,T5,), starting with
those chromosomes randomly crested. To be mare
specific, our chromosome is made up of n integer
genes whose valueischasen from {0, 1, 2,3, 4}. The
fitness of aruleis evaluated by applyingtheruetoall
the self paterns x = (z1,--- ,,), one by one and
calculated as

fi =1 1 (x5
itness(R) Jhax f{,»:?}].l?,n{”ﬂ (zi)}}

which implies how the rule covers the non-self space.



2.2 A Fuzzy Neura Network
Approach

The goa is to classify the data taken from the n-
dimensional data-set into either of the pre-defined m
classes. For the purpose, Castellano et a. (Castellano
and Fanelli, 2000) used the inference mechanism of
the zero-or der Takagi-Sugeno fuzzy model; thenreal-
ized theidea by a fuzzy neural network model. To
train the fuzzy neuronal network, they employed a
combination of (i) a competitive learning to deter-
mine the architecture of the fuzzy neural network at
first and (ii) a gradient descert learning to optimize
the syngptic weights afterwards. We, on the other
hand, employ an evolutionary computation technique
to train the network, since we aready know the opti-
md network structure under our current interest, and
as such, our concern is just to dbtain the sdution of
weight configuration of the fuzzy neural network.

In the fdlowing three sub-subsections, Takagi-
Sugeno fuzzy modd, aredization of the model by
fuzzy neura network, and how we optimize the
weight of the fuzzy neural networ k by an evolutionary
computation are described morein detail.

221 Takagi-Sugeno Model.

Though Castdlano et a. (Castellano and Farelli,
2000) stated the method very clearly in their paper,
let us briefly describe it with an intention of  making
this paper self -contained. Takagi- Sugeno fuzzy infer-
ence modd is made up of aset of H rules, such as

Ry IF (z1is AF) and - - and (z,, is AF)

THEN (y1 isvg) and - -+ and (v,
is Vkm)

where Ry, isthe k-thrule (k = 1,--- H), x; denotes
the i-th variable of theinput data (i = 1,--- ,n), y;
derotes the j-th output variable (j = 1,--- ,m), AF
denotes a fuzzy set which is usudly expressed by a
linguistic term such as “ Medum-Large” but here ex-
pressed by a shape of membership function defi ned
one by one on the corresponding input variade, and
v},; denotes afuzzy sing eton each defi ned ontheout-
put variables ind cating thelikeliness of how theinput
belongs to the j-th class according to the k-thrule.

Ak is defined by Gaussian member ship f unctions

pak () = exp{—(z; — wir)? /o3 }.
Then defuzzification for animput x° = (29, -+ ,29)
isviathe equation:
H

H
yJQ = {Z(uk(xo) V) Y/ Z pe(X)
k=1

k=1

where
pe(X0) = T ] par (=)
=1

istheresults of application of the Larsen product op-
erator.

In athe wards, the procedure of inferenceis asfd-
lowvs. When aninput x = (x1,--- x,,) is gven, each
of the H rules evaluates the x and output thelikeliness

of the class, from one classtothe next, towhich x be-
longsto. The evaluation by k-th rule of x; is by the
corresponding membership fundion gk (x;) whichis
specified by giving two parameters w;, and o, SO
thet it returns avalue rangngfromOto 1. See eg.,
Fig. 1 wherethe i-th coordinae of theinput xis eval-
uated by AF, the i-th antecedent of the |IF part of the
Ruley, which is represented by a membership func-
tion not by a usual linguistic term like “Small”. The
returned membershipvaluein thisexamplein thefig-

ure is 0.71, suggesting, say, “The likeliness o if the
variableis “Medum Large” is0.71.”

Using those n valuesof ;i (x;), each of the H rules
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Figure2: A fictitious sketch of anevaluationof x;, the
i-th entry of theinput x, by the i-th antecedent part of
the k-thrule A

caculates px(x), and finally these H values are com-
bined to calculate m values of y;, the resultant de-
fuzzified value for each of the m classes.

2.2.2 Fuzzy Neural Network Implementation.

The procedure described in the previous sub-
subsedion can be realized when we assume a neural

network architecture such as depicted in Fig. 2. The
1stlayer ismade up of ninput neurons. The2nd layer

ismadeup of H groups of aneuronal structure each
corntains n neurons where the i-th neuron of the k-
th group has a connection to the i-th neuron in the
1st layer with a synaptic connection which has a pair

of weights (wjk, o). Then k-th group in the sec-
ond layer cdculates the value 1 (x) from the values
which are received from each of the n neurons in the
first layer. The 3rd layer is made up of m neurons



each of which collectsthe H values from the output
of thesecond layer, thatis j-th neuron of the 3rdlayer
receives the value from k-thoutput in the second layer
with the synapse which hes the weight vy,

Yi Y2 Y3

Figure 3: Architecture of the proposed fuzzy neura
network which infers how aninput x = (z1,--- )
is likely to belong to the j-th class by generating out-
puts y; each of which reflect the degree of the likeli-
ness. I nthis example a 20-dmension datainput will
beinferred towhich of the 3 classes the input belongs
by using 2 rules.

2.2.3 Howitlearns?

Castellano & a. (Castdlano and Farelli, 2000) used
(i) a competitive learning to determine how many
rues are needed under initid weights created at ran-
dom. Then, in orde to optimize the initial random
weight confi guraion, they use (i) agradient method
performing the steepest descent on a surface in the
weight space employing the same training data, that
is, supervised learning.

Here, on the ather hand, we use a simple genetic
algorithm, since our target space is specific enough
to know the network structure in advance, i.e., only
unique rue is necessary. Our concern, therefore is
just obtaining the solution of weight corfi guration of
the network. That is to say, all we want to know is
a set of parameters w;y, o, ad vy (1 = 1,---n),
(k =1,---H), (j = 1,---m) where n is the di-
mension of data H isthe number of rules, and m is
the number of outputs. Hence our chromosome has
those n x H x m genes. Starting with a population
of chromasomes whose genes are randomly created,
they evolve under simple truncate selecion whee
higher fitness chromosome are chosen, with uniform
crossover and occasional mutation by replacing some

of a few genes with randomly created ather paam-
eters, expecting higher fitness chromosomes will be
emerged. These settings are determined by trials and
errors experimertally.

3 EXPERIMENT

An experiment was carried out in the 20-
dimensional space. Our assumption is normd data
exist in the lake region while abnorma data in the
isand regon. We contrd the size of the island by
changing the parameter value a. Furthermore, it is
easy to guess that only one inference rule is enough
to classify aninput into either of thetwo dasses. The
architecture of the fuzzy netwark is, therefore, 20 in-
put nodes, 1 rules, and 2 output nodes.

4 RESULTSAND DISCUSSION

Though our experiments have sometimes rever sed
our expectations depending on parameter setting, we
are dbtaining a series of successful resuts.

4,04 Wheeisthetinyisand?

In the preliminary experiment using a five fixed
shaped triangular and trapezoidal fuzzy membership
functions, evolution converges to the chromosome

{M,M,M,--- M}
whichimplies
IFz; isMiddle,and - - -, and x99 isMidde THEN
no-self.

However, this hdds only on the condition that theis-
land isfairly large.

4.0.5 Howtinyisland can bedeected?

In Fig 3, we showed an example of obtained mem-
bership function corresponding to one antecedert of
the rule (Left), as well as one of the output single-
tons obtained in the sane experiment (Right). Train-
ing Samples are from the assumed legal dataexist in
the lake region to identify the illegal data exists in the
tiny island region defined as a = 0.1. In the figure,
although only one example of membership function
is shown out of 20 others, the other 19 membership
factions are more or less similar to the one shownin
the figure. This suggest that

Ry: IF @l of z,, is near theorign THEN ( g is
HIGH) and (v is LAW).

Namely, the input belongs to the abnormal class.
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Figure 4: An example of experimental result of a
member ship function of one antecedent membership

function of a rule (Left), and one of the two output
singetons of the same experiment (Right). Traning
samples are from the assumed legal data exist in the

lake, while theillegal datais assumedto beinthe tiny
island definedas a = 0.1.

5 SUMMARY

In this paper, we have reported our on-going inves-
tigations, tha is, how already propased methods work
on a spedal situation of what we cal a-tiny-island-
in-a-huge-lake, suggesting to use it atest-function to
design a network intrusion system. When we inarease
thedifficulty of the problem by making the sizeof the
island shrink to zero, it will become what they call
a-neede-in-a-haystack. As far as we know, this is-
sue has resisted to be fully unveiled and still remains
open. Though our results sofar has not been maured
yet, we hope a lot of experiments await our explo-
ration which might result in useful observations in
considering how we design a network intrusion de-
tection system.
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