
Can a fuzzy rule extraction find an extremely
tiny non-self region?

Akira Imada

Brest State Technical University
Moskowskaja 267, 224017 Brest, Republic of Belarus

akira@bstu.by
http://neuro.bstu.by/ai/akira.html

Abstract. This paper reports one snapshot of our on-going experiments
in which a common target we call a-tiny-island-in-a-huge-lake is explored
with different methods ranging from a data-mining technique to an artifi-
cial immune system. Our implicit interest is a network intrusion detection
where we usually do not know what does an illegal transaction pattern
look like until it completed intrusion when it was too late. Hence our first
interest is (i) if it is possible to train the intrusion detection system only
using legal patterns. From this context we assume data floating in the
lake are normal while ones found on the island is abnormal. Our second
concern is then (ii) to study the limit of the size of the detectable area,
that is, until what size can the detector detect it when we decrease the
size of the island shrinking to zero, which is sometimes called a-needle-
in-a-haystack. In this paper, a fuzzy rule extraction implemented by a
neural network architecture is employed for the purpose.

1 Introduction

This paper is a snapshot of our on-going investigation into how do already pro-
posed methods, each of which claims successful, work on a special situation of
what we call a-tiny-island-in-a-huge-lake. To be more specific, we now are ex-
ploring a couple of so far proposed approaches for the purpose of searching for an
extremely tiny unknown region of non-self data surrounded by an overwhelming
amount of known self data partly with an interest from a view point of network
intrusion detection where self data imply normal transactions while non-self data
imply anomaly.

Assuming our whole universe is n-dimensional Euclidean space all of whose coor-
dinate are in [−1, 1], a region of non-self data are our targets to be searched for,
that is, a tiny hyper-rectangle all of the coordinates inside are in [−a, a] (a < 1),
or a tiny hyper-sphere whose center locates at the origin and radius is a (a < 1).
In a network intrusion detection, the number of abnormal patterns which we
assume as non-self is extremely fewer than the number of normal patterns which
we assume as self data This is the reason why our target should be extremely
tiny. In other words, a ≈ 0 is our condition.

We have so far exploited (i) artificial immune system approach, especially a
negative selection algorithm in which constant or variable sized hyper-sphere de-
tectors detect non-self cells; (ii) immuno-fuzzy approach where a set of random
fuzzy rules eventually evolves to cover non-self region; (iii) evolutionary com-
putation approach where also an evolution of a set of random detectors finally
detect non-self; and so on.

In this paper, we study a fuzzy rule extraction using a neural network proposed by
Castellano et al. [1]. The system they proposed were very clearly described and it
seems to be very sound and efficient, except for the way in that their data applied
by the system. They employed an Iris-database in a popular public domain. The
database contains three different classes of iris family and one class is assumed
to be self whilst the other two are assumed to be non-self. The training samples
are chosen at random from these two classes and train the system. Then system
is tested using the rest of the data in the database. The result was successful.
We, however, doubt the real applicability of idea of using artificial data set in
such a way in a context of intrusion detection. This is principally because of
the two following reasons: Usually, in the context of intrusion detection, (i) the
number of non-self (anomaly) data is extremely fewer than the number of self
(normal) data; and (ii) we don’t know what does a non-self datum look like until
it completes its intrusion successfully. It would be too late.

Hence our current interest is also two-fold: First, the non-self region should
be tiny and secondly, training should be made only by self data. We explore
these two points using above mentioned fuzzy rule extraction by neural network
proposed by Castellano et al. [1].

2 Method

The goal is to classify each of the data from n-dimensional data-set into either of
m classes. For the purpose, Castellano et al. [1] used the inference mechanism of
a zero-order Takagi-Sugeno fuzzy model; then realized the idea by a fuzzy neural
network model. To train the fuzzy neural network, they employed a combina-
tion of a competitive learning to determine the architecture of the fuzzy neural
network and a gradient descent learning to optimize the synaptic weights. We,
on the other hand, employ, an evolutionary computation technique to train the
network since we already knew the network structure under our current interest,
that is, all we need to detect island is just one rule, and as such, our concern
is just to obtain the solution of weight configuration of the network, and an
evolutionary computation is expected to find it more simply than the proposed
approach.

In the following three subsections (i) Takagi-Sugeno fuzzy model, (ii) a realiza-
tion of the model by fuzzy neural network, and (iii) how we optimize the weight
of the fuzzy neural network by an evolutionary computation.

2.1 Takagi-Sugeno Model

Though Castellano et al. [1] stated the method very clearly in their paper, let us
briefly describe it with an intention of making this paper self-contained. Takagi-
Sugeno fuzzy inference model is made up of a set of H rules, such as

Rk: IF (x1 is Ak
1) and · · · and (xn is Ak

n)

THEN (y1 is νk1) and · · · and (ym is νkm)

where Rk is the k-th rule (k = 1, · · ·H), xi is the i-th variable of the input data
(i = 1, · · · , n), yj is j-th output variable, Ak

i are fuzzy sets which are usually
expressed by linguistic terms such as “medium large” but here expressed by a
shape of membership function defined one by one on the corresponding input
variable, and νkj are fuzzy singletons defined on the output variables indicating
the likeliness of the j-th class inferred by k-th rule.

Ak
i is defined by Gaussian membership functions

μik(xi) = exp{−(xi − wik)2/σ2
ik}.

Then defuzzification for input x0 = (x0
1, · · · , x0

n) is according to

y0
j =

H∑

k=1

μk(x0) · νkj/
H∑

k=1

μk(x0)

where

μk(x0) =
n∏

i=1

μik(x0
i)

is the results of application of Larsen product operator.

In other words, the procedure of inference is as follows. When an input x =
(x1, · · ·xn) is given, each of the H rules evaluates the x and output the likeliness
of the class, from one class to the next, to which x belongs to. The evaluation
by k-th rule of xi is by the corresponding membership function μik(xi) which is
specified by giving two parameters wik and σik returning a value ranging from
0 to 1. See, for example, Fig. 1 where i-th coordinate of the input x is evaluated
by Ak

i , i-th antecedent of the IF part of the Rk, which is represented a set
of membership function not a usual linguistic term like “Large”. The returned
membership value of this example in the Figure is 0.71, suggesting, say, the
likeliness of if the variable is “Medium Large” is 0.71 ...

Each of the H rules calculates μk(x) from those n values of μik(xi). Finally, those
H values are combined to calculate m values of yj , the result of defuzzification
for each of the m classes.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

xi = 0.348

(0.71)

w

σ
ik

ik

= 0.70

= 0.60

Fig. 1. A fictitious sketch of an evaluation of xi, i-th entry of the input x, by Ak
i , the

i-th antecedent part of a k-th rule.

This procedure is realized when we assume a neural network such as depicted in
Fig. 2. The first layer is made up of n input neurons. The second layer is made
up of H groups each contains n neurons where i-th neuron of k-th group has a
connection to i-th neuron in the first layer with the synapse which has a pair of
weights (wik, σik). Then k-th group in the second layer calculate the value μk(x)
from the values its n neurons received. Third layer is made up of m neurons each
of which collects the H value from the output of the second layer, that is j-th
neuron of the third layer receives the value from k-th output in the second layer
with the synapse which has the weight νkj

2.2 How it learns?

Castellano et al. [1] used (1) a competitive learning to determine how many rules
are needed and initial weights. Then in order to optimize these initial weights
they use (2) a gradient method performing the steepest descent on a surface in
the weight space employing the same training data, that is, supervised learning.

Here, on the other hand, we use a simple genetic algorithm. Since our target space
is specific enough to know the network structure already, our concern is just to
obtain the solution of weight configuration of the network. That is to say, all we
want to know is a set of parameters wik, σik and νkj (i = 1, · · ·n, k = 1, · · ·H,
j = 1, · · ·m) where n is the dimension of data, H is the number of rules, and m
is the number of outputs. Hence our chromosome has those n × H × m genes.
Starting with a population of chromosomes whose genes are randomly created,
they evolve under simple truncate selection where higher fitness chromosome are
chosen, with uniform crossover and occasional mutation by replacing some of
a few genes with randomly created other parameters, expecting higher fitness
chromosomes will be emerged. These settings are determined by trials and errors
experimentally.

...

... ...

x1 x20

1 2 3

Rule1 Rule2

y y y

......

Fig. 2. Architecture of the proposed fuzzy neural network which infers how an input
x = (x1, · · · xn) is likely to belong to the j-th class by generating outputs yj each of
which reflects the degree of the likeliness. In this Figure 20-dimensional data input will
infer which of the three classes the input belongs by using two rules.

To evaluate fitness of each chromosome, we use a measure originally proposed
by Lopes et al. [2] and used widely nowadays in which four quantities, i.e., (i)
true-positive, (ii) true-negative, (iii) false positive, and (iv) false negative are
used. Here we assume positive sample is non-self and negative sample is self,
since detectors is designed to detect non-self cells. Hence, these four terms are
defined in a sence that (i) tp (true positive) — true declaration of positive sample,
i.e., non-self declared as non-self (ii) fp (false positive) — false declaration of
positive sample, i.e., self declared as non-self (iii) tn (true negative) — true
declaration of negative sample, i.e., self declared as self (iv) fn (false negative)
— false declaration of negative sample, i.e., non-self declared as self. Under these
definitions dr = tp/(tp +fn) implies detection rate, and fa = fp/(tn +fp) implies
false alarm rate. Then we plot dr versus fa, and the resultant graph is called
Receiver Operating Characteristics (OCR) [3] which reflects a tradeoff between
false alarm rate and detection rate.

3 Experiment

Castellano et al. [1] used IRIS data found in a public domain in a very clever
way, writing as follows.

The validity of our approach to fuzzy inference and rule extraction has
been tested on the well-known benchmark IRIS data problem. The classi-
fication problem of the IRIS data consists of classifying three species of

iris flowers (setosa, versicolor and virginica). There are 150 samples for
this problem, 50 of each class. A sample is a four-dimensional pattern
vector representing four attributes of the iris flower (sepal length, sepal
width, petal length, and petal width).

However, we doubt this way of using IRIS data as an artificial data at least in the
context of network intrusion detection. One reason of our doubt is that illegal
patterns are usually unknown and it cannot be represented by certain specific
patterns, if not al all. The other reason is the sparseness of this data set. What
if the system meets a pattern which does not belong to either of the two classes?
See another report of us [4] regarding this issue.

Our target problem is what we call a-tiny-flat-island-in-a-huge-lake which we
came across when we had explored a fitness landscape defined on all the possi-
ble synaptic weight values of a fully-connected spiking neurons to give them a
function of associative memory [5]. To simplify it, we formalized the problem in
more general form as follows.

Test-function 1 (A tiny island in a huge lake - 1) Find an algorithm to
locate a point in the region A all of whose coordinates are in [−a, a] (a ≈ 0)
in an universe of the n-dimensional hypercube all of whose coordinate xi lie in
[−1, 1] (i = 1, · · · , n).

Or

Test-function 2 (A tiny island in a huge lake -2) Find an algorithm to lo-
cate a point in the region A all of whose coordinates are in the hyper-sphere whose
radius is a (a ≈ 0) and its center locates at the origin in an universe of the n-
dimensional hypercube all of whose coordinate xi lie in [−1, 1] (i = 1, · · · , n).

An experiment was carried out in the 20-dimensional space. Our assumption is
normal data exist in the lake region while abnormal data in the island region.
We control the size of the island by changing the value a. Hence it is easy to
guess that only one inference rule is enough to classify input into either of two
classes. The architecture of the fuzzy network is, therefore, twenty inputs, one
rules, and two outputs.

4 Results and Discussion

Though our experiments have sometimes reversed our expectations depending
on parameters determined, we are obtaining a series of successful results, such
as shown in Fig. 3 where an example of obtained membership function corre-
sponding to one antecedent of the rule (Left), as well as one of the two output
singletons of the same experiment (Right). Training Samples are from the as-
sumed legal data exist in the lake to identify the illegal data exists in the tiny
island defined as a = 0.1.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

0.250 0.75 10.5

Fig. 3. An example of experimental result of a membership function of one antecedent
membership function of a rule (Left), and one of the two output singletons of the same
experiment (Right). Training Samples are from the assumed legal data exist in the
lake, while the illegal data is assumed to be in the tiny island defined as a = 0.1.

In the Figure, although only one example of membership function out of 20 other
19 membership functions are more or less similar to the one shown in the figure.
This suggest that

R1: IF all of xn is near the origin THEN (y1 is HIGH) and (y2 is LAW).

That is the input belongs to the abnormal class.

5 Summary

In this paper, we have reported our on-going investigations, that is, how already
proposed methods work on a special situation of what we call a-tiny-island-in-
a-huge-lake. When we increase the difficulty of the problem by making the size
of the island shrink to zero, it becomes what they call a-needle-in-a-haystack.
As far as we know, this issue has resisted to be fully solved and still remains
open. Though our results so far has not been matured yet, we hope a lot of
experiments which might result in positive observations in considering how we
design a network intrusion detection system await our exploration.

References

1. G. Castellano and A. M. Fanelli (2000) ”Fuzzy Inference and Rule Extraction using
a Neural Network.” Neural Network World Journal Vol. 3, pp. 361–371.

2. H. S. Lopes, M. S. Coutinho, W. C. Lima (1997) “An Evolutionary Approach to
Simulate Cognitive Feedback Learning in Medical Domain.” Genetic Algorithms
and Fuzzy Logic Systems. World Scientific, pp. 193–207.

3. F. Provost, T. Fawcett, and R. Kohavi (1989) “The case against accuracy estima-
tion for comparing induction algorithms.” Proceedings of international conference
on machine learning, pp. 445–453.

4. A. Imada (2005) “When One Iris Flower is Normal Then are Others Abnormal?”
Proceedings of International Conference on Pattern Recognition and Information
Processing,

5. A. Imada (2004) “How a Peak on a Completely-flatland-elsewhere can be Searched
for? — A Fitness Landscape of Associative Memory by Spiking Neurons.” Proceed-
ings of Advanced Computer Systems (ACS) and Computer Information Systems
and Industrial Management Applications (CISIM), Vol.2, pp. 171–150.

This article was processed using the LATEX macro package with LLNCS style

