
Can a fuzzy rule extraction find an extremely tiny
non-self region?

Akira Imada

1 Brest State Technical University
Moskowskaja 267, 224017 Brest, Republic of Belarus

akira@bstu.by
http://neuro.bstu.by/ai/akira.html

2

3

Abstract. This paper reports one snapshot of our on-going experiments in which
a common target we call a-tiny-island-in-a-huge-lake is explored with different
methods ranging from a data-mining technique to an artificial immune system.
Our implicit interest is a network intrusion detection where we usually do not
know what does an illegal transaction pattern look like until it completed intrusion
when it was too late. Hence our first interest is (i) if it is possible to train the
intrusion detection system only using legal patterns. From this context we assume
data floating in the lake are normal while ones found on the island is abnormal.
Our second concern is then (ii) to study the limit of the size of the detectable area,
that is, when we decrease the size of the island shrinking to zero until which size
can the detector detect it. In this paper, a fuzzy rule extraction implemented by a
neural network architecture is employed for the purpose.

1 Introduction

This paper is a report of our on-going investigation into how do already proposed meth-
ods work on a special situation of what we call a-tiny-island-in-a-lake. To be more
specific, we now are exploring a couple of so far proposed approaches for the purpose
of searching for an extremely tiny unknown region of non-self data surrounded by an
overwhelming amount of known self data partly with an interest from a viw point of
network intrusion detection where self data imply normal transactions while non-self
data imply anomaly.

Assuming our whole universe is n-dimensional Eucledian space all of whose coordinate
are in [−1, 1], two differnt regions of non-self data are our targets to be searched for.
One is a tiny hyper-retangle all of the coordinates inside are in [−a, a] (a < 1), and
the other is a tiny hyper-sphere whose center locates at the origin and radius is a < 1.
In a network intrusion detection, the number of abrormal patterns which we assume
as non-self is extremelly fewer thant the number of normal patterns which we assume
as self data This is the reason why our target should be extremly tiny, In other words,
a ≈ 0 is our condition.

2 Akira Imada

We have so far exploited (i) artificial immun system approach, especially a negative
selection algorithm in which constant or variable sized hyper-sphere detectors detect
non-self cells; (ii) immuno-fuzzy approach where a set of random fuzzy rules eventually
evolves to cover non-self region; (iii) evolutionary computation approach where also an
evolution of a set of random detectors finally detect non-self; and so on.

In this paper, we study a fuzzy rule extraction using a neural network proposed by
G. Castellano et al. (2000) [1]. The system they proposed were very clearly descripted
and it seems to be very sound and efficient, except for the way in that their data ap-
plied by the system. They employed an Iris-database in a popular public domain. The
database contains 3 different classes of iris family and one class is assumed to be self
whilst the other two are assumed to be non-self. The training samples are chosen at
random from these two classes and train the system. Then system is tested using the
rest of the data in the database. The result was successful. We, however, doubt the real
applicability of idea of using artificial data set in such a way in a context of intrusion
detection. This is principally because of the two following reasons: Usually, in the con-
text of intrusion detection, (i) the number of non-self (anomaly) data is extremely fewer
than the number of self (normal) data; and (ii) we don’t know what does a non-self
datum look like until it complete its intrusion sucessfully. It would be too late.

Hence our current interest is also two-fold: First, the non-self region should be tiny and
secondly, training should be made only by self data. We explore these two points using
above mentioned fuzzy rule extraction by neural network proposed by G. Castellano et
al. (2000) [1].

2 Method

The goal is to classify each of the data from n-dimensional data-set into either of m
classes. For the purpose, Castellano et al. [1] used the inference mechanism of a zero-
order Takagi-Sugeno fuzzy model; then realizee the idea by a fuzzy neural network
model. To train the fuzzy neural network, they emploied a combination of a compet-
itive learning to determine the architecture of the fuzzy neuralnetwork and a gradient
descent learning to optimeze the synaptice weights. We, on the other hand, emploies,
an evolutionary computation technique to train the network since we already knew the
network structure under our current interest and as such, our conceren is just to obtain
the solution of weight configuration of the network, and an evolutionaly computation is
expected to find it more simply than the prosed approach.

In the following three subsections (i) Takagi-Sugano fuzzy modle, (ii) a realiziztion of
the model by fuzzy neural network, and (iii) how we optimize the weight of the fuzzy
neural network by an evolutionary computation.

Lecture Notes in Computer Science 3

2.1 Takagi-Sugeno Model

Though Castellano et al. [1] very clearly stated the method in their papaer, let us briefly
describe it with an intention of making this paper self-contained. Takagi-Sugeno fuzzy
inference model is made up of a set of H rules, such as

Rk: IF (x1 is Ak
1) and · · · and (xn is Ak

n)

THEN (y1 is νk1) and · · · and (ym is νkm)

where Rk is the k-th rule (k = 1, · · ·H), xi is the i-th variable of the input data
(i = 1, · · · , n), yj is j-th output variable, Ak

i are fuzzy sets which are usually ex-
pressed by linguistic terms such as “midium large” but here expressed by a shape of
membership function defined one by one on the corresponding input variable, and νkj

are fuzzy singletons defined on the output variables indicating the likliness of the j-th
class infered by k-th rule.

Ak
i is defined by Gaussian membership functions

μik(xi) = exp{−(xi − wik)2/σ2
ik}.

Then defuzzification for input x0 = (x0
1, · · · , x0

n) is according to

y0
j =

H∑

k=1

μk(x0) · νkj/

H∑

k=1

μk(x0)

where

μk(x0) =
n∏

i=1

μik(x0
i)

is the results of application of Larsen product operator.

In other words, the procedure of inference is as follows. When an input x = (x1, · · ·xn)
is given, each of the H rules evaluates the x and output the likliness of the class, from
one class to the next, to which x belongs to. The evaluation by k-th rule of xi is by
the corresponding membership function μik(xi) which is specified by giving two pa-
rameters wik and σik returning a value ranging from 0 to 1. See, for example, Figure 1
where i-th coordinate of the input x is evaluated by Ak

i , i-th antiticident of the IF part
of the Rulek, which is represented a set of membership function not a usual linguistic
term like “Large”. The returned membership value of this example in the Figure is 0.71,
suggesting, say, the likliness of if the variable is “Midium Large” is 0.71 ...

Each of the H rules calculates μk(x) from those n values of μik(xi). Finally, those H
values are conbined to calculate m values of yj , the result of defuzzification for each of
the m classes.

This procedure is realized when we assume a neural network such as depicted in Figure
1. The first layer is made up of n input neurons. The second layer is made up of H

4 Akira Imada

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

xi = 0.348

(0.71)

w

σ
ik

ik

= 0.70

= 0.60

Fig. 1. A fictitious sketch of an evaluation of xi, i-th entry of the input x, by Ak
i , the i-th anticident

part of a k-th rule.

groups each contains n neurons where i-th neuron of k-th group has a connection to
i-th neuron in the first layer with the synapse which has a pair of weights (wik, σik).
Then k-th group in the second layer calculate the value μk(x) from the values its n
neurons received. Third layer is made up of m neurons each of which collects the H
value from the output of the second layer, that is j-th neuron of the third layer receives
the value from k-th output in the second layer with the synapse which has the weight
νkj

...

... ...

x1 x20

1 2 3

Rule1 Rule2

y y y

......

Fig. 2. Architecture of the proposed fuzzy neural network which infers how an input x =
(x1, · · ·xn) is likely to belong to the j-th class by generating outputs yj each of which reflect the
degree of the likliness. In this figur 20-dimension data input will infer which of the three classes
the input belongs by using two rules.

Lecture Notes in Computer Science 5

2.2 How it learns?

Castellano et al. [1] used (1) a competitive learning to determin how many rules are
needed and initial weights. Then in order to optimize these initial weights they use (2)
a gradient method performing the steepest descent on a surface in the weight space
employing the same training data, that is, supervised learning.

Here, on the other hand, we use a simple genetic algorithm. Since our target space is
specific enough to know the network structure already, our conceren is just to obtain the
solution of weight configuration of the network. That is to say, all we want to know is a
set of parameters wik, σik and νkj (i = 1, · · ·n, k = 1, · · ·H , j = 1, · · ·m) where n is
the dimension of data, H is the number of rules, and m is the number of outputs. Hence
our chromosome has those n×H×m genes. Starting with a population of chromosomes
whose genes are randomly created, they evolve under simple truncate selection where
higer fitness chromosome are chosen, with uniform crossover and ocasional mutation
by replaceng some of a few genes with randomly created other parameters, expecting
higher fitness chromosomes will be emerged. These settings are determined by trials
and errors experimentally.

To evaluate fitness of each chromosome, we use a measure originally proposed by Lopes
et al. [2] and used widlly nowadays in which four quantities, i.e., (i) true-positive, (ii)
true-negative, (iii) false positive, and (iv) false negative are used. Here we assume posi-
tive sample is non-self and negative sample is self, since detectors is designed to detect
non-self cells. Hence, these four terms are defined in a sence that (i) tp (true positive) —
true declaration of positive sample, i.e., non-self declared as non-self (ii) fp (false pos-
itive) — false declaration of positive sample, i.e., self declared as non-self (iii) tn (true
negative) — true declaration of negative sample, i.e., self declared as self (iv) fn (false
negative) — false declaration of negative sample, i.e., non-self declared as self. Under
these definitions dr = tp/(tp + fn) implies detection rate, and fa = fp/(tn + fp)
implies false alarm rate. Then we plot dr versus fa, and the resultant graph is called
Receiver Operating Characteristics (OCR) [3] which reflects a tradeoff between false
alarm rate and detection rate.

3 Experiment

Castellano et al. [1] used Iris data found in a public domain in a very clever way, writing
as follows.

The validity of our approach to fuzzy inference and rule extraction has been
tested on the well-known benchmark Iris data problem. The classification prob-
lem of the Iris data consists of classifying three species of iris flowers (se-
tosa, versicolor and virginica). There are 150 samples for this problem, 50 of
each class. A sample is a four-dimensional pattern vector representing four
attributes of the iris flower (sepal length, sepal width, petal length, and petal
width).

6 Akira Imada

However, we doubt this way of using Iris data as an artificial data at least in the context
of network intrusion detection. One reason of our doubt is that illegal patterns are usu-
ally unknown and it cannot be represented by certain specific patterns, if not al all. The
other reason is the sparseness of this data set. What if the system meets a pattern which
does not belong to either of the two classes? See another report of us [4] regarding this
issue.

Our target problem is what we call a-tiny-flat-island-in-a-huge-lake which we came
across when we had explored a fitness landscape defined on all the possible synaptic
weight values of a fully-connected spiking neurons to give them a function of associa-
tive memory [5]. To simplify it, we formalized the problem in more general form as
follows.

Testfunction 1 (A tiny island in a huge lake - 1) Find an algorithm to locate a point
in the region A all of whose coordinates are in [−a, a] (a ≈ 0) in an universe of the
n-dimensional hypercube all of whose coordinate xi lie in [−1, 1] (i = 1, · · · , n).

Or:

Testfunction 2 (A tiny island in a huge lake -2) Find an algorithm to locate a point
in the region A all of whose coordinates are in the hyper-sphere whose radius is a (a ≈
0) and its center locates at the orgin in an universe of the n-dimensional hypercube all
of whose coordinate xi lie in [−1, 1] (i = 1, · · · , n).

An experiment was carried out in the 20-dimensional space. Our assumption is normal
data exist in the lake region while abnormal data in the island region. We controll the
size of the island by changing the value a. Hence it is easy to guess that only one
inference rule is enough to classify input into either of two classes. The architecture of
the fuzzy network is, therefore, twenty inputs, one rules, and two outputs.

4 Results and Discussion

Though our experiments have sometimes reversed our expectations depending on pa-
rameters determined, we are obtaining a series of successful results, such as shown
in Figure 3 where an example of obtained membership function corresponding to one
anticident of the rule (Left), as well as one of the two output singletons of the same
experiment (Right). Training Samples are from the assumed legal data exist in the lake
to identify the illegal data exists in the tiny island difined as a = 0.1.
In the Figure, although only one example of membership fuction out of 20 other 19
membership fuctions are more or less similar to the one shown in the figure. This sug-
gest that

R1: IF all of xn is near the origin THEN (y1 is HIGH) and (y2 is LAW).

That is the input belongs to the abnormal class.

Lecture Notes in Computer Science 7

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

0.250 0.75 10.5

Fig. 3. An example of experimental result of a membership function of one anticident mem-
bership function of a rule (Left), and one of the two output singletons of the same experiment
(Right). Training Samples are from the assumed legal data exist in the lake, while the illegal data
is assumed to be in the tiny island defined as a = 0.1.

5 Summary

In this paper, we have reported our on-going investigations, that is, how already pro-
posed methods work on a special situation of what we call a-tiny-island-in-a-huge-lake.
When we increase the difficulty of the problem by making the size of the island shrink
to zero, it becomes what they call a-needle-in-a-haystack. As far as we know, this issue
has resisted to be fully solved and still remains open. Though our results so far has not
been matured yet, we hope a lot of experiments which might result in positive obser-
basions in considering how we design a network intrusion detection system await our
exploration.

References

1. G. Castellano and A. M. Fanelli(2000) ”Fuzzy Inference and Rule Extraction using a Neural
Network.” Neural Network World Journal Vol. 3, pp. 361–371.

2. H. S. Lopes, M. S. Coutinho, W. C. Lima (1997) “An Evolutionary Approach to Simulate
Cognitive Feedback Learning in Medical Domain.” Genetic Algorithms and Fuzzy Logic
Systems. World Scientific, pp. 193–207.

3. F. Provost, T. Fawcett, and R. Kohavi (1989) “The case against accuracy estimation for com-
paring induction algorithms.” Proceedings of international conference on machine learning,
pp. 445–453.

4. A. Imada (2005) “When One Iris Flower is Normal Then are Others Abnormal?” Proceedings
of International Conference on Pattern Recognition and Information Processing,

5. A. Imada (2004) “How a Peak on a Completely-flatland-elsewhere can be Searched for? — A
Fitness Landscape of Associative Memory by Spiking Neurons.” Proceedings of Advanced

8 Akira Imada

Computer Systems (ACS) and Computer Information Systems and Industrial Management
Applications (CISIM), Vol.2, pp. 171–150.

