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Abstract. We have had lots of reports in which they asserted a neg-
ative selection algorithm successfully distinguished non-self cells from
self cells, especially in a context of “network intrusion detection” where
self patterns are assumed to represent normal transactions while non-self
patterns represent anomaly. Furthermore they went on to assert a neg-
ative selection gives us an advantage that we use only a set of self cells
as training samples. This would be really an advantage since we usually
don’t know what do anomaly patterns look like until they complete an
intrusion when it’s too late. We, however, suspect, more or less, its ap-
plicability to a real system. This paper gives it a consideration to one of
the latest such approaches.

1 Introduction

A sultan has granted a commoner a chance to marry one of his 100 daughters
by presenting the daughters one at a time letting him know her dowry that
had been defined previously. The commoner must immediately decide whether
to accept or reject her and he is not allowed to return to an already rejected
daughter. The sultan will allow the marriage only if the commoner picks the

daughter with the highest dowry. — “Sultan’s Dowry Problem” !

In real world, we have a problem in which we can easily access to any one of the
possible candidate solutions, most likely not but still have a few chance to be
the true one, which we don’t know in advance.

The ultimate extreme of such a problem is sometimes called a-needle-in-a-
haystack problem (see Fig. 1). One of such a needle, originally proposed by
Hinton & Nowlan [1], is exactly the one configuration of 20-bit binary string,

! According to the author(s) of the web-page of Cunningham & Cunningham, Inc.
(http://c2.com) the problem was probably first stated in Martin Gardner’s Mathe-
matical Recreations column in the February 1960 issue of The Scientific American.
To explore the problem more in detail, see, e.g., http://mathworld.wolfram.com. We
thank Mariusz Rybnik at University Paris XII for suggesting that the problem is
reminiscent of our context.



hence the search space of which is made up of 220 points and only one point is
the target to be searched for. Therefore, no information such as how close is a
currently searching point to the needle.

Yet another problem, a-tiny-flat-island-in-a-huge-lake — this is a problem we
once came across when we had explored a fitness landscape defined on all the
possible synaptic weight values of a fully-connected spiking neurons to give them
a function of associative memory [2]. To simplify it we formalized the problem
in more general form as follows.

Testfunction 1 (A tiny flat island in a huge lake) 2 Find an algorithm to
locate a point in the region A all of whose coordinates are in [—a,a] (a < 1) in an
universe of the n-dimensional hypercube all of whose coordinate x; lie in [—1,1]
(t=1,..,n).

Many researchers in artificial immune system community have suggested us that
the problem might be easy if we use the concept of negative selection. To simply
put, the negative selection is an evolutionary selection mechanism by which
immune system trains itself only using self cells as training samples, so that it
can recognize non-self cells afterwards.

The simplest option is to test a set of samples one by one, as many as possible,
to know whether each of those samples is the true solution or not. If we have a
good luck, then our goal is attained. However, should we rather be more than
lucky? As a trial, we train the system in parallel using those samples during the
procedure, regardless of whichever the real solution might be found or not as a
result. Then even if we are unlucky, we can at least expect that the system will
recognize the true solution later after the training easier than before.

In this paper, we approach the problem from this view point. Or rather more
in general, we take it a pattern classification problem, under the constraint that
we have two classes one of which includes an extremely few patterns while the
other includes an almost infinite number of patterns. Thus, we might as well

Fig. 1. A fictitious sketch of fitness landscape of a-needle-in-a-haystack. The haystack
here is drawn as a two-dimensional flat plane of fitness zero.

2 It is not necessarily to be said for the top of the island to be “flat”, but the originally
this was a test-bed for evolutionary computations, and the fitness of the island region
is one, and zero in a lake region. That is why.



take it a task of discrimination of a few of non-self cells as anomaly patterns
from enormous amount of self cells which represent normal patterns.

One of such latest approaches among others is by Zhou Ji and Dasgupata [3].
They wrote

The idea of negative selection was from T cell development process in
the thymus. If a T cell recognizes self cells, it is eliminated before deploy-
ment for immune functionality. In an analogous manner, the negative
selection algorithm generates the detector set by eliminating any detec-
tor candidates that match self samples. It is thus used as an anomaly
detection mechanism with the advantage that only the negative (normal)
training data are needed.

Recalling our universe is n-dimensional Euclidean space, let us check two algo-
rithms they proposed: one is to generate detectors of constant sized hyper-spheres
and the other is to generate variable sized hyper-spheres. They concluded that
detectors which detect anomaly patterns are successfully created just by training
with normal patterns.

When we think of a network intrusion detection, we usually don’t know what do
anomaly patterns look like in advance. Hence this feature of training with only
normal patterns is really advantageous. Our concern then is what if the number
of non-self cells is extremely smaller than the number of self cells, which is of
usual cases when we think of a network intrusion detection. In order to explore
this issue, we apply their algorithms to a-tiny-island-in-a-huge-lake mentioned
above. We can control the difficulty of the task by changing the value of a,
as well as the dimension of the universe. The ultimate case is when all of the
coordinates of the target points shrink to zero, and this is the problem known
as a-needle-in-a-haystack.

2 Algorithm

So far lots of algorithms to distinguish non-self patterns from self patterns have
been proposed. The goal of these algorithms is to create detectors which cover
non-self space as much as possible. Here, in this paper, we concentrate on the al-
gorithm called “Augmented Negative Selection Algorithm with Variable-Coverage
Detectors” proposed in 2004 by Zhou Ji and Dasgupata [3], as well as its simpler
version in which detector size is constant instead of variable, also proposed by
the same authors in the same article. The followings are these two algorithms
that we paraphrased the original ones with the semantics being intact. Firstly,
the simpler version is:

Algorithm 1 (Constant-sized Detector Generation) After setting (i) Nt,
the number of training samples; (i) rq, the radius of detector; and (iii) Ng, the
total number of detectors:



Create Ny samples of self cells at random.
. Create a hyper-sphere which has the radius rq and whose center locates at
random in [—1,1]. This is a candidate detector to detect non-self cells.
8. If this-hyper sphere does not contain any sample self cells, then put it as a
detector in D, the detector’s repertoire. Otherwise delete the hyper-sphere.
4. Repeat 2-8 until we find Ny detectors.

o~

This algorithm, in our humble opinion, does not contain the concept of negative
selection or whatever in an immune system metaphor neither, if not at all. The
second one is:

Algorithm 2 (Variable-sized Detector Generation) After setting (i) N,
the number of training samples; (i) rs, the radius of self cells; (i) co, expected
coverage, i.e., the degree to how much those created detectors cover non-self cells;
(1) Cmax, the upper bound of self coverage; and (v) Ny, the mazimum number of
detectors:

1. Empty D, the detector’s repertoire.

2. Try to find a point x = (x1, -+, @) € [—1,1]™ which is not contained by any
of the valid detectors so far created, unless the number of those trials exceeds
1/(1 — co). If no such x is found, then terminate the run. >

3. If v, the distance between x and its closest self sell in the training sample,
is larger than the radius rg, i.e., if the candidate doesn’t include any of the
sample self cells, then add the sphere whose center is x and radius is r to D
as a new valid detector.

4. If no such x can be found within the consecutive trials of 1/(1 — Cpay) time,
then terminate the run. * Otherwise repeat 2 and 3, until we find a total of
Ny detectors.

We do not think this algorithm strongly reflects an immune system either, despite
the title of the original paper indicates it. However at least the title holds true
in the sense that detectors are chosen by trying to match them to the self strings
and if a detector matches then it is discarded, otherwise it is kept. This is, above
all, what we call a natural selection algorithm.

3 Evaluation of How it Works

We use a measure originally proposed by Lopes et al. [4] in which four quantities,
i.e., (i) true-positive, (ii) true-negative, (iii) false positive, and (iv) false negative
are used. Here we assume positive sample is non-self and negative sample is self,
since detectors are designed to detect non-self cells. Hence, these four terms are

3 This is because when we have sampled m points and only one point was not covered,
the expected coverage is 1 — 1/m. Hence the necessary number of tries to ensure
expected coverage co is m = 1/(1 — o).

4 See also the footnote above replacing co with Cuax-



defined in the sence that (i) ¢, (true positive) — true declaration of positive sam-
ple, i.e., non-self declared as non-self (ii) f, (false positive) — false declaration
of positive sample, i.e., self declared as non-self (iii) ¢, (true negative) — true
declaration of negative sample, i.e., self declared as self (iv) f, (false negative)
— false declaration of negative sample, i.e., non-self declared as self. Under these
definitions d, = t,/(tp+ fr) implies detection rate, and f, = fp/(t, + fp) implies
false alarm rate.

4 Experiment, Results, and Discussion

As a preliminary experiment, we tried a random search for the needle in the 20-
dimensional haystack by creating 5000 candidate strings at random, and check-
ing, one by one, if each of the sample is the needle or not. We assume we have
only one needle which principally we don’t know where. The result is shown in
Fig. 2, and we found it is still not such a difficult problem if we use a standard
PC found everywhere nowadays.
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Fig. 2. The number of happened-to-be-the-needle out of 5000 random creations of the
candidate.

Taking this random search as our placebo experiment, what will happen if we
exploit one of the lately reported more sophisticate methods? We now assume
the whole universe is n-dimensional hyper-cube [0, 1]™ as mentioned already; any
point all of whose coordinates lies in [(0.5—a), (0.54a)] (0 < a < 0.5) is non-self
cell, whilst other points in the universe are self cells  ; and all the self cells are
hyper-sphere whose radius is 7.

® We modify our Testfunction-1 for the sake of simplicity of coding in this way, which
keeps the problem equivalent to the original one.



4.1 A 2-dimensional version of an-island-in-a-lake

First of all, in order for our eyes to be able to observe the behavior of the
algorithms, our experiment is performed on a 2-dimensional space, that is, we
set n = 2. We employ a set of 500 randomly selected points in the self region
as the training samples, and 1000 points randomly chosen from entire space is
the test data. The reason of these settings is to enable us to compare our results
with those in the original proposition [3].

Both the regions claimed normal and abnormal when r; is set to 0.1 are shown
in Fig. 3. The location of the self points in the training sample and the created
detectors when we set rs = 0.1 which is the value recommended by the original
proposition [3] are shown in Fig. 3. So far so good. However, our goal is to rec-
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Fig. 3. A set of five hundred self-points employed as training samples (Left),and a set
of five hundreds detectors created by the Algorithm-1 with ¢ = 0.25 and rs = 0.1
(Right) from an experiment in 2-dimensional space.

ognize non-self patterns from extremely tiny region. Hence the next experiment
is a dependency on the value of a. Fig. 4 shows the number of required trials
to find the pre-defined number of detectors, which is 500 here, and the number
of successes when those 500 detectors tried to detect the 500 non-self samples.
Both are plotted as a function of value of a using the Algorithm-1 with r4 = 0.1
to create the detectors. As we can see in the Figure, the difficulty of the task
becomes harder exponentially as a becomes smaller, and therefore we know this
algorithm would not work if the region to be searched for is extremely tiny.

4.2 A 20-dimensional version of an-island-in-a-lake

Next of our interest is what happens when we increase dimensionality. All we
found was it becomes much more difficult than in the case n = 2. What we
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Fig. 4. The number of iteration required to find 500 successful detectors (Left), and
the number of successes when 500 detectors tried to detect 500 non-self samples, that
is, the number of successes out of 25000 events (Right). Both are as a function of value
of a when we experimented with the Algorithm-1 with rs = 0.1 in 2-dimensional space.

found, for example, is even if we increase the number of training sample of self
patterns from 1000 to 10000, the distribution of the coordinates of samples is
very sparse when n = 20. If the algorithm worked well, the detector would be
supposed to locate only in the non-self region, such as Fig. 5 (Right) which is
from a result of 2-dimensional experiment for comparison purpose, while the
result in 20-dimensional experiment, as shown in Fig. 5 (Left), was not in that
way. We can see in the figure that the coordinates of the whole detectors are
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Fig. 5. The distribution of all the coordinates of the detectors for an experiment with
n = 20 (Left), and the distribution when n = 2 for the purpose of comparison (Right).

almost uniformly distributed, which means a failure to find a set of successful
detectors.

Then, we give it a consideration of how will the Algorithm-2 (Variable Sized



Detector) improve the situation. In an experiment in 20-dimensional space where
the Algorithm-2 creates certain number of detectors with 1000 training samples
of self patterns. Non-self region in this experiment was [0.495, 0.505]%° and radius
of self was set to 0.1. As a result of a run under c¢qg = 0.99, a total of 96 detectors
are created.

First, we studied how true-positive and false-positive rate are influenced by
dimensionality. As shown in Fig. 6 (Left), the perfect situation when n = 2
abruptly deteriorates even n = 3. Alas!

Next, we ran the algorithm for n = 5, 15, 20, and 25 to study a dependency
of the degree to how successfully the detector will be created on the dimension
of search space. The number of detectors created is somehow similar in each
dimension, ranging from 91 to 96. In Fig. 5 (Right), we show detection-rate and
false-alarm-rate as a function of dimensionality. Though not satisfactorily, we
see somewhat of a successful result, at least as for detection-rate.
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Fig. 6. (Left) True-positive and False-positive as a function of dimensionality. (Right)
Detection-rate shown with circles and false-alarm-rate shown with rectangles as a func-
tion of dimensionality in a series of experiments where the Algorithm-2 creates certain
number of detectors from 91 to 96 with 1000 training samples of self patterns.

Further, we will explore different parameter values with the goal being to learn
the limit of how small non-self region and how large the dimensionality under
which the algorithm can detect non-self points successfully. Then we will exper-
iment by lowering the value ¢g which is 99.99% and 99% in the original version.
Those results are not shown here since our experiments have sometimes reversed
our expectations so far.

5 Conclusion

We have obtained the similar results with the experiments by Zhou Ji and Das-
gupata [3] only on the condition that the domain of non-sell is not so small and



dimension is 2.

Usually, however, in the real world problem, anomaly patterns are extremely
fewer than the normal ones. As such, our concern is on an extreme case. Unfor-
tunately, we have not so far observed any satisfactory results under this extreme
situation. In fact, Zhou Ji and Dasgupata [3] wrote

As an exception, the algorithm may also terminate when it fails to sam-
ple any non-self point after many repetitions. That implies that the self
region covers almost the entire space. It may happen when the self sam-
ples are randomly distributed over the space, or the chosen self-radius is
too big.

And as they went on to write concerning another experiment in the same pa-
per [3] “One of the three types of IRIS data is considered as normal data, while
the other two are considered abnormal,” the number of normal and abnormal is
usually comparable in such experiments.

We are exploring a number of other different approaches to the same target, that
is, a-tiny-flat-island-in-a-huge-lake or its binary version a-needle-in-a-haystack.
What we have tried so far are experiments by means of

Negative selection of binary detectors with r-contiguous matching (See [5]);
Immuno-fuzzy approach (See [6]);

Evolving a set of fuzzy rules (See [7]);

Fuzzy neural network approach (See [8]);

and so on..., to detect a tiny-island or a needle.

Though still a lot of experiments have been resistant to be positively analyzed,
this series of works is not to show a counter example for an assertion, but to call
for challenges. The objective is to detect anomaly phenomena which take place
only occasionally and hence we don’t know what does it look like, while we have
enormous amount of daily normal phenomena. As far as we know, this is still an
open issue and we are trying to find approaches. We hope this paper will evoke
interests in this problem in our community. The challenge is awaiting us.
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