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Abstract - An augmentation of negative selection algorithm 
is developed featuring detectors that have variable coverage. 
While the detectors can have different kinds of variable 
properties in the light of this concept, the paper mainly 
describes the experiments of variable-sized detectors in real-
valued space. Effects of the two main control parameters, self 
radius and expected coverage, are discussed and 
experimented with both synthesized and real-word datasets. 
The new approach improves efficiency and reliability without 
compromising the order of magnitude of complexity. 

I.  INTRODUCTION 

As one of the relatively new areas of soft computing, 
Artificial Immune Systems (AIS) generally construct the 
algorithms based on negative selection, immune network 
model, or clonal selection [1][2][12][14]. The inspiration 
of negative selection, or negative detection, came from the 
T cell development process in the thymus. If a T cell 
recognizes self cells, it is eliminated before deployment 
for immune functionality [16]. In an analogous manner, 
the negative selection algorithm generates the detector set 
by eliminating any detector candidates that match self 
samples. It is thus used as an anomaly detection 
mechanism with the advantage that only the negative (or 
‘normal’) training data are needed [3]. 

Researches in negative selection usually discuss the 
problems in binary representation [6][15]. There are at 
least two good reasons to support this choice: first, binary 
representation provides a finite problem space that is 
easier to analyze mathematically; second, binary 
presentation is convenient to use for categorized data. 
However, many applications are natural to be described in 
real-valued space. Furthermore, these problems can hardly 
be processed properly using negative selection algorithm 
in binary representation [4]. On the other hand, this paper 
and some other works [5][10] demonstrated that despite 
the intrinsic difficulty of real-valued problem space, it 
also provides unique opportunity. 

Matching rule is one of the most important components 
in a negative or positive selection algorithm 
[4][6][11][13][15]. For binary representation, there are 
several major types of matching rules like rcb (r-
contiguous bits), r-chunks, and Hamming distance [6][4]. 
For real-valued representation, matching rules are 
generally one way or another based on Euclidean distance 
between the data to be tested and the detectors 
[4][5][7][10]. Matching is usually defined as a distance 
that is within a certain threshold. In some cases, it may be 

a variation of Euclidean distance. For example, [7] used a 
Euclidean distance defined in a lower dimensional space, 
which was projected from the original problem space by 
contiguous- or random-chosen dimensions. 

No matter what kind of matching rule is used, the 
detectors’s basic characteristics are usually constant, e.g., 
the number of bits r in binary representation, or the 
distance threshold to decide a matching in real-valued 
representation. In the latter case, the detectors are in fact 
hyper-sphere-shaped although it is adequate to represent 
them as points. The threshold is actually the radius of the 
detectors. However, the radius or other basic properties 
used in matching rule doesn’t have to be constant for all 
the detectors. The algorithm introduced in this paper is an 
attempt to demonstrate that allowing the detectors to have 
some variable properties will enhance the negative 
selection algorithm from several aspects. We call this idea 
and the algorithms based on it V-detector. In real-valued 
application using Euclidean distance matching rule, the 
radius of detectors is an obvious choice to make variable 
considering that the non-self regions to be covered by 
detectors are very likely to be in different scales. The 
flexibility brought by variable radius is easy to see. 
Furthermore, variable radius is not the only possibility 
provided by V-detector. The shapes of detectors or even 
the types of matching rules can be extended to be variable 
too to augment negative selection algorithm. 

 

 
(a) Constant-sized detectors 
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(b) Variable-sized detectors 

Figure 1.  Comparison of constant-sized detector and variable-
sized detectors (V-detector) in negative selection algorithm 

 
The diagrams in figure 1 illustrate the core idea of 

variable detectors in 2-dimensional space. The dark area 
shows the assumed self regions, which usually are 
represented by the training data (self samples). The light-
shaded circles are the possible detectors. Figure 1(a) 
demonstrates the situation when the detectors are 
constant-sized in real-value space. On the right side of the 
diagram, a large number of detectors are needed to cover 
the large area of non-self space. The well-known issues of 
“holes” are illustrated in medium shade. In figure 1(b), 
variable-sized detectors deal with both issues. The large 
area of non-self space is now covered by much fewer 
detectors. At the same time, smaller detectors work much 
better to cover the holes. Since the number of detectors is 
saved on one hand, it becomes more feasible to use 
smaller detectors when necessary. 

Another advantage of this new method is that estimated 
coverage instead of the number of detectors is used as a 
control parameter. It estimates automatically when the 
detector set is generated. Comparatively, we need to set 
the number of detectors in advance when constant 
detectors are used. This will be discussed in more details 
in the following sections.  

II.  ALGORITHM AND ANALYSIS 

To illustrate the new feature, let us first describe a 
negative selection algorithm of “constant detectors” in 
real-valued space. Using Euclidean distance matching 
rule, generation algorithm of “constant detectors” is 
shown in figure 2. The time complexity of this algorithm 
is O(m|S|), where m is the preset number of detectors and 
|S| is the size of training set (the set of self samples). Self 
radius rs in this case is the same as detector radius, which 
is the allowed variability of the self space [10]. 
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Figure 2 Algorithm of detector generation using constant 
detectors 

V-detector algorithm’s detector generation phase is 
shown in figure 3. Comparing with the constant-sized 
version, the most important difference lies in steps 13 
through 15. Now that we let each detector have its own 
radius in addition to location, the radius is basically 
decided by the closest self sample. Self radius still 
specifies the variability represented by the training data, 
but it is not used as detector radius anymore. 

The algorithms of detection phase are similar for 
constant and variable detectors except that matching 
threshold for each variable-sized detector is unique. In the 
experiments of this paper, matching is decided by any of 
generated detectors. 

The control parameters of V-detector are mainly self 
radius rs and expected coverage c0. Maximum number of 
detectors, shown as Tmax in figure 3, is preset to the largest 
number that we are willing to tolerate in practice, which 
does not need much further discussion. Self radius is an 
important mechanism to balance between detection rate 
and false alarm rate, in the other words, the sensitivity and 
accuracy of the system. 

Expected coverage is a by-product of variable 
detectors. If we sample m points in the considered space 
and only one point is not covered, the expected coverage 
would be 1-1/m. Therefore, when we randomly try m 
times without finding an uncovered point, we can 
conclude that the expected coverage is at least α=1−1/m. 
Thus, the necessary number of tries to ensure expected 
coverage α is 

m = 1/(1-α) (1) 
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Figure 3 Algorithm of Variable-sized Detector Generation (V-

detector). 
 
Despite the enhancement, complexity of detector 

generation in V-detector algorithm is not increased 
comparing with the algorithm using constant-sized 
detectors. The computation of radius has linear 
complexity with respect to the number of the training 
samples. In figure 3, steps 13 through 15 has complexity 
O(|S|), where |S| is the size of training set. That is the 
same as steps 4 through 6 in the constant detector version 
(figure 2). Furthermore, not only are the orders of 

magtitude of complexity in the two algorithms the same , 
but the times to actually compute the distance, which is 
potentially a costly step, is the same as well. If the final 
number of detectors is m, the complexity to generate the 
entire detector set if O(m|S|). If m is the same order of 
magnitude as the preset number in constant version, the 
complexity doesn’t change; if m is reduced significantly, 
the complexity is in fact improved. 

After the detector sets are generated, the detection 
phase of the algorithms using constant- or variable-sized 
detectors is similar to each other. The complexity of 
detection phase is O(m) although m has different 
interpretation in the two methods. The difference in the 
size of needed memory also only lies in the possible 
different m. 

The V-detector algorithm normally converges in one of 
the two ways. Type 1 convergence happens when the 
expected coverage is reached (step 11 in figure 3). This is 
the scenario that V-detector shows more of its strength in 
controlling detector number. Type 2 convergence occurs 
when the pre-defined maximum number of detectors is 
reached (step 19). Even in this case, the algorithm still has 
the potential to cover the holes better than algorithm using 
constant detectors. As an expcetion, the algorithm may 
also terminate when it fails to sample any non-self point 
after many repetitions (step 18). That implies that the the 
self region covers almost the entire space. It may happen 
when the self samples are randomly distributed  over the 
space, or the chosen self-radius is too big. 

In V-detector, the small “holes” are easier to be 
covered not by just using smaller detectors, rather by 
using the automatic decision of how small the detectors 
need to be. The total numbers of detectors, on the other 
hand, are regulated by using larger detectors whenever 
possible. 

Described above is the framework of the V-detector 
algorithm. However, there is still room for improvement 
in this model. For example, we will discuss the issue of 
“boundary dilemma” in the following section of 
experiments. 

III.  EXPERIMENTS AND RESULTS 

To demonstrate the basic behavior od V-detector 
algorithm, synthesized datasets are used. Then, the 
benchmark Fisher’s Iris data and more real-world datasets 
are used to further examine its performace and compare 
with other methods. 

Figure 4 shows a 2-dimensional data where a cross-
shaped area on the unit square [0, 1]2 is assumed to the 
normal or self region. Figure 4(a) is the shape of the self 
region. The training set is 100 randomly picked points in 
the self region and the test data are 1000 randomly 
distributed points over the entire square. Figure 4(b) and 
4(c) show the area actually covered by the generated 
detector set. The dark area is where the data will be 
claimed abnormal. Comparing the coverage in (b) and (c), 
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it is easy to see the effect of self radius on the results. The 
smaller self radius would result in high detection rate but 
high false alarm too, so it is suitable for the scenario when 
detecting all or most abnormals is very important. On the 
other hand, larger self radius would result in low detection 

rate and low false alarm, thus suitable when we need to 
try the best to avoid false alarm. Figure 5 demonstrat 
similar situation when the self region is ring-shaped. 

 

 
 

(a) Actual self space                                       (b) self radius = 0.05                                          (c) Self radius = 0.1 

Figure 4 Cross-shaped self space 

 
 

 
 

(a) Actual self space                                       (b) self radius = 0.05                                          (c) Self radius = 0.1 
 

Figure 5 Ring-shaped self region 
 
Figures 6 and 7, for the cross-shaped self region and 

ring-shaped self region, respectively, show the complete 
trend of self radius’s effect on the results for self radius 
from 0.01 up to 0.2. All the results shown in these figures 
are averages over 100 repeated experiments. Detection 
rate and false alarm rate are defined as 

DR = TP/(TP+FN), (2)

FA = FP/(FP+TN), (3)
respectively, where TP, FN, FP, TN are the counts of true 
positive, false negative, false positive, and true negative. 
As shown in these results, high detection rate and low 
false alarm rate are the two goals between which we need 
to balance according to specific application. 
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(a) Detection rate and false alarm rate 
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(b) Number of detectors 

Figure 6 Cross-shaped self region 
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(a) Detection rate and false alarm rate 
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(b) Number of detectors 

Figure 7 Ring-shaped self region 

Effect of expected coverage c0 was also demonstrated 
by these results. Two different values of “expected 
coverage”, 99.99% and 99% were used. The results in 
figures 6 and 7 display no significant difference in 
detection rate, while the numbers of detectors are much 
lower and false alarm rate is lower too for 99% coverage. 
It is clear that 99% expected coverage not only reduces 
the number of detectors, but also controls the false alarm 
rate better. In the case of cross-shaped self region, more 

detectors are needed when the self radius is chosen 
between 0.02 and 0.05. This happens when the regions not 
covered by self “circles” becomes separated from one 
another. Comparing figure 4 and figure 5, we can see that 
this trend is not very similar for the two different shapes 
of self regions. 

When the self radius is larger, the detection rate 
decreases. As  we can see from figures 4 and 5, a larger 
portion of the non-self region is covered by the circular 
regions around the self points with larger self radius. This 
causes what we called the “boundary dilemma” – if a self 
sample point is very close to the boundary of self region, 
it is likely that only one of the two sides of this point is 
really in self region. In fact, the algorithm using constant 
detectors as presented in figure 2 does not have this 
problem, since the detectors in that case reach the self 
sample points instead of stay rs away from them. The self 
region is safe from being detected because the intervals 
between self samples are supposed to be small enough to 
prevent any detectors to be generated in between. The 
dilemma exits because it is usually unknown whether a 
sample point is at the boundary or not. As a compromising 
solution, we can modified the V-detector algorthim by 
combining the ideas of the two algorithms in figures 2 and 
3, in the other words, allowing the varaible-sized detectors 
to reach the sample points but excluding those whose 
radius is smaller than self radius rs. This way, V-
detcetor’s ability to cover the holes is largely limited by 
the possibility that any sample point may be a bounary 
point. 

To explore the property and possible advantages of V-
detector, experiments are also carried out to compare with 
the results obtained by AIS methods reported in [7], 
namely NSA (negative selection algorithm) and MILA 
(multilevel learning algorithm). NSA used there is a real-
valued version of rcb (r-contiguous bits) – r contiguous 
dimensions out of all the dimensions are used to calculate 
Euclidean distance [7][8]. MILA is a multilevel version, 
which combines negative selection and positive selection 
[7][8]. Table I shows the comparison using the benchmark 
Fisher’s Iris Data. The results shown are the averages of 
100 runs for each method with different parameter setting. 
Standard deviation of these results are all within 3%. One 
of the three types of iris data is considered as normal data, 
while the other two are considered abnormal. The 
available normal data are either completely or partially 
used to train the system. Although the partial training set 
may seem small in this case, it is necessary to demonstrate 
the system’s capability to recognize unknown normal 
data. V-detector has similar or better detection rates but 
lower false alarm rates in most cases, especially when 
fewer training data are used.  

The results in table I are obtained using self radius rs = 
0.1 considering that the NSA and MILA results used 
threshold 0.1. It is to be noted that the threshold used in 
NSA or MILA is not strictly comparable to the self radius 
for V-detector. NSA and MILA used sliding windows of  
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size 2 in the results cited here. In the other words, the 
distance is defined in 2-dimensional space instead of in 
original 4-dimensional space. So self radius 0.1 used in 
table I is to some extend arbitrary. 

 
TABLE I. COMPARISON USING FISHER’S IRIS DATA 

  Detection rate False alarm rate 
MILA 95.16 0 
NSA 100 0 

Setosa 
100% 

V-detector 99.98 0 
MILA 94.02 8.42 
NSA 100 11.18 

Setosa 
50% 

V-detector 99.97 1.32 
MILA 84.37 0 
NSA 95.67 0 

Versicolor 
100% 

V-detector 85.95 0 
MILA 84.46 19.6 
NSA 96 22.2 

Versicolor 
50% 

V-detector 88.3 8.42 
MILA 75.75 0 
NSA 92.51 0 

Virginica 
100% 

V-detector 81.87 0 
MILA 88.96 24.98 
NSA 97.18 33.26 

Virginica 
50% 

V-detector 93.58 13.18 
 
Besides better detection results, V-detector’s another 

important advantage is the potentially smaller number of 
detectors. Table II shows that V-detector used fewer 
detectors in all the cases reported in table I. NSA used 
1000 detectors; MILA used 1000 T-detectors and 1000 B-
detector groups. The maximum detector set size of V-
detector is set to 1000 for the reason of comparison. Table 
II shows that less number of detectors are actually used. 

 
TABLE II. NUMBER OF DETECTORS USED V-DETECTOR 

 mean max Min SD 
Setosa 100% 20 42 5 7.87 
Setosa 50% 16.44 33 5 5.63 
Veriscolor100% 153.24  255 72 38.8 
Versicolor 50% 110.08  184 60 22.61 
Virginica 100% 218.36  443 78 66.11 
Virginica 50% 108.12 203 46 30.74 
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(a)  detectinon rate and false alarm rate 
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  (b) number of detectors 
Figure 8 Virginica as normal, 50% training 

 
Figure 8 shows the effect of the two control 

parameters, self radius and expected coverage, on the 
results when virginica is considered “normal” and half the 
available data are used as training set. As we have seen 
for the synthesized data, using 99% coverage didn’t 
degrade detection rate very much comparing with 99.99% 
expected coverage, but largely saved the number of 
detectors and lowered false alarm rate.  

Influence of self radius is also similar to the results of 
synthesized data. As we have seen, self radius is an 
important control parameter of V-detector to balance 
between high detection rate and low false alarm rate in 
more general cases. False alarm does not really become a 
problem when all available training data are used, so the 
issue is more readily illustrated when only partial data are 
used to train. The results in figure 8 show that V-detector 
has advantage over other methods in terms of balancing 
detection rate and false alarm rate.  

 The results when setosa or versicolor is considered as 
“normal” are similar too, except that in the case of setosa 
the detection rate is almost always 100% due to the fact 
the setosa type is more clearly separated from the other 
two in the data space. 
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Similar comparison is done for another dataset, referred 
to as “biomedical data” from blood measurement of a 
group of 209 patients [9]. Each patient has four different 
types of blood measurements. These blood measures are 
used to screen a rare genetic disorder. 75 of those patients 
are carrier of the disease. 134 patients are normal. In this 
case, the carrier patients are considered “abnormal” data. 

Biomedical data set is also 4-dimensional as iris data. 
Different percentage of normal data are used in the 
experiments as training data. Figure 9 shows the results 
when 25% of the available normal data are used. All the 
trends are similar to those of above results. Also as 
expected, if all avaiable normal data are used to train, 
false alarm didn’t appear to be a problem. 

What is different from the previous results is that the 
detection rate is lower, and influence of lower expected 
coverage is more obvious in this case. Comparing 
between different percentage of normal data used to train, 
the detection rate is actually lower when more data are 
used as training data. The same trend can be seen in the 
results obtained with MILA or NSA. It is thus attributed 
to the distribution of the orginal data set. Considering the 
balance between detection rate and false alarm, V-
detector’s results are either better or comparable  

 

0

10

20

30

40

50

60

70

80

90

100

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19

self radius

de
te

ct
io

n 
ra

te

0

10

20

30

40

50

60

fa
ls

e 
al

ar
m

 ra
te

Detection rate (99.99% coverage) Detection rate (99% coverage)
False alarm rate (99% coverage) False alarm rate (99.99% coverage)

  
(a) detection rate and false alarm rate  
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(b) number of detectors 
Figure 9  Result of biomedical data, using 25% training data 
 
V-detector was also tested using a pollution data set 

[9]. This data set is different in that it is high-dimensional. 
Each record consists of 16 measurements concerning air 
pollution. All the real data are “normal data”. The testing 
data were made by changing some components out of the 
range of known normal data. Figure 10 shows the results, 
which confirm the same conlcusion about the influence of 
self radius and expected coverage.  
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 (a) detection rate and false alarm 
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Figure 10 Results on pollution data 

IV.  DISCUSSION AND CONCLUSION 

In comparison with real-valued negative selection 
algorithm of constant-sized detectors, V-detector is more 
effective by using fewer detectors due to its detectors’ 
variable size. Essentially, it provides a more concise 
representation of detection rules learned from training 
data. Detector set generated by V-detector is more reliable 
because the expected coverage instead of arbitrary 
detector number can be achieved by the algorithm. 

A small number of detectors reduces space requirement 
and saves time to generate the detector set and to detect 
new cases. 
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Holes are covered better in the new method because 
smaller detectors are more acceptable when fewer larger 
detectors are used to cover the large non-self region. 

Coverage estimate is very useful when evaluation of 
detection rate is not enough. For specific experiments, 
detection rate may not accurately reflect how the 
algorithm works because the training data is either too 
noisy or not representative enough. In those cases, 
confident estimate of coverage is more useful. 

Influence of self radius and expected coverage as 
control parameters was preliminarily analyzed, where 0.1 
is found to be a typical value of self radius. Expected 
coverage of 99% appears to be necessary. Optimal 
parameters are expected to depend on the specific 
application and available training data. One of the goals 
for further research is to decide these parameters 
automatically. Interpretation of training data, especially 
how each self sample represents the self region, is also an 
important topic that needs to be further explored. 

Boundary dilemma will be an important issue to 
improve the performance of negative selection algorithm, 
where the problem is more obvious in real-valued space. It 
depends on how the training normal data are obtained and 
interpreted. 

Future works along the line can be extended to variable 
shape of detectors, variable number of dimensions, etc. It 
also has the potential for certain problems that are hard to 
deal with otherwise, e.g. those in very high dimensional 
space where only a small number of dimensions affect the 
classification. For binary representation, it is easy to 
extend to variable dimension, which has possible 
advantage similar to what we discussed in this paper. 
Limited number of detector dimensions has additional 
benefit of extracting and representing the knowledge or 
rules in a more comprehensible form. 
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