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Abstract - An augmentation of negative selection algorithm
is developed featuring detectors that have variable coverage.
While the detectors can have different kinds of variable
properties in the light of this concept, the paper mainly
describes the experiments of variable-sized detectors in real-
valued space. Effects of the two main control parameters, self
radius and expected coverage, are discussed and
experimented with both synthesized and real-word datasets.
The new approach improves efficiency and reliability without
compromising the order of magnitude of complexity.

I. INTRODUCTION

As one of the relatively new areas of soft computing,
Artificial Immune Systems (AIS) generally construct the
algorithms based on negative selection, immune network
model, or clonal selection [1][2][12][14]. The inspiration
of negative selection, or negative detection, came from the
T cell development process in the thymus. If a T cell
recognizes self cells, it is eliminated before deployment
for immune functionality [16]. In an analogous manner,
the negative selection algorithm generates the detector set
by eliminating any detector candidates that match self
samples. It is thus used as an anomaly detection
mechanism with the advantage that only the negative (or
‘normal’) training data are needed [3].

Researches in negative selection usually discuss the
problems in binary representation [6][15]. There are at
least two good reasons to support this choice: first, binary
representation provides a finite problem space that is
easier to analyze mathematically; second, binary
presentation is convenient to use for categorized data.
However, many applications are natural to be described in
real-valued space. Furthermore, these problems can hardly
be processed properly using negative selection algorithm
in binary representation [4]. On the other hand, this paper
and some other works [5][10] demonstrated that despite
the intrinsic difficulty of real-valued problem space, it
also provides unique opportunity.

Matching rule is one of the most important components
in a negative or positive selection algorithm
[4][6][11][13][15]. For binary representation, there are
several major types of matching rules like rcb (r-
contiguous bits), r-chunks, and Hamming distance [6][4].
For real-valued representation, matching rules are
generally one way or another based on Euclidean distance
between the data to be tested and the detectors
[4]1[51[71[10]. Matching is usually defined as a distance
that is within a certain threshold. In some cases, it may be
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a variation of Euclidean distance. For example, [7] used a
Euclidean distance defined in a lower dimensional space,
which was projected from the original problem space by
contiguous- or random-chosen dimensions.

No matter what kind of matching rule is used, the
detectors’s basic characteristics are usually constant, e.g.,
the number of bits r in binary representation, or the
distance threshold to decide a matching in real-valued
representation. In the latter case, the detectors are in fact
hyper-sphere-shaped although it is adequate to represent
them as points. The threshold is actually the radius of the
detectors. However, the radius or other basic properties
used in matching rule doesn’t have to be constant for all
the detectors. The algorithm introduced in this paper is an
attempt to demonstrate that allowing the detectors to have
some variable properties will enhance the negative
selection algorithm from several aspects. We call this idea
and the algorithms based on it V-detector. In real-valued
application using Euclidean distance matching rule, the
radius of detectors is an obvious choice to make variable
considering that the non-self regions to be covered by
detectors are very likely to be in different scales. The
flexibility brought by variable radius is easy to see.
Furthermore, variable radius is not the only possibility
provided by V-detector. The shapes of detectors or even
the types of matching rules can be extended to be variable
too to augment negative selection algorithm.

(a) Constant-sized detectors



(b) Variable-sized detectors

Figure 1. Comparison of constant-sized detector and variable-
sized detectors (V-detector) in negative selection algorithm

The diagrams in figure 1 illustrate the core idea of
variable detectors in 2-dimensional space. The dark area
shows the assumed self regions, which usually are
represented by the training data (self samples). The light-
shaded circles are the possible detectors. Figure 1(a)
demonstrates the situation when the detectors are
constant-sized in real-value space. On the right side of the
diagram, a large number of detectors are needed to cover
the large area of non-self space. The well-known issues of
“holes” are illustrated in medium shade. In figure 1(b),
variable-sized detectors deal with both issues. The large
area of non-self space is now covered by much fewer
detectors. At the same time, smaller detectors work much
better to cover the holes. Since the number of detectors is
saved on one hand, it becomes more feasible to use
smaller detectors when necessary.

Another advantage of this new method is that estimated
coverage instead of the number of detectors is used as a
control parameter. It estimates automatically when the
detector set is generated. Comparatively, we need to set
the number of detectors in advance when constant
detectors are used. This will be discussed in more details
in the following sections.

II. ALGORITHM AND ANALYSIS

To illustrate the new feature, let us first describe a
negative selection algorithm of “constant detectors” in
real-valued space. Using Euclidean distance matching
rule, generation algorithm of “constant detectors” is
shown in figure 2. The time complexity of this algorithm
is O(m|S|), where m is the preset number of detectors and
|S] is the size of training set (the set of self samples). Self
radius 7, in this case is the same as detector radius, which
is the allowed variability of the self space [10].

Detector - Set(S, m, r)

S :set of self samples

m :number of detectors

rg :self radius

1:De« o

2 :Repeat

3: x < randomsample from[1, O]n

4: Repeatforeverys; inS={s;,i=12,..}
5: d < Euclidean distance between s; and x
6: ifd<rg,goto2

7: D« Du{x}

8:Until| D|=m

9: return D

Figure 2 Algorithm of detector generation using constant
detectors

V-detector algorithm’s detector generation phase is
shown in figure 3. Comparing with the constant-sized
version, the most important difference lies in steps 13
through 15. Now that we let each detector have its own
radius in addition to location, the radius is basically
decided by the closest self sample. Self radius still
specifies the variability represented by the training data,
but it is not used as detector radius anymore.

The algorithms of detection phase are similar for
constant and variable detectors except that matching
threshold for each variable-sized detector is unique. In the
experiments of this paper, matching is decided by any of
generated detectors.

The control parameters of V-detector are mainly self
radius 7, and expected coverage c¢). Maximum number of
detectors, shown as 7,,,, in figure 3, is preset to the largest
number that we are willing to tolerate in practice, which
does not need much further discussion. Self radius is an
important mechanism to balance between detection rate
and false alarm rate, in the other words, the sensitivity and
accuracy of the system.

Expected coverage is a by-product of variable
detectors. If we sample m points in the considered space
and only one point is not covered, the expected coverage
would be 1-1/m. Therefore, when we randomly try m
times without finding an uncovered point, we can
conclude that the expected coverage is at least o=1—-1/m.
Thus, the necessary number of tries to ensure expected
coverage O is

m=1/(1-0) O
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V - Detector - Set(S, Tpax, 75 Co)
S :set of self samples

Typax - maximum number of detector
rg :self radius

¢y :expected coverage

1:D« O

2 :Repeat

3: t«0

4: T«0

5: 1« inifinite

6: x < randomsample from[l, O]n

7: Repeatforeverydi inD={di.i=1,2,...}

8: d d€ Euclidean distance between
X(di ) and x, where X(di ) is the location of di
9: if d ds r(d i ) then, where r(d i ) is the radius
of detectord,
10: te—t+1
11: if t21/(1 - ¢y) then return D
12: goto4:

13:  Repeat foreverys; in S

14: d < Euclidean distance betweenss; and x

15: ifd-rg <rthenr«-d-1g:

16: ifr>rgthenD < DU {<x,r >}, where< x,r >
is a detector with location x and radius r

17: elseT«T+1

18: if T >1/(1 - maximum self coverage) exit

19 :Until| D |= Tipax

20 :return D
Figure 3 Algorithm of Variable-sized Detector Generation (V-
detector).

Despite the enhancement, complexity of detector
generation in V-detector algorithm is not increased
comparing with the algorithm using constant-sized
detectors. The computation of radius has linear
complexity with respect to the number of the training
samples. In figure 3, steps 13 through 15 has complexity
O(|S]), where |S| is the size of training set. That is the
same as steps 4 through 6 in the constant detector version
(figure 2). Furthermore, not only are the orders of

magtitude of complexity in the two algorithms the same ,
but the times to actually compute the distance, which is
potentially a costly step, is the same as well. If the final
number of detectors is m, the complexity to generate the
entire detector set if O(m|S|). If m is the same order of
magnitude as the preset number in constant version, the
complexity doesn’t change; if m is reduced significantly,
the complexity is in fact improved.

After the detector sets are generated, the detection
phase of the algorithms using constant- or variable-sized
detectors is similar to each other. The complexity of
detection phase is O(m) although m has different
interpretation in the two methods. The difference in the
size of needed memory also only lies in the possible
different m.

The V-detector algorithm normally converges in one of
the two ways. Type 1 convergence happens when the
expected coverage is reached (step 11 in figure 3). This is
the scenario that V-detector shows more of its strength in
controlling detector number. Type 2 convergence occurs
when the pre-defined maximum number of detectors is
reached (step 19). Even in this case, the algorithm still has
the potential to cover the holes better than algorithm using
constant detectors. As an expcetion, the algorithm may
also terminate when it fails to sample any non-self point
after many repetitions (step 18). That implies that the the
self region covers almost the entire space. It may happen
when the self samples are randomly distributed over the
space, or the chosen self-radius is too big.

In V-detector, the small “holes” are easier to be
covered not by just using smaller detectors, rather by
using the automatic decision of how small the detectors
need to be. The total numbers of detectors, on the other
hand, are regulated by using larger detectors whenever
possible.

Described above is the framework of the V-detector
algorithm. However, there is still room for improvement
in this model. For example, we will discuss the issue of
“boundary dilemma” in the following section of
experiments.

III. EXPERIMENTS AND RESULTS

To demonstrate the basic behavior od V-detector
algorithm, synthesized datasets are used. Then, the
benchmark Fisher’s Iris data and more real-world datasets
are used to further examine its performace and compare
with other methods.

Figure 4 shows a 2-dimensional data where a cross-
shaped area on the unit square [0, 1]* is assumed to the
normal or self region. Figure 4(a) is the shape of the self
region. The training set is 100 randomly picked points in
the self region and the test data are 1000 randomly
distributed points over the entire square. Figure 4(b) and
4(c) show the area actually covered by the generated
detector set. The dark area is where the data will be
claimed abnormal. Comparing the coverage in (b) and (c),
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it is easy to see the effect of self radius on the results. The
smaller self radius would result in high detection rate but
high false alarm too, so it is suitable for the scenario when
detecting all or most abnormals is very important. On the

rate and low false alarm, thus suitable when we need to
try the best to avoid false alarm. Figure 5 demonstrat
similar situation when the self region is ring-shaped.

other hand, larger self radius would result in low detection

(a) Actual self space

(b) self radius = 0.05

(c) Self radius = 0.1

Figure 4 Cross-shaped self space

(a) Actual self space

(b) self radius = 0.05

(c) Self radius = 0.1

Figure 5 Ring-shaped self region

Figures 6 and 7, for the cross-shaped self region and
ring-shaped self region, respectively, show the complete
trend of self radius’s effect on the results for self radius
from 0.01 up to 0.2. All the results shown in these figures
are averages over 100 repeated experiments. Detection
rate and false alarm rate are defined as

DR = TP/(TP+FN). (2)

FA = FP/FP+TN\. (3
respectively, where TP, FN, FP, TN are the counts of true
positive, false negative, false positive, and true negative.
As shown in these results, high detection rate and low
false alarm rate are the two goals between which we need
to balance according to specific application.

detection rate
false alarm rate

001 003 005 007 009 011 013 015 017 0.19
self radius

— Detection rate (99.99% coverage) —#— Detection rate (99% coverage)
—%~False alarm rate (99% coverage)  —0—False alarm rate (99.99% coverage)

(a) Detection rate and false alarm rate
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number of detectors

0.01 0.03 005 007 009 0.11 013 015 0.17 0.19
self radius

\4}99.99% coverage -4—99% coverage\

(b) Number of detectors
Figure 6 Cross-shaped self region
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(a) Detection rate and false alarm rate
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(b) Number of detectors

Figure 7 Ring-shaped self region

Effect of expected coverage ¢, was also demonstrated
by these results. Two different values of “expected
coverage”, 99.99% and 99% were used. The results in
figures 6 and 7 display no significant difference in
detection rate, while the numbers of detectors are much
lower and false alarm rate is lower too for 99% coverage.
It is clear that 99% expected coverage not only reduces
the number of detectors, but also controls the false alarm
rate better. In the case of cross-shaped self region, more

detectors are needed when the self radius is chosen
between 0.02 and 0.05. This happens when the regions not
covered by self “circles” becomes separated from one
another. Comparing figure 4 and figure 5, we can see that
this trend is not very similar for the two different shapes
of self regions.

When the self radius is larger, the detection rate
decreases. As we can see from figures 4 and 5, a larger
portion of the non-self region is covered by the circular
regions around the self points with larger self radius. This
causes what we called the “boundary dilemma” — if a self
sample point is very close to the boundary of self region,
it is likely that only one of the two sides of this point is
really in self region. In fact, the algorithm using constant
detectors as presented in figure 2 does not have this
problem, since the detectors in that case reach the self
sample points instead of stay r; away from them. The self
region is safe from being detected because the intervals
between self samples are supposed to be small enough to
prevent any detectors to be generated in between. The
dilemma exits because it is usually unknown whether a
sample point is at the boundary or not. As a compromising
solution, we can modified the V-detector algorthim by
combining the ideas of the two algorithms in figures 2 and
3, in the other words, allowing the varaible-sized detectors
to reach the sample points but excluding those whose
radius is smaller than self radius r,. This way, V-
detcetor’s ability to cover the holes is largely limited by
the possibility that any sample point may be a bounary
point.

To explore the property and possible advantages of V-
detector, experiments are also carried out to compare with
the results obtained by AIS methods reported in [7],
namely NSA (negative selection algorithm) and MILA
(multilevel learning algorithm). NSA used there is a real-
valued version of rcb (r-contiguous bits) — r contiguous
dimensions out of all the dimensions are used to calculate
Euclidean distance [7][8]. MILA is a multilevel version,
which combines negative selection and positive selection
[71[8]. Table I shows the comparison using the benchmark
Fisher’s Iris Data. The results shown are the averages of
100 runs for each method with different parameter setting.
Standard deviation of these results are all within 3%. One
of the three types of iris data is considered as normal data,
while the other two are considered abnormal. The
available normal data are either completely or partially
used to train the system. Although the partial training set
may seem small in this case, it is necessary to demonstrate
the system’s capability to recognize unknown normal
data. V-detector has similar or better detection rates but
lower false alarm rates in most cases, especially when
fewer training data are used.

The results in table I are obtained using self radius r, =
0.1 considering that the NSA and MILA results used
threshold 0.1. It is to be noted that the threshold used in
NSA or MILA is not strictly comparable to the self radius
for V-detector. NSA and MILA used sliding windows of
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size 2 in the results cited here. In the other words, the
distance is defined in 2-dimensional space instead of in
original 4-dimensional space. So self radius 0.1 used in
table I is to some extend arbitrary.

TABLE I. COMPARISON USING FISHER’S IRIS DATA

Detection rate ~ False alarm rate

Setosa MILA 95.16 0
100% NSA 100 0
V-detector 99.98 0
Setosa MILA 94.02 8.42
50% NSA 100 11.18
V-detector 99.97 1.32
Versicolor MILA 84.37 0
100% NSA 95.67 0
V-detector 85.95 0
Versicolor MILA 84.46 19.6
50% NSA 96 222
V-detector 88.3 8.42
Virginica MILA 75.75 0
100% NSA 92.51 0
V-detector 81.87 0
Virginica MILA 88.96 24.98
50% NSA 97.18 33.26
V-detector 93.58 13.18

Besides better detection results, V-detector’s another
important advantage is the potentially smaller number of
detectors. Table II shows that V-detector used fewer
detectors in all the cases reported in table I. NSA used
1000 detectors; MILA used 1000 T-detectors and 1000 B-
detector groups. The maximum detector set size of V-
detector is set to 1000 for the reason of comparison. Table
IT shows that less number of detectors are actually used.

TABLE II. NUMBER OF DETECTORS USED V-DETECTOR

mean max Min SD
Setosa 100% 20 42 5 7.87
Setosa 50% 16.44 33 5 5.63
Veriscolor100% 153.24 255 72 38.8
Versicolor 50% 110.08 184 60 22.61
Virginica 100% 218.36 443 78 66.11
Virginica 50% 108.12 203 46 30.74

120

100 3

80

60 +

detection rate
false alarm rate

40 4

20 +

0 + + + + + + + + + + + + + + + + + +
0.01 003 005 007 009 011 013 015 017 0.19
self radius

—O0- Detection rate (99.99% coverage) —A— Detection rate (99% coverage)
—%-False alarm rate (99% coverage) = —0—False alarm rate (99.99% coverage)

(a) detectinon rate and false alarm rate

1200

1000 +

800 +

600 +

400 +

number of detectors

200 +

0.01 003 005 007 0.09 0.11 0.13 0.15 0.17 0.19
self radius

‘4} 99.99% coverage —A—99% coverage ‘

(b) number of detectors
Figure 8 Virginica as normal, 50% training

Figure 8 shows the effect of the two control
parameters, self radius and expected coverage, on the
results when virginica is considered “normal” and half the
available data are used as training set. As we have seen
for the synthesized data, using 99% coverage didn’t
degrade detection rate very much comparing with 99.99%
expected coverage, but largely saved the number of
detectors and lowered false alarm rate.

Influence of self radius is also similar to the results of
synthesized data. As we have seen, self radius is an
important control parameter of V-detector to balance
between high detection rate and low false alarm rate in
more general cases. False alarm does not really become a
problem when all available training data are used, so the
issue is more readily illustrated when only partial data are
used to train. The results in figure 8 show that V-detector
has advantage over other methods in terms of balancing
detection rate and false alarm rate.

The results when setosa or versicolor is considered as
“normal” are similar too, except that in the case of setosa
the detection rate is almost always 100% due to the fact
the setosa type is more clearly separated from the other
two in the data space.
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Similar comparison is done for another dataset, referred
to as “biomedical data” from blood measurement of a
group of 209 patients [9]. Each patient has four different
types of blood measurements. These blood measures are
used to screen a rare genetic disorder. 75 of those patients
are carrier of the disease. 134 patients are normal. In this
case, the carrier patients are considered “abnormal” data.

Biomedical data set is also 4-dimensional as iris data.
Different percentage of normal data are used in the
experiments as training data. Figure 9 shows the results
when 25% of the available normal data are used. All the
trends are similar to those of above results. Also as
expected, if all avaiable normal data are used to train,
false alarm didn’t appear to be a problem.

What is different from the previous results is that the
detection rate is lower, and influence of lower expected
coverage is more obvious in this case. Comparing
between different percentage of normal data used to train,
the detection rate is actually lower when more data are
used as training data. The same trend can be seen in the
results obtained with MILA or NSA. It is thus attributed
to the distribution of the orginal data set. Considering the
balance between detection rate and false alarm, V-
detector’s results are either better or comparable

60

S @
S o

detection rate
w
o

false alarm rate

001 003 005 007 009 011 013 015 017 0.19
self radius

—O0- Detection rate (99.99% coverage)
—*—False alarm rate (99% coverage)

—— Detection rate (99% coverage)
—O—False alarm rate (99.99% coverage)

(a) detection rate and false alarm rate
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800 -

600

number of detectors

001 003 005 007 009 011 013 015 017 0.19
self radius

‘4}99‘99% coverage -A—99% coverage‘

(b) number of detectors
Figure 9 Result of biomedical data, using 25% training data

V-detector was also tested using a pollution data set
[9]. This data set is different in that it is high-dimensional.
Each record consists of 16 measurements concerning air
pollution. All the real data are “normal data”. The testing
data were made by changing some components out of the
range of known normal data. Figure 10 shows the results,
which confirm the same conlcusion about the influence of
self radius and expected coverage.
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detection rate
false alarm rate
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001 003 005 007 0.09 011 013 015 017 0.19
self radius

—- Detection rate (99.99% coverage)
—%~ False alarm rate (99% coverage)

—— Detection rate (99% coverage)
—0—False alarm rate (99.99% coverage)

(a) detection rate and false alarm
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0.01 003 005 007 0.09 0.11 0.13 0.15
self radius

\4} 99.99% coverage —A—99% coverage \

(b) number of detectors
Figure 10 Results on pollution data

IV. DiscUSSION AND CONCLUSION

In comparison with real-valued negative selection
algorithm of constant-sized detectors, V-detector is more
effective by using fewer detectors due to its detectors’
variable size. Essentially, it provides a more concise
representation of detection rules learned from training
data. Detector set generated by V-detector is more reliable
because the expected coverage instead of arbitrary
detector number can be achieved by the algorithm.

A small number of detectors reduces space requirement
and saves time to generate the detector set and to detect
new cases.
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Holes are covered better in the new method because
smaller detectors are more acceptable when fewer larger
detectors are used to cover the large non-self region.

Coverage estimate is very useful when evaluation of
detection rate is not enough. For specific experiments,
detection rate may not accurately reflect how the
algorithm works because the training data is either too
noisy or not representative enough. In those cases,
confident estimate of coverage is more useful.

Influence of self radius and expected coverage as
control parameters was preliminarily analyzed, where 0.1
is found to be a typical value of self radius. Expected
coverage of 99% appears to be necessary. Optimal
parameters are expected to depend on the specific
application and available training data. One of the goals
for further research is to decide these parameters
automatically. Interpretation of training data, especially
how each self sample represents the self region, is also an
important topic that needs to be further explored.

Boundary dilemma will be an important issue to
improve the performance of negative selection algorithm,
where the problem is more obvious in real-valued space. It
depends on how the training normal data are obtained and
interpreted.

Future works along the line can be extended to variable
shape of detectors, variable number of dimensions, etc. It
also has the potential for certain problems that are hard to
deal with otherwise, e.g. those in very high dimensional
space where only a small number of dimensions affect the
classification. For binary representation, it is easy to
extend to variable dimension, which has possible
advantage similar to what we discussed in this paper.
Limited number of detector dimensions has additional
benefit of extracting and representing the knowledge or
rules in a more comprehensible form.
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