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Abstract. We have had lots of reports in which they asserted a neg-
ative selection algorithm successfully distinguished non-self cells from
self cells, especially in a context of “network intrusion detection” where
self patterns are assumed to represent normal transactions while non-
self patterns represent anomaly. They further assert a negative selection
gives us an advantage that we use only a set of self cells as training
samples. This would be really an advantage since we usually don’t know
what do anomaly patterns look like until they complete an intrusion.
We, however, suspect its applicability more or less. This paper gives it a
consideration to one of the latest such approaches.

1 Introduction

A sultan has granted a commoner a chance to marry one of his 100 daughters

by presenting the daughters one at a time letting him know her dowry that

had been defined previously. The commoner must immediately decide whether

to accept or reject her and he is not allowed to return to an already rejected

daughter. The sultan will allow the marriage only if the commoner picks the

daughter with the highest dowry. — “Sultan’s Dowry Problem” 1

In real world, we have many problems in which it is easy to access to any one of
the many candidate solutions which could be the true solution but most likely
not, which we don’t know in advance.

The ultimate extreme is called a-needle-in-a-haystack problem. The needle orig-
inally proposed by Hinton & Nowlan [1] was exactly the one configuration of 20
binary bits. In other words, the search space is made up of 220 points and only
one point is the target. No information such as how close is a currently searching
point to the needle.

1 According to the author(s) of the web-page of Cunningham & Cunningham, Inc.
(http://c2.com) the problem was probably first stated in Martin Gardner’s Mathe-
matical Recreations column in the February 1960 issue of The Scientific American.
To explore the problem more in detail, see, e.g., http://mathworld.wolfram.com. We
thank Mariusz Rybnik at University Paris XII for suggesting that the problem is
reminiscent of our context.



Yet another problem, a-tiny-flat-island-in-a-huge-lake — this is a problem we
came across when we had explored a fitness landscape defined on all the possi-
ble synaptic weight values of a fully-connected spiking neurons to give them a
function of associative memory [2]. To simplify it we formalized the problem in
more general form as follows.

Testfunction 1 (A tiny flat island in a huge lake) 2 Find an algorithm to
locate a point in the region A all of whose coordinates are in [−a, a] (a ≤ 1) in an
universe of the n-dimensional hypercube all of whose coordinate xi lie in [−1, 1]
(i = 1, !D, n).

Many researchers in artificial immune system community have suggested us that
the problem might be easy if we use the concept of negative selection. To simply
put, the negative selection is an evolutionary selection mechanism by which
immune system trains itself only using self cells as training samples, so that it
can recognize non-self cells afterwards.

So, our idea is as follows. We test a set of samples one by one, as many as
possible, to know whether each of those samples is the true solution or not. If we
happen to find the island during this search procedure, then our goal is attained.
This is a matter of if-we-have-good-luck or we should rather be more than lucky.
Hence, we train the system in parallel using those samples during the procedure,
regardless of whichever the real solution might be found or not as a result. Then
at least we can expect that the system will recognize the island later after the
training.

In this paper, we approach the problem from this view point. That is, we take it,
more in general, just a pattern classification problem, but under the constraint
that we have two classes one of which includes an extremely few patterns while
the other includes an almost infinite number of patterns. Or, we might as well
take it a task of discrimination of a few of non-self cells as anomaly patterns
from enormous amount of self cells which represent normal patterns.

One of such latest approaches among others is by Zhou Ji and D. Dasgupata [3].
They wrote

The idea of negative selection was from T cell development process in
the thymus. If a T cell recognizes self cells, it is eliminated before deploy-
ment for immune functionality. In an analogous manner, the negative
selection algorithm generates the detector set by eliminating any detec-
tor candidates that match self samples. It is thus used as an anomaly
detection mechanism with the advantage that only the negative (normal)
training data are needed.

2 It is not necessarily to be said for the top of the island to be “flat”, but the originally
this was a test-bed for evolutionary computations, and the fitness of the island region
is one and zero in a lake region, that is why.



Let’ see, recalling our universe is n-dimensional Euclidean space, two algorithms
they proposed: one is to generate detectors of constant sized hyper-spheres and
the other is to generate variable sized hyper-spheres. They concluded that de-
tectors which detect anomaly patterns are successfully created just by training
with normal patterns.

When we think of a network intrusion detection, we usually don’t know what do
anomaly patterns look like in advance. Hence this feature of training with only
normal patterns is really advantageous. Our concern then is what if the number
of non-self cells is extremely smaller than self cells, which is of usual cases when
we think of a network intrusion detection. In order to explore this issue, we
apply their algorithms to a-tiny-island-in-a-huge-lake mentioned above. We can
control the difficulty of the task by changing the value of a, and we set it to a
very small value. The ultimate case in which the pattern all of whose coordinates
shrink to zero, is the problem called a-needle-in-a-haystack.

2 Algorithm

As described in the previous section, lots of algorithms to distinguish non-self
patterns from self patterns have been proposed. The goal of these algorithms is
to create detectors which cover non-self space as much as possible. Here, in this
paper, we concentrate on the algorithm called “Augmented Negative Selection
Algorithm with Variable-Coverage Detectors” proposed by Zhou Ji and D. Das-
gupata (2004) [3], as well as its simpler version in which detector size is constant
instead of variable, also proposed by the same authors in the same article. The
followings are these two algorithms that we paraphrased the original ones with
the semantics being intact. Firstly, the simpler version is:

Algorithm 1 (Constant-sized Detector Generation) After setting (i) Nt,
the number of training samples; (ii) rd, the radius of detector; and (iii) Nd, the
total number of detectors:

1. Create Ns samples of self cells at random.
2. Create a hyper-sphere which has the radius rd and whose center locates at

random in [−1, 1]. This is a candidate detector to detect non-self cells.
3. If this-hyper sphere does not contain any sample self cells, then put it as a

detector in D, the detector’s repertoire. Otherwise delete the hyper-sphere.
4. Repeat 2-3 until we find Nd detectors.

This algorithm, in our humble opinion, does not contain the concept of negative
selection or whatever in an immune system metaphor neither, if not at all. The
second one is:

Algorithm 2 (Variable-sized Detector Generation) After setting (i) Nt,
the number of training samples; (ii) rs, the radius of self cells; (iii) c0, expected
coverage, i.e., the degree to how much those created detectors cover non-self cells;



(iv) cmax, the upper bound of self coverage; and (v) Nd, the maximum number of
detectors:

1. Empty D, the detector’s repertoire.
2. Try to find a point x = (x1, · · · , xn) ∈ [−1, 1]n which is not contained by any

of the valid detectors so far created, unless the number of those trials exceeds
1/(1− c0). If no such x is found, then terminate the run. 3

3. If r, the distance between x and its closest self sell in the training sample,
is larger than the radius rs, i.e., if the candidate doesn’t include any of the
sample self cells, then add the sphere whose center is x and radius is r to D
as a new valid detector.

4. If such x cannot be found within the consecutive trials of 1/(1− cmax) time,
then terminate the run. 4 Otherwise repeat 2 and 3, until we find a total of
Nd detectors.

We do not think this algorithm strongly reflects an immune system either, despite
the title of the original paper indicates it. However at least the title holds true
in the sense that detectors are chosen by trying to match them to the self strings
and if a detector matches then it is discarded, otherwise it is kept. This is, above
all, what we call a natural selection algorithm.

3 Evaluation of How it Works

We use a measure originally proposed by Lopes et al. [4] in which four quantities,
i.e., (i) true-positive, (ii) true-negative, (iii) false positive, and (iv) false negative
are used. Here we assume positive sample is non-self and negative sample is self,
since detectors is designed to detect non-self cells. Hence, these four terms are
defined in a sence that (i) tp (true positive) — true declaration of positive sample,
i.e., non-self declared as non-self (ii) fp (false positive) — false declaration of
positive sample, i.e., self declared as non-self (iii) tn (true negative) — true
declaration of negative sample, i.e., self declared as self (iv) fn (false negative)
— false declaration of negative sample, i.e., non-self declared as self. Under these
definitions dr = tp/(tp+fn) implies detection rate, and fa = fp/(tn+fp) implies
false alarm rate.

4 Experiment, Results, and Discussion

We assume here the whole universe is n-dimensional hyper-cube [0, 1]n as men-
tioned already; any point all of whose coordinates lie in [(0.5 − a), (0.5 + a)]
where 0 < a < 0.5 are a non-self cell, whilst other points in the universe are self
cells 5 ; and all the self cells are hyper-sphere whose radius is rs.
3 This is because when we have sampled m points and only one point was not covered,

the expected coverage is 1 − 1/m. Hence the necessary number of tries to ensure
expected coverage c0 is m = 1/(1 − c0).

4 See also the footnote above replacing c0 with cmax.
5 We modify our Testfunction 1 for the sake of simplicity of coding in this way, which

keeps the problem equivalent to the original one.



4.1 A 2-dimensional version of an-island-in-a-lake

First of all, in order for our eyes to be able to observe the behavior of the
algorithms our experiment is performed on a 2-dimensional space, that is, we set
n = 2. We employ a set of 500 randomly selected points in the self region as the
training samples, and 1000 points randomly chosen from entire space is the test
data. The reason of these settings is to enable us to compare our results with
their’s in the original proposition [3].

The location of the self points in the training sample and the created detectors
when we set rs = 0.1 which is the value recommended by the original proposi-
tion [3] are shown in Fig. 1. So far so good. However, our goal is to recognize
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Fig. 1. A set of five hundred self-points employed as training samples (Left), and a
set of five hundreds detectors created by the Algorithm-1 with a = 0.25 and rs = 0.1
(Right) from an experiment in 2-dimensional space.

non-self patterns from extremely tiny region. Hence the next experiment is a
dependency on the value of a. Fig. 2 shows the number of required trials to
find the pre-defined number of detectors, which is 500 here, and the number
of successes when those 500 detectors tried to detect the 500 non-self samples.
Both are plotted as a function of value of a using the Algorithm-1 with rs = 0.1
to create the detectors. As we can see in the Figure, the difficulty of the task
becomes harder exponentially as a becomes smaller, and therefore we know this
algorithm would not work if the region to be searched for is extremely tiny.

4.2 A 20-dimensional version of an-island-in-a-lake

Here experiments are performed on a higher dimensional version of our test-bed
a-tiny-flat-island-in-a-huge-lake.
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Fig. 2. The number of iteration required to find 500 successful detectors (Left), and
the number of successes when 500 detectors tried to detect 500 non-self samples, that
is, the number of successes out of 25000 events (Right). Both are as a function of value
of a when we experimented with the Algorithm-1 with rs = 0.1 in 2-dimensional space.

In a preliminary experiment, we found it much more difficult than in the case
n = 2. What we found, for example, is even if we increase the number of training
sample of self patterns from 1000 to 10000, the distribution of the sample is very
sparse under the condition of n = 20. If the algorithm worked well, the detector
would be supposed to locate in the non-self region, such as Fig. 3 (Right) which
is from a result of 2-dimensional experiment for comparison purpose, while the
result in 20-dimensional experiment, as shown in Fig. 3 (Left), was not in that
way. The coordinates of whole detectors are almost uniformly distributed, which
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Fig. 3. The distribution of all the coordinates of the detectors for an experiment with
n = 20 (Left), and the distribution when n = 2 for the purpose of comparison (Right).



means a failure to find a set of successful detectors.

Then, we give it a consideration of how will the Algorithm-2 (Variable Sized
Detector) improve the situation. In an experiment in 20-dimensional space where
the Algorithm-2 creates certain number of detectors with 1000 training samples
of self patterns. Non-self region in this experiment was [0.495, 0.505]20 and radius
of self was set to 0.1. As a result of a run under c0 = 0.99, a total of 96 detectors
are created. We ran the algorithm for n = 5, 15, 20, and 25 to study a dependency
of the degree to how successfully the detector will be created on the dimension
of search space. The number of detectors created is somehow similar in each
dimension, ranging from 91 to 96. In Fig. 4, we show detection-rate and false-
alarm-rate as a function of dimensionality. Though not satisfactorily, we see
somewhat of a succeeded result, at least as for detection-rate.
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Fig. 4. Detection-rate (circles) and false-alarm-rate (rectangles) as a function of di-
mensionality in a series of experiments where the Algorithm-2 creates certain number
of detectors (from 91 to 96) with 1000 training samples of self patterns.

Further, we will explore different parameter values with the goal being to learn
the limit of how much small non-self region allows the algorithm to detect non-
self points successfully. Then we will experiment by lowering the value c0 which
is 99.99% and 99% in the original version, although results are not shown here
since our experiments have sometimes reversed our expectations so far.

5 Conclusion

We have obtained the similar results with the experiments by Zhou Ji and
D. Dasgupata [3] when the domain of non-sell is not so small.

Usually, however, in the real world problem, anomaly patterns are extremely
fewer than the normal ones. As such, our concern is on an extreme case. Unfor-



tunately, we have not so far observed any satisfactory results under this extreme
situation. In fact, Zhou Ji and D. Dasgupata [3] wrote

As an exception, the algorithm may also terminate when it fails to sam-
ple any non-self point after many repetitions. That implies that the self
region covers almost the entire space. It may happen when the self sam-
ples are randomly distributed over the space, or the chosen self-radius is
too big.

And as they went on to write concerning another experiment in the same pa-
per [3] “One of the three types of IRIS data is considered as normal data, while
the other two are considered abnormal,” the number of normal and abnormal is
usually comparable in such experiments.

We are exploring a number of other different approaches to the same target, that
is, a-tiny-flat-island-in-a-huge-lake or its binary version a-needle-in-a-haystack.
What we have tried so far are experiments by means of (1) a negative selection of
binary detector using r-contiguous matching; (2) evolution of a set of fuzzy rules
(3) a data-mining techniques and so on..., to detect a tiny-island or a needle.

Though still a lot of experiments have been resistant to be analyzed this series
of works is not to show a counter example for an assertion but to call for a
challenge. The objective is to detect anomaly phenomena which take place only
occasionally and hence we don’t know what does it look like, while we have
enormous amount of daily normal phenomena. As far as we know this is still an
open issue and we try to find some approaches, or at least to evoke interests in
this problem in our community. The challenge is awaiting us.
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