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We came accross

an extremely difficult

PEAK

to be searched for

in a

FITNESS LANDSCAPE

explored by an

EVOLUTIONARY COMPUTATION
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� A reason for the title — A mesa in desert

(a)

(b)
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To realize an

ASSOCIATIVE MEMORY

we use

SPIKING NEURONS

whose learningis by

EVOLUTIONARY COMPUTATIONS.
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� Contents

1. What is Associative Memory?

· Traditional Model by Hopfield.
vs.

· A Model usingSpikingNeurons.

2. Can we evolve SpikingNeurons?

·We study it by obserbingFitness Landscape.
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(cont’d)

3. Results of our Experiments.

· Let’s see a downhill walk from Hebb’s peak!
· Can we hillclimb again?
· Can Baldwin Effect help us to search?

4. Summary & Conclusions.
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�Associative Memory:

• stores patterns
– in a distributed way (amongneurons),

• recalls patterns
– from noisy and/or partial input.

⇓ i.e.
• gives us
– perfect recollection from imperfect information
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�The Associative Memory can be realized with:

• Fully-connected Neural Network Model
(Hopfield type)

• Artificial Immune System Model
• SpikingNeurons

(To be more biologically plausible)

• etc.
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associative memory = dynamical system

initial state equilibrium state
converge

u+du u

initial

state
stable

statetrajectory ?
......
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......

......

......

......

chaotic trajectory:

spin-glass attractor

fixed-point attractor

(noisy initial state)
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� A Schematic Diagram of the Hopfield Model
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� State Transition of the Hopfield Model

si(t + 1) = sgn(
N∑

j
wijsj(t))
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� Hebbian Weights

wij =
1

N

p∑

µ=1
ξν
i ξν

j , (i �= j), wij = 0.

(To store ppatterns: xµ = (ξµ
1 , ξµ

2 , · · · ξµ
N) µ = 1, 2, · · · , p)
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� Hopfield Model has a Crucial Drawback.

• N neurons store only 2N patterns at most (Gardner).

p< 2N.
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� From the Hopfield Model to SpikingNeuron Model

Influence from other neurons

via

ELECTRIC CURRENTS

⇓

changes

MEMBRANE VOLTAGE

of the neuron.
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(cont’d)

⇓

If it exceeds a threshold

⇓

the neuron emits

a SPIKE.
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� Pyramidal Cells & Interneurons
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PYRAMIDAL CELL

‖
(positive current)

⇓

PYRAMIDAL CELL

⇑
(negative current)

‖

INTERNEURON
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� Response of a Single Neuron to an External Stimulus:

• Spike rate vs stimuli (Naka-Rushton function)

S(P ) =




MP n/(σn + P n) if P ≥ 0

0 if P < 0
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(cont’d)

• Spike rate under time-variant stimulus:

dr(t)

dt
=

1

τ
(−r(t) + S(P ))
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� Response of Multiple Neurons

• Stimulus to a Pyramidal Cell

Pi = (
∑N

j=1wij · Rj − g · G)2
+

of

S(Pi) = MP n
i /(σn + P n

i )
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(cont’d)

• SpikingRatio of a Pyramidal Cell

dr

dt
=

1

τ
(−r + MP n/(σn + P n))

becomes

τR
dRi

dt
= −Ri +

100(
∑N

j=1wijRj − 0.1G)2
+

100 + (
∑N

j=1wijRj − 0.1G)2
+
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(cont’d)

• SpikingRatio of Interneuron

τG
dG

dt
= −G − 0.07

N∑

j=1
Ri
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� How to encode patterns?

ξi =




1 if Ri ≥ M/2
0 if Ri < M/2

⇒Rate Coding
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� GA Implementation:

1. Represent a series of wij as a population of strings (chromosome).

w11 w12 w13 w21 wN1 wNN... ......... ...

2. Evaluate fitness by “How good is each individual?”

3. Generate an initial population at random.
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(cont’d)

4. Evolve them with

– Selection

– Crossover

+

– Mutation

5. Better Solutions from generation to generation.
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� A Conceptual Illustration of Fitness Landscape

w 1

w 2

How good is the performance?
(fitness)
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� But we know at least one solution — Hebbian peak.

wij = sgn(Ri − M/2) · sgn(Rj − M/2)
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• A Downhill Walk by Flippingzero to one:
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(cont’d)

• A Downhill Walk by Flippingone to zero:
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� Search for a mesa

(a)

(b) A mesa in desert

A needle in haystack
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� Hill climbingfrom very edge of sidewall.
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� Hinton & Nowlan’s Search for A-needle-in-haystack

• A-needle ⇒ Only one configuration of 20 bits of binary string.

• Haystack ⇒ 220 − 1 search points.

· say, (11111111110000000000) is assigned fitness one,

· while others are fitness zero.
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(cont’d)

• lifetime learningof each individual (Baldwin Effect).
· about 25% are “1”, 25% are “0”, and the rest of the 50% are “?” .

· They are evaluated with all the “?” position being assigned “1” or

“0” at random ⇒ learning

· Each individual repeats the learning up to 1000 times

· If it reaches the point of fitness one at the n-th trial,

then the degree to which learning succeeded is calculated as

1 + 19 · (1000 − n)/1000.
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� Search for a needle
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� Conclusion

• Search for weights to store patterns is as difficult as a search for a needle in

haystack despite a fairly wide area of top reageon.

• Is it due to very steep side wall of the peak? ⇒ a mesa in a desert!

• Can climbers take all the way up the steep hillside again? ⇒ Yes, but only
from the edge.

• Effect of learning during life time (Baldwin Effect) helps us to search for the
mesa?
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� Where to go hearafter? — Future Works.

• Peaks other than Hebb’s (from NN aspect).

• Search for tiny mesa in desert (from EC aspect).


