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We came accross

an extremely difficult
PEAK
to be searched for

in a

FITNESS LANDSCAPE

explored by an
EVOLUTIONARY COMPUTATION
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O A reason for the title — A mesa in desert

)

(b)
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To realize an
ASSOCIATIVE MEMORY
we use
SPIKING NEURONS
whose learning is by

EVOLUTIONARY COMPUTATIONS.
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O Contents

1. What is Associative Memory?

- Traditional Model by Hopfield.
VS.

- A Model using Spiking Neurons.

2. Can we evolve Spiking Neurons?

- We study it by obserbing Fitness Landscape.
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(cont’d)
3. Results of our Experiments.

- Let’s see a downhill walk from Hebb’s peak!
- Can we hillclimb again?
- Can Baldwin Effect help us to search?

4. Summary & Conclusions.
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OAssociative Memory:
e stores patterns
— in a distributed way (among neurons),
e recalls patterns

— from noisy and/or partial input.

| i.e.
e gives us

— perfect recollection from imperfect information
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OThe Associative Memory can be realized with:

e Fully-connected Neural Network Model
(Hopfield type)

e Artificial Immune System Model

e Spiking Neurons
(To be more biologically plausible)

e etc.
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associative memory = dynamical system

initial stable
state

trajectory state ?

converge

initial state ~=———))-  equilibrium state
u+du u
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chaotic trajectory:
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O A Schematic Diagram of the Hopfield Model

W, 4
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O State Transition of the Hopfield Model

silt +1) = sgn(> wijs; (1)

12



(The 3rd International Conference on Neural Networks and Artificial Inteligence)

O Hebbian Weights

p o
w@-j:Nﬂglﬁé’éi, (i #7), wi;=0.

(To store p patterns: x* = (&',&5,---&y) pu=1,2,---,p)
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O Hopfield Model has a Crucial Drawback.

e NN neurons store only 2N patterns at most (Gardner).

p < 2N.
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O From the Hopfield Model to Spiking Neuron Model

Influence from other neurons
via

ELECTRIC CURRENTS

4

changes
MEMBRANE VOLTAGE
of the neuron.
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4

If it exceeds a threshold

4

the neuron emits

a SPIKE.
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(cont’d)
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O Pyramidal Cells & Interneurons

W >= V>

W >= V>
W >= V>
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PYRAMIDAL CELL

(positive current)

4

PYRAMIDAL CELL

i

(negative current)

INTERNEURON
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O Response of a Single Neuron to an External Stimulus:

e Spike rate vs stimuli (Naka-Rushton function)

MP"/(c"+P") if P >0
P) = ~
S(P) {O if P <0

Stimulus P
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e Spike rate under time-variant stimulus:

dr(t) 1
0Lty + s(p)

20

(cont’d)
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O Response of Multiple Neurons

e Stimulus to a Pyramidal Cell

P, = (Z?le’wz‘j ‘Rj—g-G)%
of

S(P) = MF//(c" + P}')
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(cont’d)

e Spiking Ratio of a Pyramidal Cell

dr 1

= (= MP"/(0" + P)
becomes

dR; R+ 100(2?7:110in‘7' — OlG)i

t "100 + (ijlwinj — OlG)%_
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e Spiking Ratio of Interneuron

N
ng = -G —-0.07> R;
dt i—1

J
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(cont’d)
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O How to encode patterns?

¢ = 1 it Ry > M/2
l0 iRy < M/2

=Rate Coding
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O GA Implementation:

1. Represent a series of w;; as a population of strings (chromosome).

W11

W12

W13

W21

WN1

WNN

2. Evaluate fitness by “How good is each individual?”

3. Generate an initial population at random.
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(cont’d)
4. Evolve them with

— Selection

— Crossover

I':':':':':':':'I':':':':':':':'I':':':':':':':'I':':':':':':':'I':':':_'.:_':':':'I':':':':':':':'I':':':':':':':'I':':':':':':':'I':':':':':':':'I
1

— Mutation

| CEEECEEEEE TS : EEEEEEEEEEEEEH R © S BB E £ : EEEEEEEEEEEEEEE ¢ =l B |

5. Better Solutions from generation to generation.
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O A Conceptual Illustration of Fitness Landscape

How good is the performance?
(fithess)
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O But we know at least one solution — Hebbian peak.

w;; = sgn(R; — M /2) - sgn(R; — M/2)
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e A Downhill Walk by Flipping zero to one:

0.6+ i

Fitness

o 5000 10000 15000 20000
Hamming Distance from the Top of Hebbian Peak
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(cont’d)

e A Downhill Walk by Flipping one to zero:

Fitness

1.0

50 100 150 200 250 300 350 400 450 500
Hamming Distance from the Top of Hebbian Peak
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O Search for a mesa

(=) A Nmneedle iNmn haystack

(b)) A MmMesa in desert
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O Hill climbing from very edge of sidewall.

1.0} 1
0.9 1
0.8 1

., 0.7 1
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0.4 1
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0.25 500 1000 1500 5000 5500

Steps
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O Hinton & Nowlan’s Search for A-needle-in-haystack

e A-needle = Only one configuration of 20 bits of binary string.
o Haystack = 2% — 1 search points.
- say, (11111111110000000000) is assigned fitness one,

- while others are fitness zero.
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(cont’d)
e lifetime learning of each individual (Baldwin Effect).

- about 25% are “1”7, 25% are “0”, and the rest of the 50% are “?” .

- They are evaluated with all the “?” position being assigned “1” or
“0” at random = learning

- Each individual repeats the learning up to 1000 times

- If it reaches the point of fitness one at the n-th trial,
then the degree to which learning succeeded is calculated as

1419 - (1000 — n),/1000.
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O Search for a needle

20

10

Fitness

O L L L L L L L
o 100 200 300 400 500 600 700 800

Generation
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O Conclusion

e Search for weights to store patterns is as difficult as a search for a needle in
haystack despite a fairly wide area of top reageon.

e [s it due to very steep side wall of the peak? = a mesa in a desert!

e Can climbers take all the way up the steep hillside again? = Yes, but only
from the edge.

e Effect of learning during life time (Baldwin Effect) helps us to search for the
mesa?
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O Where to go hearafter? — Future Works.
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e Peaks other than Hebb’s (from NN aspect).

e Search for tiny mesa in desert (from EC aspect).



