
How Many Parachutists will be Needed to Find
a Needle in a Pastoral?

Akira Imada
Brest State Technical University

Moskowskaja 267 Brest 224017 Belarus
akira@bstu.by

��������— This article is a consideration on computer net-
work intrusion detection using artificial neural networks, or
whatever else using machine learning techniques. We as-
sume an intrusion to a network is like a needle in a haystack
not like a family of iris flower, and we consider how an attack
can be detected by an intelligent way, if any.

I. Introduction

The parachute drop went smoothly ... slithering down the

chute and out into space ... Flick landed perfectly, with her

knees bent and her arms tucked into her sides as she fell to

the ground ... She folded her parachute into a neat bundle,

then set out to find the other Jackdaws. – “Jackdaws” by

Ken Follett.

Most banks nowadays facilitate their ATM (Automated
Teller Machine) in which we may have a personal account
to which we can access with PIN-code, usually four digits
of decimal numeral. For security reason, if we failed to en-
ter the PIN correctly more than three times in a row, the
PIN would loose its validity thereafter. Then what we are
curious is, “How many trials would be needed for random
challenges to reveal the secret PIN if an infinite number of
trials were permitted?” Let’s formalize this problem.

Problem 1 (Breaking a PIN)
Assuming p-bit octal 1 numeral is employed to construct a
PIN, only one out of those 8p possible combinations is the
secret PIN. No one except for the owner of the PIN knows
it. Then question is, “How many average trials-and-errors
will be needed for a non-owner to know the PIN under a
specific strategy?”

This might be reminiscent of the famous problem called a
needle in a haystack which was originally proposed by Hin-
ton & Nowlan in 1987 [1]. The needle in the proposal was
exactly the one configuration of 20-bit binary string, that
is, the search space is made up of 220 points and only one
point is the needle to be searched for. No information such
as how close is a currently searching point to the needle,
or how likely is a searching point to be the needle. See
Figure 1.

We assume that TCP connections to a computer network
are represented with n-dimensional vectors and those rep-
resented by intrusions are such as needles among huge

1 You will see the reason why “octal” not “decimal” later in the sub-
seciton concerning “intron” in the section EXPERIMENTS.

amount of normal transactions which might look like a
haystack or pastoral.

II. Network Intrusion Detection

Those highly qualified hackers who provide security ser-

vices to companies during the daytime and then go home

at night to conduct totally illegal hacking are the ones who

are the most dangerous. – by Enis Senerdem from Turkish

Daily News on 29 March 2006.

When we are to design a network intrusion detection sys-
tem, which is one of the hottest topics these days, by
means of so-called a soft computing such as artificial im-
mune system, fuzzy logic, evolutionary computations, neu-
ral networks, whatever it might be, we need a set of sample
data to train the system and to test the system afterwards.

A. When a Family of Iris Flower is Normal Then are
Others Abnormal? — Where is an Outlier?

The Spearman’s iris flower database2 is a frequently used
dataset in pattern recognition/classification, data mining,
etc. As such, there have been fair amount of studies in
which this iris flower database is employed as a dataset to
train and to test the intrusion detection system.

A total of 150 samples consists of three species: setosa,
versicolor and virginica, each of which includes 50 sam-
ples. Each sample is a four-dimensional vector represent-
ing four attributes of the iris flower, that is, sepal length,
sepal width, petal length, and petal width.

Let us take an example where this iris flower dataset was
employed. Castellano et al. [2] assumed one family to be
normal whilst the other two to be abnormal. The whole
dataset was divided into 10 parts each of which has 15 sam-
ples uniformly drawn from the three classes. The system

Fig. 1. A fictitious sketch of fitness landscape of a needle in a haystack.
The haystack here is drawn as a two-dimensional flat plane of fitness zero.

2 University of California Urvine Machine Learning Repository.
ics.uci.edu: pub/machine-learning-databases.



is trained by the remaining 135 samples. The originally
picked up 15 samples are used to test the results. After
this 10-fold cross validation, the authors concluded that
the abnormal detection rate is 96% while the false alarm
rate is 0.6%. How nice, isn’t it? In reality, however, it is
not so simple. It might not be difficult at all for a hacker
to find an unlearned region which could work to invade the
system.

We now look at the Figure 2 to see how the three species
are distributed in the whole search space. This is depicted
by the Sammon Mapping.

Sammon Mapping maps a set of points in a high-
dimensional space to the 2-dimensional space with the
distance relation being preserved as much as possible, or
equivalently, the distances in the n-dimensional space are
approximated by distances in the 2-dimensional space with
a minimal error.

Just a brief look at the figure reveals us that there remains
an enormously wide region of unlearned for outliers.

Fig. 2. A 2-D visualization of iris flower data by Sammon Mapping. Three
different families of iris flower each contains 50 samples are represented
in the figure with circles, triangles and squares.

B. Intrusion Might Look Like a Needle in a Hay!

The other type of dataset, naturally more often employed
in the context of network intrusion, is the KDD cup 1999
dataset which was prepared by MIT Lincoln Laboratory as
a dataset for the 1998 DARPA intrusion detection evalu-
ation [3]. This dataset has been, and still is going to be,
a common benchmark for evaluation of intrusion detection
techniques.

KDD dataset, beside data for Normal, covers four ma-
jor categories of attacks: (i) Probing attacks which attack
by proving a vulnerability of the network; (ii) Denial-of-
Service (DoS) attacks which try an invasion by denying
legitimate requests to a system; (iii) User-to-Root (U2R)
attacks which tries an unauthorized access to local super-
user or root; and (iv) Remote-to-Local (R2L) attacks which
is an unauthorized local access from a remote machine.

These four categories of attacks include a total of 32 dif-
ferent attack types.

The dataset consists of two sub-datasets. The one is pro-
vided as training data and contains 4,898,430 records each
of which is labeled as either normal, or attack indicating
one specific attack out of the 32 types.3 The second is
unlabeled and contains 311,029 records, which is provided
as testing data.

What a huge dataset! In fact, the Sammon Mapping we
had tried in the iris dataset above wouldn’t work any more.
Therefore, many have tried various approaches to reduce
the dimension. Let’s start our small literature survey with
this topic of dimension reduction.

Kuchimanchi et al. [4] used the principal component anal-
ysis (PCA), and calculated the first most important 19
attributes.4 Then they evaluated the result of this di-
mension reduction by providing both the original 41-
dimensional data and those 19-dimensional data reduced
by PCA to a decision-tree-classifier, comparing detection
accuracies and false positive5 rates. They showed detection
accuracy and false positive rate were 99.92% and 0.26%, re-
spectively, on the 19-dimensional PCA data, while 99.94%
and 0.23%, respectively, on the original 41-dimensional
data.6 What a successful result! However, is this still very
huge, is it not?.

Let’s see one more example. Joshi et al. [5] wrote, “Exploit-
ing only 5 out of 41 attributes7 the best results was 79% ac-
curacy in correctly detecting attacks, and 21% is accounted
for false positive rate plus false negative8 rate.” 9

Though it might not be so successful as the above result by
Kuchimanchi et al., if we consider 5 out of 41 attributes, it
is amazing. Wow!

Anyway, it is good to know we can reduce the dimension
of the original data set of KDD cup 1999 dataset into at
least about half with the result being intact.

Then, our next interest will be, “Are all of the attack types
in the KDD cup 1999 dataset are equally willing to wait to

3 The labeled training dataset includes 972,780 Normals, 41,102
Probes, 3,883,370 DoSs, 52 U2Rs, and 1,126 R2Ls.

4 They are src bytes, dst bytes, duration, is guest login, is host login,
srv diff host rate, diff srv rate, service, flag, protocol type, num root,
hot, num compromised, dst host same srv rate, dst host count,
rerror rate, srv count, and dst host srv diff host rate.

5 I.e., recognizing attack as normal.
6 This was not the main purpose of the paper. The authors rather ex-

ploited the other methods of dimension reduction such as neural-network-
PCA or nonlinear-component-analysis, expecting more efficiency and
higher accuracy. The evaluation was carried out not only by decision-
tree classifier but also by non-linear classifier.

7 I.e., src bytes, dst bytes, duration, is host login, and is guest login.
8 I.e., recognizing normal as attack.
9 Most of the phrases cited in this article hereafter like “· · ·” were para-

phrased, more or less, by the author of this article. As such, if there are
some incorrect expressions, it is the author of this article who is respon-
sible for, not the original authors.



be detected?” Some of the reports were from this point of
view. Let us name a few.

Pan et al. [6] exploited three-layer (70-14-6) feed-forward
neural network with a sigmoid transfer function trained
with back-propagation using scaled conjugate gradient de-
cent, to detect five typical types of attacks (neptune,
portsweep, satan, buffer overflow, and guess passwd) as
well as normal samples.

Let’s see what they observed. Authors wrote, “The test re-
sult indicates that 99.6% of the normal examples were rec-
ognized correctly, and for three attacks of neptune, satan,
portsweep, we obtained the average detect rate of 96.6% and
the false positive rate of 0.049%. However, for all the five
kinds of attacks, we only obtained the average detect rate
of 64.9% and the false positive rate of 26.7%. This is be-
cause all buffer overflow and guess passwd attacks failed to
be classified by this back-propagation neural network. Then
we tried an expert system, and found that the R2L and
U2R can be more accurately detected by this rule-based de-
tector than neural network.” And then concluded, “The
model based on both neural network and expert system fi-
nally achieved the average detection rate of 93.28% and
false positive rate of 0.2% for all of these five types of at-
tacks.”

We, however, would be rather more interested in why
this neural network failed to classify buffer overflow and
guess passwd attacks, rather than the performance im-
provement by using rule-based detector.

Pan et al. reported yet another result in their differ-
ent article [7]. With the same architecture of neural
network and with the same target of five attacks as
above, but using C4.5 instead of expert system, they
reported that correctly predicted (normal, neptune, sa-
tan, portsweep, buffer overflow, guess passwd) was (73.3%,
99.2%, 94.6%, 94.2%, 0.0%, 0.0%). And concluded, “The
back-propagation network can’t detect the buffer overflow
and guess passwd attacks.” This sounds like a realistic as-
sertion, and the one we want.

Thus far, such more careful conclusions appear in the re-
cent literatures. For example, Stibor et al. [8] wrote,
“The real-valued negative selection with variable-sized de-
tectors has poor classification performance on the high-
dimensional KDD dataset.”

When this artificial immune system based detector was
proposed by Ji et al. [9], the result of applying it to the
iris dataset was not that bad. That is, the correct de-
tection rate of (setosa, versicolor, virginica) was (99.98%,
85.95%, 81.87%), while false alarm rates were all zero!

As another example of such implicit report of failure, Dam
et al. [10] claimed, “The evolutionary classifier system, de-
vised to make its performance improved than the traditional

one, resulted in the detection rate of (95.7%, 49.1%, 93.0%,
8.5%, 3.9%) for (normal, DoS, Probe, U2R, R2L).”

Again, we are rather more interested in why detection rate
is so low for U2R and R2L than whether result is satisfac-
tory or not.

Finally, it would be interesting to take a look what Sabh-
nani et al. [11] reported. See Table 1 to have a bird’s eye
view of those results above.

Table 1. Detection rate for 4 attack types each with 9 different machine
learning technique. From Sabhnani et al. [11].

Probe DoS U2R R2L
Multilayer Perceptron 88.7 97.2 13.2 5.6
Gaussian Classifier 90.2 82.4 22.8 9.6
K-mean Clustering 87.6 97.3 29.8 6.4
Nearest Cluster Algorithm 88.8 97.1 2.2 3.4
Radial Basis Function 93.2 73.0 6.1 5.9
Leader Algorithm 83.8 97.2 6.6 1.0
Hypersphere Algorithm 84.8 97.2 8.3 1.0
Fuzzy Art Map 77.2 97.0 6.1 3.7
C4.5 Decision Tree 80.8 97.0 1.8 4.6

Also note that KDD cup 1999 winner’s detection rate for
(Probe, DoS, U2R, and R2L) was (83.3%, 97.1%, 13.2%,
8.4%).

Our Conjecture
Here, we, conjecture that those sometimes observed poor
results are because some of the attack data are like needles
in a haystack of huge amount of normal data. If we were
able to fully visualize such large size of normal samples
together with a few data picked up from abnormal samples,
the latter might look like a needle in a hay stack of the
former, like in Figure 3. Though we are not yet ready,
we plan to show a visualization of this assumption of us
elsewhere, to study this conjecture further in detail.

Fig. 3. We conjecture that some attack data (filled circles) are like nee-
dles in a hay of normal data (empty circles). Plots in this figure are all
fictitious.

To summerize this section, we ask the readers,



Problem 2 (A Challenge in KDD-cup-99 dataset)
Design an intrusion detection system which has 41 inputs
corresponding to attributes from KDD-cup-1999 dataset,
and 5 YES/NO outputs indicating that the input is either
normal, Probe, DoS, U2R, or R2L. The question is, “Such
design is possible or not?”

Also see Figure 4 to get an image of real implementation
by a neural network, as an example.

pre-proccessed 41 attributes in KDD cup 1999 data set 

Normal
Probing

DoS
U2R

R2L

Fig. 4. A simple architecture of neural network we desire to design to
classify KDD cup 99 dataset.

III. Experiments

Flick remembered the legend of the Jackdaw of Rheims,

the bird that stole the bishop’s ring. The monks couldn’t

figure out who had taken it, so the bishop cursed the un-

known thief. Next thing they knew, the jackdaw appeared

all bedraggled, and they realized he was suffering from the

effects of curse, and must be the culprit. Sure enough they

found the ring in his nest. – “Jackdaws” by Ken Follett.

Assuming our conjecture that real attack sample is like a
needle in a haystack of normal samples, we now look at
how easy or difficult to find it? Let’s start with a random
search. Note that some proposed algorithms which were
reported as success actually were not good as asserted, and
sometimes found to be worse than a random search.

A. Random Fall of Parachutists

Algorithm 1 (Random Fall) (1) Create a p-bit octal
PIN at random. (2) Create randomly one 3p-bit of bi-
nary string. (3) Translate the string into p-bit octal code.
(4) Check if the translated code matches the PIN. (5) If
matches end the run. Otherwise go back to 2.

Let us allow to use a metaphor here. We now assume only
one needle in a pastoral, and parachutists fall from the
airplane in the sky to the pastoral one by one, then how
would it be likely for a parachutist to fall just on the needle.
This might be taken as a random search, and will be our

criterion of comparison hereafter.

Note that one parachutist is represented by our genotypes
of a 3p-digit binary strings. Let’s take an example of p = 4.
A genotype

((100)(111)(000)(010))

maps into its phenotype (4 7 0 2).

At the start, one p-bit octal PIN is created which we
assume no one knows a priori. With p being increas-
ing from 2, we count the number of randomly created
genotypes until its phenotype strictly matches to the
hidden PIN. The average number, during 1024 runs, of
parachutists needed until we found the parachutist who
fell on the needle just by chance, for p = 2, 3, 4, 5, 6, 7 were,
respectively,

(66, 512, 3951, 32154, 254673, 2058527). (1)

See Figure 5.

B. What if Parachutists are Allowed to Walk after Fall?

Algorithm 2 (Random Fall) (1) Create a p-bit octal
PIN at random. (2) Create randomly one 3p-bit of bi-
nary string. (3) Translate the string into p-bit octal code.
(4) Check if the translated code matches the PIN. (5) If
matches end the run. Otherwise give a mutation by flip-
ping a bit chosen at random10 with a probability of 1/3p
until the translation matches the PIN, or number of steps
exceeds 1000. (6) If still hasn’t been matched, then repeat
from 2.

What will happen if the fallen parachutist is allowed to
explore, say, 1000 random steps, around the falling spot?
This might remind readers of the seminal experiment once
made by Hinton & Nowlan [1] who referred it to “life-
time learning — Baldwin Effect” though our parachutist
in this paper ends her life without creating a next genera-
tion. The results, again over the average of 1024 runs, for
p = 4, 5, 6, 7, 8 were, respectively,

(5, 36, 308, 2436, 23087). (2)

The results are depicted also in Figure 5 with the result
of our random parachutists in the previous subsection. In
both cases, we can see that complexity to find the needle
is an exponential order. But look! How impressive an
exploration-after-fall improves the performance!

As you have probably noticed already, however, it’s not
fair just to compare the number of parachutists. The total
number of points searched by those walking parachutists
is plotted as a function of p in Figure 6. We can see that
the result was rather worse than our random parachutists,
despite of its superficial good looking of the result.

10 We will call this a “point-wise mutation” hereafter.



C. Neutral Mutation

Algorithm 3 (Walk by Neutral Mutations) (1) Cre-
ate a PIN at random. (2) Create one genotype at random.
(3) Try point-wise mutation on the genotype such that the
result maps into the same phenotype as the one before the
mutation. (4) Assess all possible single-mutation-neighbors
of the new genotype to determine whether any new pheno-
types were discovered. (5) Step 3 to 4 are repeated untill the
phenotype matches the PIN, or untill a pre-fixed number of
steps is reached.

This is a paraphrase of the algorithm proposed by Ship-
man et al. [12] who called the step 3 a neutral mutation
(Note that the mutation in step 4 is a standard one). Its
efficiency was studied in their paper by applying it to a
random Boolean network and telecommunication networks.
But why not more simple example is to be explored, if it
is to work universally?

To apply this in our problem of searching for the needle,
that is, octal p-bit PIN, we design our genotype as 15p-bit
binary string such that the number-of-1 (mod 8) in each of
those 15-digit blocks in the string maps into one bit of the
corresponding octal code.11 For example

((100011000000100)(111111111111111)(111110001101010))

maps into (4 7 1).

The average number, during 1024 runs, of parachutists
needed until we found the one who firstly reached the nee-
dle for p = 2, 3, 4, 5, 6 were, respectively,

(71728, 583593, 4930624, 36592634, 314817878). (3)

Much worse than our random search.

0

50,000

100,000

150,000

200,000

250,000

300,000

0 1 2 3 4 5 6 7 8 9

N
um

be
r o

f P
ar

ac
hu

te
rs

Number of Pins

Fig. 5. (a) Number of random creations of candidate until the PIN is
matched (filled circles), and (b) The number when created candidate is
allowed random walks of 1000 steps (empty circles). Both are the average
of 1024 runs.

11 A simple consideration might give us the idea that 7-bit binary for
each octal is enough. However, we implemented in this way so that each
octal from 0 to 7 are created uniformly at random.

D. Does Neutral Mutation on Intron Enhance Efficiency
of Search?

Algorithm 4 (Neutral Network) (1) Create a PIN at
random. (2) Create randomly an initial individual which
is considered to be the winner to the next generation. (3)
Carry out point-wise mutation on the winning parent to
generate 4 offspring. (4) Construct a new generation with
the winner and its offspring. (5) Select a winner from the
current population using the following rules. (i) If any off-
spring has a better fitness than the parent, the one with
highest fitness becomes the winner. (ii) If fitness of all off-
spring have the same fitness as the parent, one offspring
is randomly selected, and if the parent-offspring pair has
a Hamming distance within the permitted range, the off-
spring becomes the winner, otherwise the parent remains
as the winner. (5) Back to step 2 unless the maximum
number of generations reaches, or a solution is found.

The description of the algorithm above is a paraphrase from
Yu & Miller [13]. We had an interesting discussion between
Yu & Miller’s paper “Finding needles in haystack is not
hard with neutrality” (2002) vs. Collin’s “Finding needles
in haystack is harder with neutrality” (2005).

What Yu & Miller [13] attacked as a type of a needle
in a haystack problem was to make a genetic algorithm
construct a even-n-parity logic circuit by employing only
XORs and EQs, not ANDs and ORs and so on, which
shows a peculiar fitness landscape. The even-n-parity logic
has n-bit binary inputs and if and only if the number of
“1” is even, it returns 1 and otherwise returns 0. Hence,
we can evaluate the fitness value of any one candidate of
the solution, by giving all the possible configurations of 0
and 1 and counting how many correct outputs. Thus, from
a combinatorial point of view we have 2n cases of fitness
values. In reality, however, we have, only three different
values, that is, 2n, 2(n−1) and 0. In other words, the out-
put is all correct, half correct, or not correct at all. For
example, candidates of even-3-parity constructed only by
XORs and EQs returns either 8, 4 or 0 correct outputs for

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

0 1 2 3 4 5 6 7 8 9

T
ot

al
ly

 S
ea

rc
he

d 
P

oi
nt

s

Number of Pins

Fig. 6. Average number of points explored by all the randomly created
candidates who are allowed further random walks of 1000 steps until the
needle is found. Average are taken among 1024 runs.



the eight possible inputs (000), (001), (010), ..., (111).

Yu & Miller wrote, “In the case of random creation
of 4,000,000 candidates of even-12-parity, the solution
(fitness 4096) was never emerged, while even-10-parity
100,000 random creations of candidate yielded 540 solu-
tions (fitness 1024). On the other hand, when neutral mu-
tation was applied to the candidates of even-12-parity, the
48 out of 100 runs reached solution(s) with each run being
only within 10,000 iterations.”

Collins argued back concluding, “Reported success is due to
a bias of the selection” [14]. In the other Collin’s work [15],
it was analytically shown that the number of possible can-
didates of even-12-parity is 1.315× 10139 in which number
of real solutions is 2.568 × 10132, claiming “Yu & Miller’s
result is, therefore, worse than a possible random search.”

Again what we want to emphasize here is, if the assertion
by Yu & Miller is universally true, it would work in yet
more principally simple examples. Before going to proceed,
let’s see what is intron that Yu & Miller assumed to play
an important role in their evolution. For example, take a
look at a genotype representing an even-3-parity,

((EQ,A, B)(EQ,C, D)(XOR, 1, E)(EQ,F, G)(EQ, 3,H))

where each gene which corresponds to one unit constructs
triples, with the 1st being which logic to be used (EQ or
XOR); and with the 2nd and 3rd being connections to ei-
ther one of the inputs or the outputs of a previous unit.
Note that the 2nd and 4th genes in the above example do
not contribute to construct the phenotype since those two
genes will not be connected to any other unit, and hence
are called intron as a biological metaphor. Any mutation
on an intron has no effect on phenotype, and as such, they
are called neutral. The above genotype can be interpreted
as the phenotype shown in Figure 7.

EQXORXOR

unit-1 unit-3 unit-5

A

B E H

out1 3

Fig. 7. An example of phenotype of even-3-parity constructed only by
EQs and XORs.

Now we try to apply this to our finding PIN problem. This
time we use 4-digit binary, instead of 3-digit as before, to
represent one octal numeral in the candidate of PIN. Then
translation is into decimal, instead of octal, and when the
translated decimal is larger than seven we consider it an
intron. For example

((0001)(1100)(0101)(0010)(0111))

is translated into (1, 5, 2, 7) since the second gene is trans-
lated into 12 and supposed to be an intron.

The average number, during 1024 runs, of parachutists
needed to firstly find the needle for p = 2, 3, 4, 5 were, re-
spectively,

(65, 488, 3751, 33710). (4)

Alas, if we compare it with (1) we will see that the result
is almost the same as our random parachutists.

Possible Conclusion
We have no such algorithm that can more efficiently look
for a needle in a haystack than a random search. No way
to find needles in a pastoral.

IV. Discussion

As Laskov et al. [16] claimed in their paper, “Labels can
be extremely difficult or impossible to obtain. Analysis of
network traffic or audit logs is very time-consuming and
usually only a small portion of the available data can be
labeled. Furthermore, in certain cases, for example at a
packet level, it may be impossible to unambiguously assign
a label to a data instance.” Authors further wrote, “In a
real application, one can never be sure that a set of available
labeled examples covers all possible attacks. If a new attack
appears, examples of it may not have been seen in training
data.” Then our next question is,

Problem 3 (Attacks by Mutants) Pick up at random
a set of n normal samples from KDD cup 1999 dataset.
All of those n samples are given a point-wise mutation and
taken as attack data. Train your intrusion detection system
using half of the normal samples and half of the attack
samples (the number of both is n/2), then test the system
using the remaining samples. Can the system detect those
mutants as intrusion?

A. Can a Sommelier be Trained without Bootlegs?

Though we have not remarked so far, there remains further
difficult issue, that is, “How the system can learn only from
normal data to detect abnormal?” We usually have enor-
mous amount of normal data but we have no information
about coming attacks untill it’s too late.

Gomez et al. [17] claimed, “A new technique for generat-
ing a set of fuzzy rules that can characterize the non-self
(abnormal) space using only self (normal) samples.” Their
experiment employed 10% dataset, also given as a part
of KDD cup 1999 dataset, which reduced the number of
records into 10% of the original ones. Further, they re-
moved categorical attributes and normalized these remain-
ing 33 numerical attributes between 0 and 1 using the max-
imum and minimum values found. Then 80% of the nor-
mal samples were picked up at random for training while
the remaining 20% along with the same number of abnor-
mal samples were used for testing. Gomez et al. designed



the detector with what they called an “immuno-fuzzy ap-
proach” and system they call an “evolving fuzzy rules de-
tectors” claiming, “It detects attacks with the detection rate
98.30% and false alarm rate 2.0%.” Really satisfactory, if
it’s really true.

The report didn’t mention about the categories of attacks,
which implies the reported success is an average over all
attack types. It seems to be too good if we consider the
results of other not-so-happy reports mentioned above.

More important thing to notice here is the system learned
from “only with normal data” to establish this success. It
would be terrific if it was really true, but we are fishy more
or less.

This issue is something like we require a wine-taster to
recognize bootleg champagne by only providing him/her
plenty of real champagne to learn.12 Though this training-
only-with-normal is our ultimate goal, but not so simple to
be realized. To study how this is difficult, why not try the
following?

Problem 4 (Dummy Attacks) (1) Prepare two sub-
datasets from KDD cup 1999 dataset. One is picked up
from normal samples and call it Dnormal. The other is
from attack samples and call it Dattack. (2) Furthermore,
randomly create an attack dataset – dummy attacks, and
call it Ddummy. (3) Train your intrusion detection system
only with Dnormal. (4) Then, try two tests, one with only
Dattack, and the other with only Ddummy, avoiding any
a priori prediction.

B. Don’t We Expect the Result a priori?

“Artificial immune system detects an attack by computer
viruses!” How fantastic it sounds. Whilst we wish it would
work, we are afraid it might be just a fantasy. So, we need
a placebo experiment.

Of the 311,029 records in the test set of KDD cup 1999,
the rate of (Normal, Prove, DoS, U2R, R2L) is (19.5%,
1.3%, 73.9%, 5.2%, 0.1%), respectively. This suggests that
even the always-return-U2R strategy13 for instance, would
result in the accurate detection rate of (Normal, Probe,
DoS, U2R, R2L) = (0.0%, 0.0%, 0.0%, 5.2%, 0.0%). Or,
the always-return-a-random-output strategy14 would have
quite a high score to detect DoS attacks.

The two strategies above might be more intelligent than
some of the artificial intelligent techniques so far proposed,
12 Or, in an opposite way. I usually enjoy Georgian sparkling wine like

once a week, but still a real champagne would be able to pretend to be a
Georgian one to me.”
13 which returns U2R whatever the input is.
14 which returns either Normal, Probe, DoS, U2R, or R2L at random

regardless of the input.

rather than ignorant.

We have to be careful, because we sometimes tend to un-
consciously pick up only a set of data that is suitable to
draw our conclusion which was a priori expected, if not
intentionally at all.

In the way that just a powder-from-sugar sometimes has
a same effect as, or more efficient than, a medicine under
developing enough to cure a disease for a group of innocent
volunteers. Let’s conclude with the following final question.

Problem 5 (Placebo Experiment) (1) Create a simple
device which randomly returns either of Normal, Prove,
DoS, U2R, or R2L for any input. (2) Prepare a test dataset
including enough amount of records uniformly from Nor-
mal, Prove, DoS, U2R, and R2L. (3) Compare the per-
formances of the detector you designed with the random-
reply-machine created in step 1, feeding the same dataset
prepared in step 2.

V. Concluding Remarks

As we have described so far, KDD cup 1999 intrusion de-
tection dataset has 4,898,430 records in the labeled dataset
for training purposes of which 75.6111% are normal. On
the other hand, we have 311,029 records in the unlabeled
dataset for testing purposes of which only 0.0733% are
U2R, for example. Under this situation, a likely interpre-
tation would be the U2R attack patterns are like needles
in hay of normal patterns when it undergoes a test, if we
are not very lucky. Considering we have not had so satis-
factory results to detect U2R attacks, we do not seem to
be so lucky.

In addition, if we take it account that a hacker is a person
who is extremely good at finding a pattern which is very
close to the normal traffic, the point that might be located
by a hacker is not a randomly located point.

It is said that we have two kind of intrusion detection. One
is called misuse detection which recognizes known attack
patterns. The other is called anomaly detection which de-
tects no-normal unknown patterns. We are not interested
in the former. All we want is to detect unknown outliers.
And an outlier usually lies not far from normal but very
close to it. We could not be so optimistic.

As for using an artificial immune system, for example,
since that real sensational proposition in 1994 by For-
rest, Perelsen et al. [18] that claimed, “Negative selection
of a metaphor of our real biological immune system can
detect anomaly as non-self in computers,” we have had
tremendously lots of intelligent challenges for more than
two decades, but all in vain in a real sense. Still this topic
is not fruitful at all from a practical point of view, as far



as we know.

Probably the most intelligent way of detecting a network
intrusion is to curse it and wait for the effect of the curse.

Needless to say, however, this article is not to negate the
possibility, but we hope this will be a serious challenge to
intrusion detection community to emerge real innovative
ideas.

References

[1] G. E. Hinton, and S. J. Nowlan (1987) “How Learning
can Guide Evolution.” Complex Systems, 1, pp. 495–
502.

[2] G. Castellano, and A. M. Fanelli (2000) “Fuzzy In-
ference and Rule Extraction using a Neural Network.”
Neural Network World Journal, Vol. 3, pp. 361– 371.

[3] S. J. Stolfo, F. Wei, W. Lee, A. Prodro-
midis, and P. K. Chan (1999) “KDD Cup knowl-
edge discovery and data mining competition.”
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[4] G. K. Kuchimanchi, V. V. Phoha, K. S. Balagani, and
S. R. Gaddam (2004) “Dimension Reduction Using
Feature Extraction Methods for Real-time Misuse De-
tection Systems.” Proceedings of Workshop on Infor-
mation Assurance and Security, pp. 1555–1563.

[5] S. S. Joshi, and V. V. Phoha (2005) “Investigat-
ing Hidden Markov Models Capabilities in Anomaly
Detection.” Proceedings of the 43rd ACM Southeast
Conference, Vol. 1, pp. 99–103.

[6] Z. Pan, H. Lian, G. Hu, and G. Ni (2005) “An In-
tegrated Model of Intrusion Detection Based on Neu-
ral Network and Expert System.” Proceedings of IEEE
International Conference on Tools with Artificial In-
telligence, pp. 671–672.

[7] Z. Pan, S. Chen, G. Hu, and D. Zhangn (2003) “Hy-
brid Neural Network and C4.5 for Misuse Detection.”
Proceedings of International Conference on Machine
Learning and Cybernetics, pp. 2463–2467.

[8] T. Stibor, J. Timmis, and C. Eckert (2005) “A com-
parative Study of Real-valued Negative Selection to
Statistical Anomaly Detection Techniques.” Proceed-
ings of International Conference on Artificial Im-
mune Systems, Lecture Notes in Computer Science,
Vol. 3627, Springer, pp. 262–275.

[9] Z. Ji, and D. Dasgupta (2004) “Real-valued Negative
Selection Algorithm with Variable-sized Detectors.”
Proceedings of Genetic and Evolutionary Computa-
tion Conference, Lecture Notes in Computer Science
Vol. 3102, Springer, pp. 287–298.

[10] H. H. Dam, K. Shafi, and H. A. Abbass (2005) “Can
Evolutionary Computation Handle Large Dataset?”
Technical Report: The Artificial Life and Adaptive
Robotics Laboratory, TR-ALAR-200507011.

[11] M. Sabhnani, and G. Serpen (2003) “Application of
Machine Learning Algorithms to KDD Intrusion De-
tection Dataset within Misuse Detection Context.”

Proceedings of the International Conference on Ma-
chine Learning: Models, Technologies and Applica-
tions, pp. 209–215.

[12] R. Shipman, M. Shackleton, and I. Harvey (2000)
“The Use of Neutral Genotype-phenotype Mappings
for Improved Evolutionary Search.” BT Technology
Journal, Vol. 18, No. 4, pp. 103–111.

[13] Tina Yu and J. Miller (2002) “Finding Needles in
Haystacks is Not Hard with Neutrality.” Proceedings
of EuroGP 2002, Lecture Notes in Computer Science
Vol. 2278, Springer, pp. 13–25.

[14] M. Collins (2005) “Finding Needles in Haystacks
is Harder with Neutrality.” Proceedings of Genetic
and Evolutionary Computation Conference, pp. 1613–
1618.

[15] M. Collins (2004) “Counting Solutions in Reduced
Boolean Parity.” CD-ROM of Workshop Proceedings
in Genetic and Evolutionary Computation Confer-
ence.

[16] P. Laskov et al. (2005) “Learning Intrusion Detection:
Supervised or Unsupervised?” Proceedings of Inter-
national Conference on Image Analysis and Process-
ing, Lecture Notes in Computer Science, Vol. 3617,
Springer, pp. 50–57.

[17] J. Gomez, F. Gonzalez, and D. Dasgupta (2003) “An
Immuno-Fuzzy Approach to Anomaly Detection.” Pro-
ceedings of IEEE International Conference on Fuzzy
Systems, Vol. 2, pp. 1219-1224.

[18] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri
(1994) “Self Nonself Discrimination in a Computer.”
Proceedings of IEEE Symposium on Research in Se-
curity and Privacy, pp. 202– 212.


