
TheArtificial L ife andAdaptiveRobotics Laboratory
ALAR Technical Report Series

Can Evolutionary Computation Handle Large Dataset?

Hai H. Dam, Kamran Shafi, Hussein A. Abbass

TR-ALAR-200507011

The Artificial Life and Adaptive Robotics Laboratory
School of Information Technology and Electrical Engineering

University of New South Wales
Northcott Drive, Campbell, Canberra, ACT 2600

Australia
Tel: +62 2 6268 8158 Fax:+61 2 6268 8581



Can Evolutionary Computation Handle Large
Dataset?

Hai H. Dam, Kamran Shafi, Hussein A. Abbass
School of Info. Tech. and Electr. Eng.

Univ. College, Univ. of New South Wales
ADFA, Canberra ACT 2600

Australia
Email: {z3140959, k.shafi, abbass}@itee.adfa.edu.au

Abstract

Evolutionary Learning Classifier Systems (ELCS) were introduced by Holland a few decades ago. Since their
birth, they were successfully applied to various data analysis domains. XCS is currently considered as state of the
art ELCS. Earlier work have experimented with XCS on artificial problems or small datasets, and shown good
results. However, XCS has not been tested on large datasets, particularly in the intrusion detection domain. This
work investigates the performance of XCS on the 1999 KDD Cup intrusion detection dataset, a real world dataset
approximately five million records, more than 40 fields and multiple classes with non-uniform distribution. Intuitively
XCS fits well into this domain due to its online learning mode and its ability to evolve accurate and maximum
general rules. We report the findings on experiments with the original XCS that show low accuracy. We then propose
several modifications to XCS to improve its detection accuracy. The modified XCS improves remarkably on three
of the four classes. The overall accuracy is equivalent to that of traditional machine learning algorithms, with the
additional advantages of being evolutionary and online learner.

I. I NTRODUCTION

XCS was introduced by Wilson [17], [18] as an enhanced version of the traditional ELCS proposed by Holland
[9]. It is widely accepted as one of the most reliable Michigan-style ELCS for machine learning [2], [5]. The
two major changes of XCS are: a fitness based on the accuracy of the reward prediction instead of the strength
(or reward directly received from the environment) using a reinforcement learning approach; and a niche Genetic
Algorithm (GA) to improve the spread of the state-action table. Many studies showed that XCS performs at least
as well as other traditional machine learning techniques on several small data mining problems [1], [15]. The
advantages of XCS can be counted as being a rule-based representation, which makes it easier to recognize the
mined patterns; and being an online-learner with linear O(n) complexity. In other words, XCS sees each training
instance only once unlike other learning mechanisms such as C4.5 or neural network classifiers that learn in batch
mode and thus need to go through the data multiple times before producing the final model. Generally, Evolutionary
Computation techniques are considered computationally expensive. But XCS utilizes Genetic Algorithm (GA) as a
search technique efficiently due to its linear complexity and online learning mode.

Intrusion detection is the art of identifying illegitimate and/or malicious activity into a computer system in order to
gain unauthorized access, gather crucial information about the system (i.e. to compromise system’s confidentiality)
or simply disrupt the normal operation (i.e. to compromise integrity and availability of the system and services it is
providing). The problem is difficult to address owing to the sheer amount of correlated data flowing in and out of
the computer systems and ever emerging novel attacks. Intrusion detection thus intrinsically becomes a classification
in data mining problem in that, we want to classify ‘Bad’ or malicious events or traffic patterns from the good
and legitimate ones. Current intrusion detection techniques fall into one of two categories; misuse detection and
anomaly detection. The former looks for well known patterns of bad behavior in network traffic and audit data,
while the latter models the normal behavior of the system and flags any deviating event as anomalous.

Our work is in the context of misuse detection. We apply XCS to learn rules automatically from the labeled
training data which are then used to classify the attacks in the test data. The qualities of XCS make it intuitively



best suited for intrusion detection where the classifier system is needed to learn and adapt to the time varying
characteristics of network traffic quickly and identify new attacks. We develop some modifications on the XCS
model to suit the intrusion detection domain and report our findings on these experiments. Our results show that
the new XCS improves considerably especially on three of the four classes in the dataset i.e. Probe, DOS and U2R.

The main contribution of this paper is in extending XCS to improve its application in the field of intrusion
detection. We investigate a novel potential approach to solve the network intrusion detection problem using an
efficient evolutionary approach. The goal of this work is two-fold; firstly we explore the performance of the
original XCS on a large dataset. Secondly, we modify XCS to best suit the intrusion detection domain to improve
on its accuracy. We chose 1999 the KDD Cup intrusion detection dataset [8] that has a large number of records
with non uniform class distribution, rare classes and novel test instances.

The application of data mining techniques to intrusion detection are discussed in the following section which
is followed by a brief description of XCS. From Section IV we present the experiments and the obtained results.
Conclusions are then drawn and future directions are discussed in Section VI.

II. RELATED WORK

Many researchers have explored the application of non-evolutionary machine learning algorithms in the intrusion
detection domain. Sabhnani et al. [14] developed a multi-classifier model using three of the nine best performing
pattern recognition and machine learning algorithms such as neural networks, clustering techniques and decision
trees, that they evaluated on the KDD dataset. Agarwal and Joshi [13] proposed a two stage framework to learn
rule based models. The sequential covering algorithm is used to first learn highly accurate P rules indicating the
presence of a class; accuracy is gradually compromised in favor of support thereby keeping the generality of rules
at the expense of some false positives. In the second stage N rules representing the absence of a class are learned
on the reduced dataset to remove the false positives accumulated during the learning of P rules. A cost sensitive
algorithm is then used to resolve conflict among classifiers advocating towards the same class. Giacinto et al. [6]
divide connection records into six categories based on different network services. Three dedicated classifiers, each
relating to a different subset of the features that constitute the KDD Cup dataset, are applied on each service
module. Best performing classifiers are then fused using different techniques, where the majority voting is found
to outperform the others, to discriminate between attacks and normal traffic.

There is some work in the literature that explores the application of Genetic Algorithms (GA) on the intrusion
detection domain. Sinclair et al. [16] deployed independent ID3 and GA based rule generation modules on an
existing expert based Intrusion Detection System (IDS). The GA module is based on a traditional genetic algorithm
enhanced by applying niching using a crowding technique. Rules matching to the intrusion patterns in the training
dataset get higher fitness values. Hamming distance is used as a similarity measure between two chromosomes
i.e. the rules generated from the network traffic using GA. Chittur [4] applied GA on 10% of the KDD dataset to
evolve best fit rules based on accuracy of predicting anomalous connections from the normal. They used Ephemeral
Random Constants [10] to assign weights to individual attributes in the dataset. Gomez et al. [7] used adaptive-
parameter genetic algorithm with special genetic operators (gene addition and deletion) to evolve fuzzy classifiers
and applied it on 10% of the KDD dataset. The rules for Denial of Service (DOS) attacks in the dataset were
evolved independently of the other attacks because of the high number of instances belonging to DOS category.
They showed equivalent performance to traditional machine learning algorithms in all categories and improved
performance in one of the categories. There are some other work e.g. [12] that explore the application of basic GA
on the intrusion detection domain.

Traditional machine learning algorithms as discussed above require training in batch mode before exposure to
the test data which implies multiple passes through training data. In domains like intrusion detection it might not be
desirable, especially in a real time implementation. XCS learns in online mode thus avoiding the need of multiple



passes through the training data. There is also traditional online machine learning approaches. We will show that
XCS can achieve equivalent accuracy to the traditional learning methods, thus making it naturally suitable for ID
domain.

Some of the work mentioned above show promise for better or similar accuracy in the intrusion detection domain
using GA [2], [7], [4]. However, to the best of our knowledge, this is the first attempt to apply a genetic based
learning classifier system on this domain on that scale of data size.

III. XCS OVERVIEW

XCS is a rule-based system, where each rule represents a partial solution to the problem. The typical goal
of XCS is to evolve thePopulationof rules to represent a complete solution to the target problem. XCS relies
on reinforcement learning (RL) to evaluate the rules in thePopulation and GA to explore the search space by
introducing new rules into the system.

XCS is designed for both single-step (immediate rewards) or multi-steps (delay rewards) environments, but in
the scope of classification, a single-step environment is considered.

A rule in XCS is a macro–classifier, which contains a distinct combination of theCondition partor body of the
rule andClass partor decision of the rule in thePopulation. Whenever a new rule is introduced, thePopulation
is scanned to check if the new classifier already exists. If not, the new rule is added to thePopulation. Otherwise,
the number of actual copies of the existing rule is incremented by one.

During reinforcement learning process, the system receives a reward from the environment for each output
reflecting how good a solution is. Several rules, which match the environment’s input, can participate in the process
of deciding a final solution. Theaction set1 [A] is then formed of the rules participated in the decision-making
process.Fitnessof these rules are re-estimated based on the accuracy of the prediction against the actual reward
received from the environment.Experienceof a rule is considered as the number of time it has been contributed
to the system’s decision or participated in theaction set.

GA in XCS is responsible for introducing a new rule into the population. During the selection process, two parents
from the action set[A] are selected with probability proportional to their fitness. Two offspring are generated by
reproducing, crossing–over, and mutating the parents. Parents continue to stay in the population competing with
their offsprings. If the population size is less than a certain number, offsprings are inserted into the population;
otherwise, two of the most inaccurate classifiers are deleted from the population before the offspring can be inserted.

Following is a very simple description of XCS working:
1) Receive an instance from the environment
2) Scan through thePopulationset for rules which match the input instance
3) IF Populationset is empty OR no matching rules are found from the previous step

a) Create random rules but match the input instance for each possible action
b) Initialize parameters to default values for the rules
c) Insert the rules into thePopulationset

4) Form amatch setof all matching rules
5) Send the action of rules in thematch setwith highest prediction value to the environment
6) Form anaction setof all rules advocating to the same output action in thematch set

a) Update parameters of all rules in theaction setbased on the reward received from the environment
b) Invoke GA on theaction set

1The action setis the subset of thematch setused to give the system response (class)



TABLE I

CATEGORIES OF DATA INSTANCES AND THEIR PROPORTION IN TRAINING AND TESTING SETS OFKDD DATASET

Category % in training data % in testing data Example
NORMAL 75.6111 19.4815 Normal

DOS - Denial Of Service 1.2893 73.9008 SYN flood, Smurf
PROBE 23.0017 1.3394 IP sweep, Port scans

U2R - User to Root 0.0048 0.0733 Buffer overflow
R2L - Remote to Local 0.0929 5.2050 Password guessing

7) Repeat from 2 for every new instance

IV. EXPERIMENTAL SETUP

We use the dataset provided for the 1999 KDD Cup which is developed on the dataset used for 1998 Intrusion
Detection Evaluation (IDEval) program organized by MIT Lincoln Labs in coordination with DARPA and AFRL
2 [11]. During MIT Lincoln Lab IDEval program, seven weeks of raw data containing simulated attacks and
background traffic was provided along with the audit logs collected at different hosts of the simulated network for
training IDSs. Trained IDSs were then evaluated on two weeks of test data containing new type of attacks in addition
to the attacks in the training dataset. Table 1 shows the categories and their proportion in training and testing datasets.

Data was pre-processed in a similar manner as described in [14]. Different attack types are mapped to four
categories from 1 to 4 with Normal class mapped to 0. All symbolic attributes such as protocol type and service
were also mapped to an integer value from 1 to the maximum number of corresponding symbols. All continuous
attribute values were then scaled linearly from 0 to 1; very large values (source and destination bytes) were scaled
logarithmically.

We used the default parameters values used by Wilson [19] for XCS. All experiments presented are averaged
over 30 independent runs.

V. D ISCUSSION ANDRESULTS

A. The Traditional XCS

Table II presents the prediction accuracy of the conventional XCS on the KDD dataset. The table shows that
conventional XCS gets high accuracy on the R2L class, lower accuracy on class Normal and close to 0% accuracy
on all other classes.

TABLE II

MEAN AND STANDARD DEVIATION OF PREDICTION ACCURACY OFCONVENTIONAL XCS IN 30 RUNS

Class Prediction Accuracy
NORMAL 0.572± 0.250

DOS 0.000± 0.000
PROBE 0.000± 0.000

U2R 0.002± 0.005
R2L 0.637± 0.293

In the testing phase, XCS predicts the class for new testing instances based on the current knowledge. When
XCS confronts with an absolute unseen instance, several random but matching rules are created and inserted in
the Populationset. Traditional XCS applies exploration and exploitation alternatively for training and testing and

2Air Force Research Laboratories



therefore these new inserted rules are verified at some points later. In order for XCS to fit into the intrusion detection
domain, we decided to train the system at once and then explore the latest model on the test set. As the result,
rules inserted in the population at the testing phase have no chance to be verified. Thus they are not good enough
for using in system prediction. Therefore, the decision of unseen instances is then based on the default class, which
is R2L in this case.

The prediction accuracy of the Normal class is higher than other classes but it is still very low if we consider
the training samples comparing to other classes. There are 812,813 training instances for Normal class, which is
about 75% of the training set. Since the model is trained mostly on Normal class for a substantial time, we should
expect it to be able to at least correctly classify Normal class. As described before, several rules are created and
inserted in thePopulationset in response to unseen instances. Since the population is fixed in size, some rules are
deleted to make room for the new rules. The candidate rules being selected for deletion would likely belong to the
Normal class as the model would have a large portion of rules in this class due to the large number of training
samples. These rules are normally evaluated well in the training process. Hence, replacing them by several random
rules drives the system to work as a random search.

B. The Modified XCS

This sub-section points out several reasons for which the conventional XCS fails on large dataset in general and
the KDD dataset in particular. We also propose several ways to overcome each problem and in the end present the
result of our modified XCS.

1) The Mutation effect:XCS uses GAs to explore the search space with an attempt to evolve a population of
rules which represent a complete action-map of the problem space. The mutation operator in GA plays an important
role in searching since it helps to escape from local optima and creates opportunities for new rules to arise in new
areas of the search space.

Each rule has two components: the body and the predicted class. XCS uses macro-mutation, where it mutates
every attribute of a rule’s body and rule’s class at a certain rate. Mutating the body of a rule generalizes it beyond
its locally covered area. It is important to emphasize here that the mutation rate is usually small and mutation
can be seen as a local search operator. Hence, by changing one of the conditions in a rule, the rule is somehow
generalized to cover other areas of the search space in the neighborhood of the original rule.

XCS also mutates the predicted class. This is somehow less intuitive because: (1) if only the predicted class of
a rule is mutated, it will increase conflict within the rule set; and (2) if the condition component is also mutated, it
is more likely that by generalizing the rule to cover its immediate neighborhood, the class will remain unchanged.
Overall, we believe in many real life problems, allowing the rule to mutate the predicted class will cause harms to
the classifier most of the time. Hence, we decided to apply mutation only to the body of the rule. In so doing, we
still allow the system to explore a new area without disrupting the rule.

2) Allowing the Deletion operator to handle minority classes:The population of XCS is fixed, and the user
decides in advance an appropriate population size for the problem in hand. When a new rule is created (e.g. a
product of GA), it is inserted into the population. If the maximum allowed population size is exceeded, an old rule
needs to be deleted. Butz and Wilson [3] described the deletion procedure as choosing individuals (for deletion) by
roulette-wheel selection. The deletion vote of each rule is based on the size of theaction setand the fitness value
of each rule in the population. Moreover, if a rule has participated in the system decision-making for a sufficient
numbers of time and its fitness is significantly lower than the average fitness in the population, the vote to delete
it is increased further.



Testing XCS on the KDD dataset, we found out that the final population is dominated by rules for the Normal
class rather than abnormal classes (4 attack classes). This was because of the sample distribution in the KDD
dataset which has a high number of Normal instances constituting approximately 75% of total records. Thus the
system spends more time training instances of Normal class than any other class. Consequently, GA is more likely
to explore rules for predicting the Normal class and as a result ending up with a population having more number of
rules for the Normal class. Since these rules have high chance of getting evaluated more number of times than rules
for other classes, they become more accurate in predicting the reward received from the environment. Therefore,
their fitness is higher than any other rules (low fitness rules for the Normal class are eliminated early), which implies
that the rules for the Normal class have a much lower chance to be deleted compared to rules for other classes
with the current deletion scheme. This explains why rules of abnormal classes do not remain in the final population.

We decided to include the class distribution factor of the current population into consideration during the deletion
scheme. Before deleting a rule, we estimate a class distribution of the population based on the amount of instances
of each class the system received up to this point, the more rules predicting to a class in the population, the
higher the chance of their being eliminated. Hence, we maintain the diversity in the population despite the fact of
unbalanced sample distribution in the training set.

3) Distance Metric:As being mentioned in the previous section, in order to apply XCS to the KDD dataset, we
modified the traditional XCS by first training it on the training dataset, then using the obtained model to predict
the attacks in the test set.

Traditional XCS is trained and tested alternatively. In both cases, the covering technique is utilized if the system
fails in recognizing an input. In the modified model, we decided not to call the covering technique for unseen
instances in the testing phase. It is because the model does not learn in the testing phase and therefore doing it can
result in deleting useful rules and leaving the population with random rules.

We come up with a distance metric instead to choose rules which are close to the unseen input. The distance
is measured based on the Euclidean distance from the input to each rule in the population in all dimensions (41
attributes). We introduced a new parameter called DISTANCETHRESHOLD to decide when a rule can be called
close matchthe input. The rules with a Euclidean distance less than this threshold are considered toclose match
the input. The decision of the system is then based on voting between theseclose matchrules.

In order to make a compact and more precise population, we also decided to post process the final population
obtained from the training phase before using it for classification in the testing phase. In this process, we filter out
rules with no or lessexperience. It is believed that the moreexperiencea rule has, the more it was evaluated or
learned from the environment’s feedback, and therefore the more accurate it becomes. Remember the fitness of XCS
is based on the reward prediction (I), and therefore accuracy in this sense means predicting the reward received
from the environment. Normally, rules without evaluation by interacting with the environment might mislead the
decision of the system and therefore it is inefficient to keep these rules.

C. The Result of the Modified XCS

We have tested each of our modifications separately on the conventional XCS and obtained fairly improved
results. However, the results did not fully satisfy us. We then decided to put all modifications together and the
result is reported in this section.

Table III shows the prediction accuracy of the modified XCS for normal and attacks. It can be easily seen that
the modified XCS outperforms the conventional XCS in all classes except the R2L class. As explained in the
previous section, the high accuracy on R2L class is achieved due to default class for unseen instances. Therefore,
the prediction accuracy of the modified XCS is lower than the conventional XCS, but it is based on the system’s



TABLE III

MEAN AND STANDARD DEVIATION OF PREDICTION ACCURACY IN30 RUNS

Class Prediction Accuracy
NORMAL 0.957± 0.043

DOS 0.491± 0.229
PROBE 0.930± 0.144

U2R 0.085± 0.121
R2L 0.039± 0.022

experience not on the default value.

Hence, we proposed several improvements for XCS to deal with a large and bias dataset. The result shows that
the modified XCS has improved over the traditional XCS in all classes.

We have calculated the cpu time for running the original and modified XCS. During the initial training phase,
XCS was able to process 39,000 instances a minute while during the testing phase (no GA takes place), it was able
to process 46,800 instances a minute. There was no differences in the runtime between the original and modified
one. These calculations show the power of XCS and the potential to break the barrier to finally adopt evolutionary
techniques for real-life data mining problems.

VI. CONCLUSIONS

In this work we have explored the application of ELCS on a large dataset. We chose the domain of intrusion
detection which is becoming an increasingly important problem in computer security. This paper showed that
conventional XCS does not perform as well as it was expected to be in the intrusion detection domain. We
scrutinized the algorithm and identified several reasons for its inferior performance. We then modified XCS to
increase the detection accuracy by introducing heuristics like nearest neighbor. We update the rule population by
deleting the rules proportional to the class distribution seen by the system thus making sure that rules covering rare
classes are not deleted. The modified XCS performs considerably better than the original XCS.

Most intrusion detection systems implemented on actual computer systems to date are signature based which
have the limitations of missing novel attacks. On the other hand implementation of anomaly based systems is still
in its premature state with the limitations of producing high number of false alarms and a delay in the detection
of the actual attack due to processing time of anomaly detection system. As discussed XCS’ biggest advantage is
its ability to work in online mode, where it can update the model continuously based on the feedback from the
environment. The GA module in XCS evolves a population of accurate rules thus giving diversity and a better
chance of detecting unseen attacks. We were able to handle a traffic during the test phase up to 46,800 instances
a minute. This is a remarkable performance for an evolutionary-based system. Nevertheless, to use the system in
real life, we will have to increase the speed with an order of magnitude. There are a number of ways to do that.
One way is to implement XCS in a distributed mode where different module will cover certain types of attacks by
incorporating domain knowledge in the rule generation. This is a focus of our current on-going research in this area.

VII. A CKNOWLEDGEMENTS

Work reported in this paper was funded by the Australian Research Council Linkage grant number LP0453657
and University College Postgraduate Research Scholarship.

REFERENCES

[1] J. Bacardit and M. V. Butz.Data Mining in Learning Classifier Systems: Comparing XCS with GAssist. Illinois Genetic Algorithms
Laboratory, University of Illinois at Urbana-Champaign, June 2004. IlliGAL Report No. 2004030.



[2] E. Bernad́o, X. Llorà, and J. M. Garrell. XCS and GALE: a comparative study of two learning classifier systems with six other learning
algorithms on classification tasks. InProceedings of the 4th International Workshop on Learning Classifier Systems (IWLCS-2001),
pages 337–341, 2001.

[3] M. V. Butz and S. W. Wilson. An algorithmic description of XCS. InIWLCS ’00: Revised Papers from the Third International
Workshop on Advances in Learning Classifier Systems, pages 253–272. Springer-Verlag, 2001.

[4] A. Chittur. Model generation for an intrusion detection system using genetic algorithms. High school honors thesis, NY Ossining,
2002.

[5] P. W. Dixon, D. Corne, and M. J. Oates. A preliminary investigation of modified XCS as a generic data mining tool. InAdvances in
Learning Classifier Systems: 4th International Workshop, IWLCS, pages 133–150. Berlin Heidelberg: Springer-Verlag, 2001.

[6] G. Giacinto, F. Roli, and L. Didaci. A modular multiple classifier system for the detection of intrusions in computer networks. In
Multiple Classifier Systems, pages 346–355, 2003.

[7] J. Gomez and D. Dasgupta. Evolving fuzzy classifiers for intrusion detection. In2002 IEEE Workshop on Information Assurance, June
2002.

[8] S. Hettich and S. D. Bay. The uci kdd archive. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, 1999.
[9] J. H. Holland. Escaping Brittleness: The Possibilities of General-Purpose Learning Algorithms Applied to Parallel Rule-Based Systems.

In Mitchell, Michalski, and Carbonell, editors,Machine Learning, an Artificial Intelligence Approach. Volume II, chapter 20, pages
593–623. Morgan Kaufmann, 1986.

[10] K. JR. Genetic Programming: On the Programming of Computers by Means of Natural Selection.The MIT Press, 1992.
[11] R. P. Lippmann and M. A. Zissman. 1998 darpa/afrl off-line intrusion detection evaluation. dataset available at

http://www.ll.mit.edu/IST/ideval/data/dataindex.html, 1998.
[12] M. M. Pillai, J. H. P. Eloff, and H. S. Venter. An approach to implement a network intrusion detection system using genetic algorithms.

In SAICSIT ’04:, pages 221–221, , Republic of South Africa, 2004. South African Institute for Computer Scientists and Information
Technologists.

[13] A. Ramesh and J. V. Mahesh. PNrule: A new framework for learning classifier models in data mining (a case-study in network intrusion
detection). In1st SIAM Conference on Data Mining., April 2001.

[14] M. Sabhnani and G. Serpen. Application of machine learning algorithms to kdd intrusion detection dataset within misuse detection
context. InMLMTA, pages 209–215, 2003.

[15] S. Saxon and A. Barry. XCS and the Monk’s problems. InLearning Classifier Systems, From Foundations to Applications, pages
223–242, London, UK, 2000. Springer-Verlag.

[16] C. Sinclair, L. Pierce, and S. Matzner. An application of machine learning to network intrusion detection. In15th Annual Computer
Security Applications Conference, 1999. (ACSAC ’99), pages 371 – 377, 6-10 Dec. 1999.

[17] S. W. Wilson. Classifier fitness based on accuracy.Evolutionary Computation, 3(2):149–175, 1995.
[18] S. W. Wilson. Generalization in the XCS classifier system. InGenetic Programming 1998: Proceedings of the Third Annual Conference,

pages 665–674, University of Wisconsin, Madison, Wisconsin, USA, 1998. Morgan Kaufmann.
[19] S. W. Wilson. Get real! XCS with continuous-valued inputs. In P. Lanzi, W. Stolzmann, and S. Wilson, editors,Learning Classifier

Systems, From Foundations to Applications, LNAI-1813, pages 209–219, Berlin, 2000.


