THE GROUP SORTING ALGORITHM — THE ALGORITH WHICH
PERFORMS NO MORE 49 COMPARISONS FOR 16 ITEMS.

Kirill Ivanov

Brest State Technical University, Moskowskaja 267, Brest 224017 Belarus, inbox2000@inbox.ru

February 28, 2006

Abstract: Today thereisa lot of sorting algorithms which people apply in dataprocess — to order
data. The sizes of processed data are huge so it’s very important to make this processing more
quicly. That’s why main goal of sorting algorithms to perform less comparison operations for
sorting data. Today the best algorithm performs 60 items for 16 items.

And | would like to propose the algorithm which performs from 32 to 49 comparisons for 16
items.

Group Sorting Algorithm

Let’ s touch to the Group Sort with the example on Figure 1. There is a sequence of 5
different integer items (from 1 to 5) at random order. The figure has comments of every
performing action. After the figure thereis an overview of which steps an iteration consists.

Iteration | Comparison Sorting Comments
number number sequence
i =1 5 3 2 4 1 I_t’ s how the sequence quks before (sorti _ng) the _15‘ itera
tion. The one isdivided into groups of 2' itemsin each.
1 1 5 I 3 The (1%) group is divided into 2 equal parts: left and right.
| Coparing : the 1% |eft part item and the 1% right part item.
3 5 1 _Since theright item i§ less the left one so the 1% one was
inserted before the |eft item. So the sequence looks like...
1 2 The (2™) group is divided into equal left and right parts.

Comparing items: 1% |eft part with the 1% right part.

1 It’'s the sequence after sorting the 2™ group where the right
item wasn't inserted before 2 (because 4isNOT less 2).

1 It's how the sequence looks before the 2™ iteration. The
sequence isdivided into groupsof 2' itemsin the group.

Comparing: the 1% item of the left part with the 1% item of
theright part. (2 < 3) so 2 will inserted to the |eft before 3.

Since the 1% right item is NOT less the left one (4 I< 3) so
the right item (4) will compared with the next left one (5).

Since our right item is less the next left one (4 < 5) so the
right one will be inserted before its greeter |eft opponent.

It's the sequence after sorting the 1% (lonely) group. We
sort the groups where the number of itemsis greeter 2111

It's how the sequence looks before the 3rd iteration. The
sequence is divided into groups of 2' itemsin the group.

(XN HCAN WA JaNg [oNY AN AN I AN

=

N

N
NINDINDINDINDIWIW W
WIWIWIWIW|Oo1|O01 O

Tthe operations for each group are the same The sort in
group completes when there is no the next item to compare

o1
|
=

It's the sequence after sorting the 1% (lonely) group. The
sorting completes when ALL(!) items are ONE group to sort.

I PN ENSEIGHGIDYI NI DY DS

AN
o1

1

N

Figure 1. The example of sorting with the group sort algorithm (with
commnets)

Each iteration consists of the next steps:
Stepl. Group division. _
The sequence is divided into groups of 2' (i — the number of iteration) items in each (if it is the
only one or last group of the sequence then the number of items in such group may be less — see
at the 6™ comparison on Figure 1). |

The number of itemsin the last group = the all items of the sequence mod 2

The number of items in the only one group = the all items of the sequence

Step2. Parts division. _
Each group is divided into 2 equal parts: ‘left’ and ‘right’. Each part consists of 2" items (if it is
the only one or last group of the sequence then the number of items in each part may be less —
see at the 6 comparison on Figure 1). Any more: if the number of itemsin such last group is not
greeter then 2' so it is needn’t to sort it (the 1-6™ comparisons on Figure 1 brightly show it). And
if it is sorted then the number of items is such group is divided into parts like:

left part = 2% right part = all the items of the group — left part.

Step3. Group Sort rule.
The sort of each group begins with the applying the rule to the 1% item of the left part
and to the 1% items of the right part. And it sounds like:

if the item of right part isless the item of the left part

then the right one insert before the |eft item.
If the rule antecedent (if part) is true then after performing the rule consequent (than
part) to apply this rule to the next item of the right part (and this item it's always the
first in his part) and the same item of the left part.
If the rule antecedent (if part) is false then to apply this rule to the same item of the
right part and the next item of the left part.
Sep 3 completes when it needs to apply the rule to the next item but the current itemis
the last (so thereisnot ‘the next item’ already)!

Step4. The end of the sort.
The sort of the sequence completes when the iteration has the only one group (see at the
6™ comparison on Figure 1!

