

THE GROUP SORTING ALGORITHM – THE ALGORITH WHICH
PERFORMS NO MORE 49 COMPARISONS FOR 16 ITEMS.

Kirill Ivanov

Brest State Technical University, Moskowskaja 267, Brest 224017 Belarus, inbox2000@inbox.ru

February 28, 2006

Abstract: Today there is a lot of sorting algorithms which people apply in dataprocess – to order
data. The sizes of processed data are huge so it’s very important to make this processing more
quicly. That’s why main goal of sorting algorithms to perform less comparison operations for
sorting data. Today the best algorithm performs 60 items for 16 items.
And I would like to propose the algorithm which performs from 32 to 49 comparisons for 16
items.

Group Sorting Algorithm

Let’s touch to the Group Sort with the example on Figure 1. There is a sequence of 5
different integer items (from 1 to 5) at random order. The figure has comments of every
performing action. After the figure there is an overview of which steps an iteration consists.

Iteration
number

Comparison

number
Sorting

sequence
Comments

i = 1 5

3

2

4

1

It’s how the sequence looks before (sorting) the 1st itera-
tion. The one is divided into groups of 2i items in each.

1 1 5

3

The (1st) group is divided into 2 equal parts: left and right.
Coparing : the 1st left part item and the 1st right part item.

3

5

2

4

1

Since the right item is less the left one so the 1st one was
inserted before the left item. So the sequence looks like...

1 2 2

4

The (2nd) group is divided into equal left and right parts.
Comparing items: 1st left part with the 1st right part.

3

5

2

4

1

It’s the sequence after sorting the 2nd group where the right
item wasn’t inserted before 2 (because 4 is NOT less 2).

i = 2 3

5

2

4

1

It’s how the sequence looks before the 2nd iteration. The
sequence is divided into groups of 2i items in the group.

2 3 3

5

2

4

Comparing: the 1st item of the left part with the 1st item of
the right part. (2 < 3) so 2 will inserted to the left before 3.

2 4 2

3

5

4

Since the 1st right item is NOT less the left one (4 !< 3) so
the right item (4) will compared with the next left one (5).

2 5 2

3

5

4

Since our right item is less the next left one (4 < 5) so the
right one will be inserted before its greeter left opponent.

2

3

4

5

It’s the sequence after sorting the 1st (lonely) group. We
sort the groups where the number of items is greeter 2i-1 !!!

i = 3 2

3

4

5

1

It’s how the sequence looks before the 3rd iteration. The
sequence is divided into groups of 2i items in the group.

3 6 2

3

4

5

1

Tthe operations for each group are the same! The sort in
group completes when there is no the next item to compare

1

2

3

4

5

It’s the sequence after sorting the 1st (lonely) group. The
sorting completes when ALL(!!) items are ONE group to sort.

Figure 1. The example of sorting with the group sort algorithm (with
commnets)

Each iteration consists of the next steps:
Step1. Group division.

The sequence is divided into groups of 2i (i – the number of iteration) items in each (if it is the
only one or last group of the sequence then the number of items in such group may be less – see
at the 6th comparison on Figure 1).

The number of items in the last group = the all items of the sequence mod 2i

 The number of items in the only one group = the all items of the sequence

Step2. Parts division.

Each group is divided into 2 equal parts: ‘left’ and ‘right’. Each part consists of 2i-1 items (if it is
the only one or last group of the sequence then the number of items in each part may be less –
see at the 6th comparison on Figure 1). Any more: if the number of items in such last group is not
greeter then 2i so it is needn’t to sort it (the 1-6th comparisons on Figure 1 brightly show it). And
if it is sorted then the number of items is such group is divided into parts like:

left part = 2i-1; right part = all the items of the group – left part.

Step3. Group Sort rule.

The sort of each group begins with the applying the rule to the 1st item of the left part
and to the 1st items of the right part. And it sounds like:

if the item of right part is less the item of the left part

 then the right one insert before the left item.

If the rule antecedent (if part) is true then after performing the rule consequent (than
part) to apply this rule to the next

item of the right part (and this item it’s always the
first in his part) and the same item of the left part.
If the rule antecedent (if part) is false

then to apply this rule to the same item of the
right part and the next item of the left part.
Step 3 completes when it needs to apply the rule to the next item

but the current item is
the last (so there is not ‘the next item’ already)!

Step4. The end of the sort.

The sort of the sequence completes when the iteration has the only one group (see at the
6th comparison on Figure 1!

