Visual Analytics

Detecting Flaws
and Intruders with

Visual Data
Analysis

Keeping computer and network systems
secure and stable requires collecting vast
amounts of data and analyzing how the systems per-
form dynamically. No matter how rigorous a system’s
design process, runtime factors can compromise per-
formance. Even network protocols with strong theo-
retical bases can suffer security flaws and instability
when deployed. Furthermore, few systems are
designed with perfect security. Intrusion detection and
response are thus important components of any com-
puter system.

In general, computer security aims to prevent, detect,
and respond to flaws and intrusions. Intrusion detection
playsa critical role in system security because prevention
methods, such as passwords and access control, often fail.
Robust systems thus require an intrusion-detection mech-
anism to identify unauthorized use of the system that
threatens resource availability, integrity, or confidential-
ity. Analyzing the detected intrusion also lets adminis-
trators take corrective or punitive action. Intrusion
detection typically involves examining user activity logs
for suspicious or anomalous behaviors that may indicate
an attack (see the “Data Mining and Visualization for Net-
work Security” sidebar on the next page).

The task of sifting through large amounts of data to
find useful information spawned the field of data min-
ing. Most data mining approaches are based on
machine-learning techniques, numerical analysis, or
statistical modeling. They use human interaction and
visualization only minimally. Such automatic methods
can miss some important features of the data. Incorpo-
rating human perception into the data mining process
through interactive visualization can help us better
understand the complex behaviors of computer network
systems. This article describes visual-analytics-based
solutions and outlines a visual exploration process for
log analysis. Three log-file analysis applications demon-
strate our approach’s effectiveness in discovering flaws
and intruders in network systems.

Visual analytics

This issue’s guest editors describe visual analytics as
a “contemporary and proven approach to combine the
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art of human intuition and the science of mathematical
deduction to directly perceive patterns and derive
knowledge and insight from them” (p. 20). Visual ana-
lytics helps users discover new and useful knowledge in
data, leading to improvements in system security and
stability. Over the past decade, various applications have
used visual analytics. Ahlberg and Shneiderman,’ for
example, promote visual-based methods to support
information seeking because hu-

mans recognize features in visual

displays and identify anomalies by By incorporating human

recalling related images. According

to Girardin,? humans perceive even ~ perception into the data-

unexpected features. We believe this

isvisual analytics’ biggestadvantage mining process, researchers

over primarily algorithmic data
mining methods.
Our work is based on the premise

that we can glean valuable knowl- missed by traditional

edge from large data sets—the

same premise behind knowledge automatic data mining

discovery. Most data mining meth-

ods use algorithms or statistical or ~ methods.
mathematical models, often adapt-

ed from machine-learning techniques. Although these
methods have successfully performed tasks such as
classification, regression, and clustering, each method
discovers only limited knowledge.

Because visual data mining differs in essence from
automated methods, visual methods can discover infor-
mation that complements the knowledge found by
more commonly used statistical approaches. This is par-
ticularly useful when users want to explore the data
only to learn about it—that is, they don’t know exactly
what they need to discover from the data. Many real-
world problems, including intrusion detection, fit into
this category.

Our visual analytics process is as follows. Starting
with a large data set (in our case a log file), we design an
appropriate visual representation and an intuitive inter-
action method with which the user explores the data.
The design of the visualization and interaction method
is critical. Good visual metaphors bring out interesting
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Visual Analytics

Data Mining and Visualization for Network Security

Security experts introduced data mining methods into intrusion detection when they
realized that signature-based methods were too rigid to discover novel attacks. These
intrusion-detection approaches use different data mining methods and analyze different
data. Schultz et al.," for example, use Naive Bayes algorithms to detect malicious
executables. Ghosh and Schwartzbard,? on the other hand, use neural networks on the
DARPA network connections data set.

Signature-based methods also require time-consuming human input. To solve this
problem, Lee et al.> use data-mining methods to learn rules to accurately capture
behavior from network connection and host session features.

Jiang et al.* present a pattern-extraction algorithm and a method to compare the
extracted patterns to find intra- and interpattern mismatches. Mahoney and Chan®
apply association rules (another data mining technique) to intrusion detection. The rich
data mining techniques for finding frequent sequences are also helpful for computer
security. Michael,® for example, uses suffix trees to find frequently occurring sequences
of system calls.

Much less work has applied visualization to computer security. Examples include
Erbacher et al.’s” use of glyphs to visualize intrusion-detection data and the Tudumi®
visualization system designed to monitor and audit computer logs to help detect
anomalous user activities.

Visualization-based data mining methods are also scarce. One example is PBC,’ a
visual classification tool. Because classification can be applied to intrusion detection, this
visualization tool is particularly relevant to computer and network security. Furthermore,
PBC successfully incorporates visualization and machine-learning techniques to improve
data mining.
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input. On the other hand, the
process uses human intelligence in
two ways:

m indesigning the visualization and
interaction techniques; and

m in using the interactive visualiza-
tion to discover, analyze, and
draw conclusions from the data.

Visual-based applications
and techniques

We’ve developed three visual-
based methods for detecting net-
work flaws and intrusions. All three
applications require appropriate
visualization tools and interaction
techniques. Because the nature of
the data, the task, and the desired
knowledge are all different, the visu-
al metaphors used in each of the
applications also differ. In fact, we
use different visualization tools in
the same application.

Anomalous origin autonomous
system changes

In the Internet, autonomous sys-
tems (ASs) control groups of hosts
with consecutive IP addresses. This
simplifies the packet routing prob-
lem to routing data between these
larger entities (see the “Border Gate-
way Protocol” sidebar).

To maintain network stability, the
AS associated with a group of IP
addresses (their origin AS) must
correspond to their true owner. Net-
work analysts study the dynamics of
origin AS changes (OASCs) to dis-
tinguish normal behavior from
faults or suspicious activity. Earlier
work presented a visual analysis
tool to address this problem.? Here,
we discuss an augmentation to the
browsing portion of the tool and its
application to a set of anomalous
OASCs.

Visual exploration of the OASC
data is a two-phase process. First,
the user browses a sequence of visu-
alizations summarizing the OASCs
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data features in a logical way. Applications can use dif-
ferent visual metaphors, and each can lead to different
discoveries, some of which will lead to a better under-
standing of the system. Other discoveries might reveal
system architecture flaws and weaknesses or detect
intruders.

There is a close collaboration between human and
computer in our visual analytics process. On one hand,
we use computations to process and project the data
onto the display and to transform the data based on user
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over time. If the user discovers an anomaly, the user can
drill down into the data to determine the anomaly type
and the ASs involved. In this step, the user is essential-
ly performing visual pattern matching, using the visual
system to separate normal from abnormal behavior. This
visual classification is based on the rendering of OASCs
for a given date.

Figure 1 (p. 30) demonstrates our rendering method.
We map each IP address to a pixel using a quadtree
decomposition, iteratively mapping pairs of bits from the



32-bit IP address. We map ASs along
the four edges of the display area,
and represent an OASC by a colored
line connecting the previous AS
owner to the new owner (O-type
events have no previous owner). The
color designates the type of change.
The original browsing tool suc-
cessfully separated normal from
abnormal behavior in the OASC data,
as Figure 2 shows. However, occlu-
sion occasionally masked some
events. To rectify this issue, we devel-
oped a new browser that displays one
image for each change type and one
image for all changes together. It also
shows the previous and next date’s
events. A focus + context radial lay-
out* manages screen real estate,
arranging the images in a circle
around a larger focal image, as Fig-
ure 3 shows. The new layout solves
the old browser’s line-occlusion prob-
lem by decomposing event types
while retaining the same mode of
rapid, iterative exploration. The user
can select the previous or next date’s
image or one of the eight event type
images as the new focus. To assist in
the analysis, we color the circle’s sec-
tors according to event type, using
white for the combination image.
We can use the new event brows-
er in several ways. Our previous
study, for example, noted several
sequential CSM/CMS events (a CSM
event is a C-type—that is, when an
AS claims ownership of another AS’s
prefix—change from a single origin
AS to multiple ASs; a CMS event is a
C-type change from multiple ASs to
a single origin AS; see the “Border
Gateway Protocol” sidebar for a
detailed explanation of these OASC
event types), indicating a misconfig-
ured router and its subsequent cor-
rection. To determine how common
these paired events are, a user could
select either the CSM or CMS event
and then explore the data (as in Fig-
ure 3). Comparing the previous and
next day’s images for the given type
(at the 5 or 7 o’clock positions
around the circle) against the image
for its complementary type for the
current date (at either 10 or 11
o’clock) reveals paired events. This
analysis shows that the events are
common, occurring almost once a
month over the 480 days sampled.

Border Gateway Protocol

The Internet resembles a set of clusters, with each cluster representing an
organization’s network. These autonomous systems (ASs) manage traffic within AS
clusters. To communicate between systems, routers on an AS edge use the Border
Gateway Protocol (BGP).

BGP assigns each AS a unique identifier and set of IP prefixes. These prefixes identify
which subset of IP addresses correspond to hosts in the AS. An IP prefix consists of an
IP address and a mask—for example, the IP prefix 128.120.0.0/16 represents all IP
addresses sharing the same first 16 bits 128.120. Using BGP, edge routers
communicate network reachability information to transmit packets. These BGP routes
consist of the destination IP prefix and a list of the ASs through which data will be
routed to reach the destination. The BGP route 128.120.0.0/16: (7, 23, 92), for
example, means that packets for the IP prefix 128.120.0.0/16 must sequentially pass
through AS 7 and AS 23 before reaching their destination system (AS 92). The AS
responsible for an IP prefix is known as the prefix’s origin AS.

We visualize two aspects of BGP routing information in the article’s main text:

m Origin AS changes (OASCs)—changes due to IP prefix ownership changes, valid net-
work operation, network faults, or attacks.
m BGP route changes—changes of the BGP route to a particular IP prefix.

An OASC event consists of the IP prefix affected, a list of ASs associated with the
change (generally the prefix’s new origin AS), the change’s date, and the change
type. A change can narrow the mask of addresses an AS already owns (a B type) or
another AS owns (an H type), claim ownership of another AS’s prefix (C type), or
claim ownership of an unowned prefix (O type). Further classification of the last two
changes depends on whether a single AS or multiple ASs claim prefix ownership.
Because usually only one AS should claim ownership, multiple origin AS conflicts may
indicate faults or attacks. Some OASCs are complementary: A CMS event (a C-type
change from multiple ASs to a single origin AS) could correct a CSM event (a C-type
change from a single AS to multiple origin ASs). Eight OASC types (OS, OM, CSM,
CMS, CMM, CSS, H, and B) exist. Our tool visualizes them all.

Our second visualization examines BGP route dynamics. As a host’s availability
changes, an AS along a route or the origin AS could become unavailable. Whenever
routing information changes, edge routers exchange BGP announcements. An
announcement is either a new BGP route or a withdrawal event such as
128.120.0.0/16: WD (in this example, the IP prefix 128.120.0.0/16 has become
unavailable). A sequence of BGP announcements reveals Internet routing behavior.

Routing instabilities can seriously disrupt network traffic. Previous studies have
identified three forms of instability events: slow convergence to a stable path,?3
oscillations between paths,* and repeats of the same path.* The visualization
discussed in this work makes it more convenient to analyze these events.

This article uses routing data from the Oregon Route Views server
(http://www.antc.uoregon.edu/route-views). The data consists of BGP events from
480 days in 2000 and 2001.
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Asa further example, a user browsing the datacould  Figure 4 shows. The browser shows several coordinat-

note some interesting behavior on 31 March 2001, as

ed CMS (light yellow), CMM (red; a CMM is a C-type
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Autonomous
system
(AS)

IP address

(a) (b)

1 Origin autonomous system change (OASC) visualization. (a) A line con-
necting the affected IP prefix and ASs represents the event. (b) Actual data
with color denoting event type.

(a) (b)

2 OASCs from three different dates: (a and b) normal OASCs, (c) the high
concentration of lines from the same ASs indicates an anomaly.

change from multiple ASs to a multiple origin AS), and
H (blue) events. The image for 1 April (light gray)
shows a similar pattern consisting of different events:
CMS, CSM (cyan), and CSS (green; a CSS is a C-type
change from a single AS to another single origin AS).
This coordination is difficult to see in the combined
image (center) and might have been missed without
the other images. With the browser, the user could step
through the subsequent dates to determine the anom-
aly’s length. The behavior is strongest in the first four
days following the 31 March event, with smaller cor-

Overlapping activity

5 Further investigation into the 31 March anomaly. The two clusters
involve AS 703, one of the ASs at fault.

30 September/October 2004

20000129 20000131

20000130

3 The new OASC browser. We arrange the eight
change types radially around the center; another image
shows all events and images for the neighboring dates.

20010401

2001 03}‘

4 Correlated anomalous OASCs on 31 March 2001.

20010331

rections continuing after that. To determine which ASs
were involved, we use the drill-down module described
in our previous work.?

Figure 5 is a 3D representation of events using the
IP address quadtree as its base, AS identifiers for
height, and colored cubes for events. It shows two clus-
ters of overlapping events, meaning that several
OASC s are associated with the same IP address. Both
clusters are in the same vertical plane, suggesting the
same AS (AS 703) was involved. After using the analy-
sis tool, the user concludes that AS 703 and AS 4740
claim different portions of AS 17561’s addresses (the
H events), causing conflicting correcting events over
the rest of that day and the following days (the other
events). It’s easy for a user to notice correlated visual
patterns without training; a fully machine-based
method requires a significant number of ad hoc event
signatures to do the same.



Routing instability

The Internet is a complex distributed system running
on a large number of nodes using various protocols.
Studying the Internet’s operational behavior is funda-
mental to increasing its stability, robustness, and secu-
rity. In the past, routing analysts have monitored and
examined network behavior mainly by browsing the raw
data or looking at simple plots of statistical analysis
results. Our suite of visualization techniques improves
understanding of Internet routing data. Using our sys-
tem, we detected and analyzed a problem in the rout-
ing to Google’s IP address.

We first observed the problem from the event shrubs®
module, which shows each instability event as a circle on
atime line. We colored segments of the circle according
to the instability type matching the event, such as oscil-
lation and repeat. The number of Border Gateway Pro-
tocol (BGP) update messages included in the event
determines the circle’s size. Obviously, the more mes-
sages received in a short period of time, the more unsta-
ble routing is, and large circles immediately draw the
user’s attention. The shrubs’ height has no inherent
meaning; we use different heights simply to prevent
shrubs from occluding each other. However, the pres-
ence of tall shrubs indicates that many different insta-
bility events occur around that period of time, thus
providing an additional visual cue.

Figure 6 shows the event shrubs visualization of the
routing instability events of the Google IP address for
the year 2001. You can see that a severe instability event
occurred around July of that year.

Using the visualization system’s browsing feature, the
user quickly locates the period of instability and looks
at the text visualization of the update messages, as Fig-
ure 7 shows.

To investigate further, the user looks at the BGP update
messages from a different peer. Each peer connected to
the node from which we’re collecting the data has a path
to the destination IP address, in this case Google. The visu-
al displays from Figures 6 and 7 show the messages from
peer AS 2914. The user now looks at the messages from
another peer, AS 3333. AS 3333 messages show no cor-
responding instability in this same time period; rather,
they show a long withdraw message, meaning that no
pathisavailable to the IP address. As Figure 8 (next page)
shows, we can visually compare the messages from the
two peers by telling the visualization program to display
them side by side. The instability probably occurred
because the Google server was experiencing some major
problems at the time and hence working sporadically. This
caused frequent availability changes, leading to many BGP
announcements and withdrawals. Most likely, route
dampening caused an AS along the path from AS 3333 to
filter these messages.

Intrusion detection

Users can examine user activity logs, system calls, or
network connections to detect most intruders in a com-
puter network system. We let users interactively explore
logs so that they can detect intruders to computer net-
work systems.

We treat intrusion detection as an event-classifica-
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6 Event shrubs visualization of the route path to the Google IP address.
One instance of severe instability occurred around July 2001.
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tion problem. In classification problems, objects are
defined by their attribute values in a multidimension-
al space; furthermore, each object belongs to one class
among a set of classes. The task is to predict, for each
object whose class is unknown, the class the object
belongs to. Users typically train classification systems
using a set of data with known attribute values and
classes. After building a model based on the training,
the system uses it to assign classes to unclassified
objects. A classification-based intrusion-detection sys-
tem (IDS) therefore takes network connection samples
labeled “attack” or “normal” and uses them to construct
a model to which it can compare future connections,
and thus detect attacks. We use visualization not only
for classification, but also for anomaly detection and
cluster analysis.
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7 Visualization
of the update
messages for
Peer AS-2914
during the
Google instabili-
ty event. Each
update message
is written hori-
zontally across,
with a line
drawn to the
vertical time
line to indicate
when the mes-
sage was
received.
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8 Visualizing update messages from peers AS 2914 and 3333 shows that
damping along the AS path from AS 3333 to the origin AS filters out the
instability. Visual analysis discovered the lack of damping from AS 2914.

9 PaintingClass
decision tree
visualization
layout. We
number each
projection by its
distance to the
root—for exam-
ple, the current
projection has
three regions,
and each has
been reproject-
ed to a child
projection.
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Visual classification. We use PaintingClass,® a
user-directed visual-classification program, to display
data. PaintingClass uses decision trees, a popular and
well-known classification approach. A decision tree clas-
sifier constructs a decision tree by recursively parti-
tioning the data set into disjoint subsets. It then assigns
one class to each leaf of the decision tree.

Interactive decision tree construction starts by visual-
izing the training set, which consists of connections with
known attribute values and classes. In the decision tree’s
root, PaintingClass projects and displays every object in
the training set visually. Each nonterminal node in the
decision tree corresponds to a projection—that is, a map-
ping from multidimensional space to 2D display. We use
the star coordinates’ projection method, in which the
position of a point representing a data object is given by

n n
§ ,an1’§ Y
i=0 =0
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where g; refers to the data object’s attribute value in
dimension i, and (x;, y;) are the screen coordinates of
the endpoint of axis i. In other words, a point’s position
is influenced by its attribute value in each dimension
and that dimension’s user-defined axis position. By mov-
ing the axes in a star coordinates projection, the user
creates a projection that separates the data objects
belonging to different classes. The projection therefore
determines each data object’s position and assigns it
color according to its class.

The user partitions each projection into regions by
painting (to paint, the user left-clicks and drags the
mouse cursor over the screen), which colors the cur-
sor’s path with the selected color. The user can repro-
ject any region in the projection to form a new
node—that is, the user creates a projection for the new
node in a way that separates the data objects in the
region leading to this node.

The user can partition each new node’s associated
projection into regions. The user recursively creates new
projections (nodes) until he or she has constructed a sat-
isfactory decision tree. Each projection thus corresponds
to a nonterminal node in the decision tree, and each
unprojected region corresponds to a terminal node.
Thus, for each nonroot node, PaintingClass projects and
displays only the objects projecting onto the chain of
regions leading to the node. PaintingClass displays the
decision tree according to the schematic in Figure 9, let-
ting the user switch the focus to different projections,
move the star coordinates axes, paint regions, and build
the decision tree.

In the classification step, PaintingClass projects each
object to be classified, starting from the decision tree’s
root and following the region-projection edges to an
unprojected region, which is a terminal node (or leaf) of
the decision tree. PaintingClass predicts the class with
the most training set objects projecting to this terminal
region for the object.

We applied PaintingClass to the Knowledge Discov-
ery and Data (KDD) Mining Cup 1999 intrusion-detec-
tion data set. Each object in the data set is a network
connection. Each object is defined in 41D space, and
belongs to one of five classes: normal, probe, denial-of-
service (DOS), unauthorized access to root (U2R), and
unauthorized access from remote machine (R2L).
Objects in the normal class are harmless connections,
whereas objects in the other four classes are different
types of attacks. The training set contains 494,021 con-
nections; the text data includes 311,029. The KDD Cup
1999 data set is the only large-scale, publicly available
data for evaluating intrusion-detection tools. A detailed
description of the data set is available at http://kdd.
ics.uci.edu/databases/kddcup99/task.html.

We visualize the KDD Cup training set and interac-
tively construct a visual decision tree by painting regions
and specifying projections. We use this decision tree to
classify the test data, omitting the class labels.

Anomaly detection. Anomaly detection comple-
ments standard decision tree classification. Given exam-
ples of only normal activity, an anomaly detector creates
amodel of normal activity characteristics. When it sub-



sequently receives unlabeled activity, the anomaly
detector compares the data against the normal pattern
and flags the new activity as an anomaly if it deviates
from that pattern. The advantage of anomaly detection
lies in discovering previously unknown attacks.

To use the visual IDS for anomaly detection, we dis-
play the connections to be classified with the training
set, coloring objects in the training set according to their
class, and color data to be classified gray. For testing pur-
poses, we color objects in the test set gray, as we would
if they were new connections to be classified as intru-
sion or normal. We don’t want to reveal the test set
objects’ class labels because we’re simulating the visu-
alization of as yet unclassified connections.

Displaying test set objects (with class labels omitted)
with training set objects lets the user identify regions
where the density distribution in the two sets differs. In
particular, the user looks for regions in which the train-
ing set has a low density of normal data but the test set
has a high-density cluster. We consider such a region an
anomaly because the density distribution deviates from
normal. Figure 10 is an example. Using PaintingClass, the
user paints and labels the region as an attack class based
on neighborhood information, and predicts all test objects
projecting to the region belong to the labeled class.

Accuracy. We measured the accuracy of our visual
IDS using the KDD Cup 1999 test data. Using the visual
IDS, the user first visualized only the training data and
built a decision tree classifier (this corresponds to using
PaintingClass purely as a visual classification tool). Next,
the user visualized test data (with class labels omitted)
with training data and constructed a new decision tree
(this corresponds to using PaintingClass as both a clas-
sifier and an anomaly detector).

A description of the contest’s scoring system along
with the contest results are available at http://www.cs.
ucsd.edu/users/elkan/clresults.html. Table 1 shows the
cost score of the top five contest entries. Visualizing only
the training data using the visual IDS incurred a cost of
0.2551, placing it in the middle of the 24 entries. Incor-
porating anomaly detection into the visual IDS reduced
the cost to 0.2087. This cost is significantly lower than
that of the contest’s winning entry, considering that the
threshold for statistical significance used in judging the
contest is 0.0060. The improvement of our present
results over those of actual participants in a past contest
certainly doesn’t indicate our method’s superiority. Our
intention is merely to show that visual classification and
anomaly detection work.

From patterns to knowledge. Perhaps the most
important contribution of visual intrusion detection is
that it reveals new patterns during interactive use of the
visualization system.

We created an interactive visual mechanism to let users
analyze such patterns in higher-dimensional space. After
painting on an observed pattern, the user specifies the
class to be examined and clicks “correlate.” The program
lists all objects that both belong to the specified class and
are projecting to the painted region. From this list, the
program finds the minimum and maximum values of the

Anomalous unlabeled objects in the test set

Distribution of normal objects in training set

10 Distribution of normal objects (purple points) in a
training set. Gray-scale objects belong to the unclassi-
fied test set. Two clusters of test set data are highlight-
ed. The absence of normal data in the training sets in

Table 1. Cost score of visual intrusion-detection system compared

with the top five KDD Cup 1999 contest entries.

System Score
Visual classification and anomaly detection 0.2087
KDD Cup first place 0.2331
KDD Cup second place 0.2356
KDD Cup third place 0.2367
KDD Cup fourth place 0.2411
KDD Cup fifth place 0.2414

screen’sx andy coordinates. The screen coordinate
is the coordinate with the larger range (maximum to min-
imum). The program displays a table of plots, one plot
for each dimension in the original attribute space. In each
plot, an object is displayed as a point whose attribute
value in that dimension determines itsy coordinate. The
screen coordinate determines the x-coordinate.

Figure 11 (next page) shows an L-shaped cluster of
DOS connections and a table of plots. Most points fol-
low a trend in each plot. For example, in some dimen-
sions, the object’s attribute values are constant; in
others, they vary linearly with the screen coordi-
nate. The user thus hypothesizes that the trends
observed describe a cluster, and that the anomalous
points don’t belong to the cluster. The user paints on
these points and clicks “remove.” The system removes
the objects represented by these points, and labels the
remaining points as belonging to this cluster.

This process lets us define clusters of attack types pre-
cisely. Each constant dimension d; results in an equation
di=c. Each pair of linearly varying dimensions d; and d;
resultsin an equationd;=k xd;+c. For example, we can
define the L-shaped DOS cluster in Figure 11 as a 25D
cluster. It contains the entire L-shaped cluster, consist-
ing of 280,795 objects with 3,649 false positives. (A false
positive is a non-DOS object classified as a DOS object.)

If we consider additional dimensions, such as srv-
count and count, the two parts of the L shape become
separate clusters, as painting the entire L shape and
viewing each dimension in the matrix of plots reveals.
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(b) Dimension where
most objects have
constant value of 0.0
except for some
outliers (circled)

Dimension where all Dimension where all
objects have constant objects have constant
value of 0.0 value of 1.0

Dimension where all
objects have attribute
values that vary linearly
with screen coordinate

(9
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(d)

11 Visual cluster definition process (DOS attack connections are blue, all
other connections are gray): (a) User notices an L-shaped cluster of DOS
attacks and paints over it. (b) The program makes a matrix of plots of all
DOS attacks in the painted region. (c) User gets rid of outliers. (d) Cluster is
defined.
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The lower-dimensional description is therefore a gen-
eralization of the two higher-dimensional clusters, and
represents characteristics the two clusters share. We can
thus use this signature to detect new variants of this
attack type. We also found lower-dimensional general-
izations of other clusters.

Future work

Although we made some key discoveries using visu-
alization, other useful information in the data sets is yet
to be uncovered. For example, many OASC events
remain to be analyzed. Although our visual representa-
tions have revealed some patterns, additional algorith-
mic filtering and processing may reveal other patterns,
such as the correlation between days or temporal pat-
terns pertaining to specific ASs or IP prefixes. Such pat-
terns, if they exist, aren’t easily observable using current
visualization techniques. Similarly, we can apply
machine-learning algorithms to routing instability
analysis to generate better instability definitions, or to
intrusion detection to help the user find useful projec-
tions. We are thus working to efficiently combine inter-
active visual methods with algorithmic methods to make
further analyses and discoveries.

We can analyze the cluster definitions described in
the previous section to extract attack type characteris-
tics. We're also looking at real-time BGP monitoring and
real-time deployment of the visual IDS.

Our intention isn’t to replace conventional machine-
learning methods with visual data mining. Just as dif-
ferent machine-learning methods can complement one
another in discovering knowledge, adding visualization
to the suite of data mining methods can help discover
missed patterns. The full power of visual analytics for
log-file analysis thus remains to be exploited. |
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