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Abstract— We present a novel signed Gain in Information
(GI) measure for quantitative evaluation of gain or loss in in-
formation due to dimension reduction using feature extrac-
tion in misuse detection applications. GI is defined in terms
of Sensitivity Mismatch Measure (®) and Specificity Mis-
match Measure (©). ‘@’ quantifies information gain or loss
in feature-extracted data as the change in detection accu-
racy of a misuse detection system when reduced data is used
instead of untransformed original data. Similarly, ‘©’ quan-
tifies information gain or loss as the change in the number of
false alarms generated by a misuse detection system when
feature-extracted data is used instead of original data. We
present two neural network methods for feature extraction:
(1) NNPCA and (2) NLCA for reducing the 41-dimensional
KDD Cup 1999 data. We compare our methods with prin-
cipal component analysis (PCA). Our results show that the
NLCA method reduces the test data to approximately 30%
of its original size while maintaining a GI comparable to
that of PCA and the NNPCA method reduces the test data
to approximately 50% with GI measure greater than that of
PCA.

Keywords— Feature selection, real-time misuse intrusion
detection, network security, component analysis, sensitivity
mismatch measure, specificity mismatch measure.

I. INTRODUCTION

Intrusion detection Systems (IDS) [1] have become popu-
lar tools for identifying anomalous and malicious activities
in computer systems and networks. There are two types of
IDS: (1) Misuse Detection Systems [2] that detect abnormal
patterns in system usage by comparing them with known
signature patterns and (2) Anomaly Detection Systems [3]
that construct profiles of normal behavior and flag all de-
viations from estimated profiles as intrusions. Recently, a
new class of IDS employing data mining techniques called
Intrusion Detection using Data Mining (IDDM) [4] have
gained popularity because of their abilities to automatically
extract attack signatures, detect unseen anomalies, main-
tain high detection accuracies with low false alarm rates,
and scale on large distributed datasets. A considerable sub-
set of IDDMs [5], [6], [7] perceive misuse intrusion detection
as a data partitioning problem in which data samples are
classified as attacks or a non-attack. Such classifier based
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approaches employ wide range of machine learning tech-
niques like neural networks [6], support vector machines
[8], fuzzy logic [9], and others [10], [11] to identify intru-
sions. A detrimental aspect of deploying these techniques
for real-time intrusion detection applications is their high
time and space complexities, essentially due to the large
dimensionality of the input feature space in which these
techniques operate. The time and space complexities of
most classifiers are exponential functions of their input vec-
tor size [12]. Moreover, demand for the number of samples
for training the classifier grows exponentially with the di-
mension of the feature space. This limitation is called the
‘curse of dimensionality’. Reducing feature space by ex-
tracting features that truly contribute to classification cuts
preprocessing costs and minimizes the effects of the ‘peak-
ing phenomenon’ in classification [13], thereby improving
the overall performance of classifier based intrusion detec-
tion systems.

In this paper we present two neural network methods
(NNPCA and NLCA) to reduce the dimensionality of TCP
network traffic through feature extraction. We compare
our methods with the traditional matrix method of Princi-
pal Component Analysis (PCA) and show that the NLCA
and NNPCA perform better than PCA in eliminating re-
dundant information and retaining essential causal and dy-
namic traits in the data that significantly contribute to de-
cision making in classifier based misuse intrusion detection
applications. To experimentally verify the effects of feature
extraction on the detection accuracy and false positive rate
of a classifier based IDS, we implement misuse detection
systems using two classifiers: (1) the Non-linear classifier
(NC), and (2) the CART decision tree classifier (DC) for
machine discrimination of normal and intrusive network
traffic. For our experiments we use the KDD Cup 1999
intrusion detection dataset prepared by Lee et al. [5]. The
dataset contains 41 features representing selected measure-
ments of normal and intrusive TCP sessions. Each labeled
TCP session is either normal or a member of one of the 22
attack classes in the dataset. We report the performance
of the classifiers in recognizing TCP session classes in four
datasets: (1) the original KDD Cup 1999 dataset with 41
features, (2) the PCA reduced dataset, and (3) the NNPCA
reduced dataset, and (4) the NLCA reduced dataset.



Let ‘d’ be the original dimension of the feature space
to be reduced. The problem of feature extraction can be
formally stated as finding a function ¥ such that: (1)
U R? — RF where k < d is the dimension of the re-
duced feature subspace and (2) ¥ maximizes the Gain in
Information (GI) measure. We define GI due to dimen-
sion reduction as the sum of Sensitivity Mismatch Mea-
sure (®) and Specificity Mismatch Measure (©). Let D
denote the d-dimensional full data and K denote the k-
dimensional reduced data obtained by ¥ (D) using a re-
duction method M. The Sensitivity Mismatch Measure ®
gives the gain or loss of information in K, due to which
the detection accuracy of an intrusion detection classi-
fier increases or decreases when K is used as an alterna-
tive to D. The Sensitivity Mismatch Measure is given as
D¢, = pe (K) — po (D), where pue(.) is the detection ac-
curacy of classifier C' on the data. If ®¢,, > 0, the reduced
data ‘K’ is said to have gained information with classifier
C. If ®¢,, <0, the reduced data is said to have lost infor-
mation. If ®¢,, = 0, K is said to have retained informa-
tion. Similarly, the Specificity Mismatch Measure © gives
the gain or loss of information in K, due to which the false
positive rate of an intrusion detection classifier increases
or decreases when K is used instead of D. The Specificity
Mismatch Measure is given as O¢,, = vo (D) — ve (K),
where v¢,,(.) is the false positive rate of classifier C' on
the data. If the value of ©¢,, > 0, the data reduced by
method M is said to have gained information with classi-
fier C. If ©¢,, < 0, K is said to have lost information. If
O¢,, =0, K is said to have retained information.

In addition to fast and effective reduction of dimen-
sions in the feature space, feature extraction methods for
real-time intrusion detection applications should consider
changes in the behavior of background traffic workloads
and should accommodate new features that may be discov-
ered in near future. In this context, we introduce two prop-
erties essential to feature extraction for intrusion detection:
(1) the Adaptive Property and (2) the Scaling Property.
The first property refers to the ability of the method to
adapt to variations in background network or host traffic
workloads. This property essentially gives the extraction
method the ability to handle burstiness (high variations in
background traffic over varying time scales) [14], [15] and
non-stationarity [16] inherent in internet traffic. This prop-
erty also delays the overfitting-like phenomenon in which
the approximation function ¥ no longer qualifies (over a
period of time) to transform the data entering the intru-
sion detection classifier. Thus, the adaptive property con-
tributes to the stability of the subsequent classification pro-
cess. The second property refers to the ability to incorpo-
rate newly identified features while maintaining minimum
retraining costs. PCA [17] is an efficient method to reduce
dimensionality by providing a linear map of d-dimensional
feature space to a reduced k-dimensional feature space.
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Fig. 1. Four stages of classifier based IDS architecture and their

implementation details. The work in this paper contributes to
the third stage using PCA, NNPCA, and NLCA methods and
fourth stage using NC and DC.

However, PCA has high time complexity (which grows
atleast quadratically with dimensions of data) and lacks
the properties of adaptivity and scaling that are essential
to real-time intrusion detection applications. Alternatively,
the neural network approach to dimension reduction using
NNPCA and NLCA give instantaneous response to input,
adapt to new input patterns and scale to incorporate new
features with minimal retraining. To experimentally ver-
ify the effects of feature extraction by PCA, NNPCA, and
NLCA on the detection accuracy and false positive rate
of a subsequent classification process, we implement two
classifiers. The first classifier NC was chosen as a repre-
sentative of conventional distance based statistical pattern
recognition capable of yielding non-linear decision bound-
aries. The second classifier DC was chosen as a represen-
tative of nonmetric methods to classification. The results
of classifying the original datasets and its low-dimensional
counterparts obtained by PCA, NNPCA and NLCA show
that the classifiers achieve equivalent and (in some cases)
better detection accuracies and false positives using the re-
duced datasets.

The four stages of a classifier based intrusion detec-
tion system are illustrated in Figure 1. The first stage
involves measurement of traffic workloads using host and
network sensors. Sensors are software programs (e.g., snif-
fers capturing packets and software utilities monitoring sys-
tem calls and cpu cycles) that monitor selected character-
istics of the host/network traffic. Traffic measurement was
done under DARPA Intrusion Detection Evaluation Pro-
gram [18]. The second stage (preprocessing) involves two
tasks. The first task of feature selection was undertaken by
Lee et al. [5] and the datasets are available in [19]. In this
paper we perform the second task of feature extraction by
using the 10% subset of KDD Cup 1999 dataset for iden-
tifying key features that contribute to classifier based mis-
use detection. The dataset contains approximately 500,000
TCP sessions. Each session contains 41 selected measure-
ments of TCP connections and is labeled either as an attack



or a non-attack. The final stage involves attack detection
for which we use NC and DC classifiers.

The rest of the paper is organized as follows. In Section
IT we describe feature extraction using component analysis
and present the results of dimension reduction on KDD
Cup 1999 data. In Section IIT we discuss Non-linear and
CART decision tree classifiers. In Section IV we discuss
the results of our work and conclude Section V.

II. COMPONENT ANALYSIS

Component analysis is an unsupervised approach to find
significant features in the data. In this section we dis-
cuss three component analysis techniques (1) PCA, (2)
NNPCA, and (3) NLCA for reducing dimensionality of
KDD Cup 1999 intrusion detection dataset. The dataset
contains 41 features of TCP traffic. Each feature vector is
labeled as an attack or a non-attack. There are 22 types of
attacks in the dataset. We divide the dataset into training
data subset (containing 25% of randomly selected repre-
sentative samples from the original dataset) and reserve
the rest for testing. On performing component analysis on
the training subset, we obtain three compressed datasets
in addition to the original dataset. Table I summarizes the
four datasets later used for misuse detection using NC and
DC.

TABLE 1
SUMMARY OF DATASETS OBTAINED AFTER FEATURE EXTRACTION.

| Dataset Name | Reduced Dimensions \ Method ’

ORIGDATA 41 None

PCADATA 19 PCA

NNPCADATA 19 NNPCA

NLCADATA 12 NLCA
A. PCA

Principal Component Analysis [17] reduces the dimen-
sionality of data by restricting attention to those directions
in the feature space in which the variance is greatest. In
PCA, the proportion of the total variance accounted for
by a feature is proportional to its eigenvalue. We per-
form PCA on 25% training data subset. Here, the goal
is to reduce the cardinality of the dimensions (d) in the
data where d = 41. We excluded two features (1) num-
ber_of-outbound_commands and (2) is_host_login as their
values remained constant throughout the dataset, reducing
d to 39. We compute the correlation matrix for the training
dataset. Next, we compute the eigenvalues and sort them
in decreasing order. The first eigenvalue e; corresponds
to the first principal component, the second eigenvalue es
corresponds to the second principal component and so on.
Table IT shows the first 20 eigenvalues arranged in decreas-
ing order. We use two tests: (1) Scree Plot test [17] and
(2) Critical Eigenvalue test [17] as a test of hypothesis that
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k features are sufficient against the alternative that more
than k features are required. The remaining d — k features
are assumed to contain noise or redundancy.
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Fig. 2. Scree plot illustrates the differences in eigenvalues of the sixth
and seventh (msg), and nineteenth and twentieth (m19) principal
components.

In Scree Plot test, we plot the principal components
against the differences m; in successive sorted eigenvalues
(e.g., m; = e; — e;41). The Scree plot in Figure 2 shows
principal components plotted against the successive differ-
ences in eigenvalues shown in Table II. In this plot, the
difference between successive eigenvalues decreases regu-
larly from 4.9918 to 0.2707 for the first six principal com-
ponents. Then there is an increase in difference between
the sixth and seventh eigenvalues (mg = eg — ez = 0.3349),
breaking the decreasing trend. The difference again de-
creases regularly from the seventh to nineteenth principal
component. Then, there is a break in decreasing trend be-
tween the nineteenth and twentieth principal components
(m1g = e19 — ez = 0.2912), suggesting that either the
first six components or the first nineteen components are
the most significant components in the data. Since the
Scree test suggests two sets of principal components, we
perform Critical Eigenvalue test to verify the results of the
Scree test. The Critical Eigenvalue test recommends select-
ing all principal components whose eigenvalues exceed the
eigenvalue threshold, 7. = d%6/15, where d is the dimen-
sion of the original dataset. For our dataset, 7. is 0.6005.
The nineteenth principal component is the last principal
component with an eigenvalue (approximately 0.74) that
exceeds 7.. Moreover, we have observed that the first nine-
teen principal components account for 94.91% of the total
variation associated with all the thirtynine original vari-
ables, while the first six principal components account for
only 62.57%. The analysis presented above shows that the
number of significant features in the KDD Cup dataset is
19.



TABLE II
THE FIRST 20 FEATURES AND CORRESPONDING EIGENVALUES AND
STANDARD DEVIATIONS (S.D). THE FIRST 19 FEATURES ARE SELECTED
BASED ON RESULTS OF SCREE TEST AND CRITICAL EIGENVALUE TEST.

Feature Name S. D | Eigen
Value
src_bytes 51926 | 9.74
dst_bytes 29423 | 4.75
duration 773.65 | 3.65
is_guest_login 24793 | 2.76
is_host_login 217.9 1.87
srv_diff_host_rate 106.64 | 1.60
diff_srv_rate 69.196 | 1.27
service 1.2974 | 1.14
flag 1.1499 | 1.11
protocol_type 0.9664 | 1.04
num_root 0.7784 | 1.02
hot 0.7769 | 1.00
num_compromised 0.6720 | 0.96
dst_host_same_srv_rate 0.4849 | 0.95
dst_host_count 0.4128 | 0.88
rerror_rate 0.3886 | 0.85
srv_count 0.3816 | 0.82
dst_host_srv_diff_host_rate 0.3815 | 0.76
count 0.3813 | 0.74
dst_host_same_src_port_rate | 0.3812 | 0.45

Next, we find the actual features in KDD Cup 1999
datasets that correspond to the 19 significant principal
components. Since the principal components explain al-
most all the variance in the data, we sort the 39 original
features in the decreasing order of their standard deviation
(shown in Table II) and select the first 19 features as the
features that correspond to the 19 principal components.
Hereafter we refer to the PCA-compressed intrusion detec-
tion dataset as PCADATA.

B. NNPCA and NLCA

In this section we present two neural network based com-
ponent analysis techniques: (1) neural network principal
component analysis (NNPCA), and (2) nonlinear compo-
nent analysis (NLCA) for dimension reduction. Feedfor-
ward neural networks can be used to extract significant
components [20]. Such networks are called autoassocia-
tive neural networks. The networks contain d nodes in
input and output layers, corresponding to d-dimensions of
the data to be reduced. One of the hidden layers in an
autoassociator is called a bottleneck layer because the d-
dimensional inputs pass through the k-dimensional bottle-
neck before reproducing the inputs. Therefore, dimension
reduction occurs in the bottleneck layer. Nodes in the hid-
den and output layers use sigmoidal functions as activation
functions. For our experiments with NNPCA and NLCA
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all samples in training, validation and testing datasets were
normalized. The 25% training subset of KDD Cup 1999
dataset (with 127,437 tcp sessions) was split into training
data (containing 80% of the 25% training subset) and val-
idation data (containing 20% of the 25% training subset).
The remaining 75% of KDD Cup 1999 data subset was used
for testing.

Our NNPCA architecture initially consists of three layers
with d units in each layer, corresponding to the 41 dimen-
sions of the KDD Cup 1999 data. Each node in the network
is associated with an individual learning parameter. The
values of the learning parameters ranged from 0.1 to 0.5.
Values between 0.0 to 1.0 were randomly chosen to ini-
tialize the weights. Dimension reduction was performed in
two phases: (1) the Stopping Rule Estimation phase, and
(2) the Bottleneck Layer Pruning phase. The first phase
involves finding the early stopping criterion for the autoas-
sociator. Early stopping criterion is represented in terms
of two parameters: (i) the prediction accuracy over valida-
tion data (A), and (ii) the number of epochs (E) required
to attain A. The idea behind finding the early stopping
criterion is that training is allowed to continue sufficiently
long to fit the structure of the underlying data, but not long
enough to fit the noise. In this phase, we train the autoas-
sociator using gradient descent rule and periodically (for
every five epochs) check the prediction accuracy over the
validation data. As the autoassociator is trained, the value
of A increases until it reaches a saturation point, where it
begins to drops. At this point the autoassociator training
is stopped and the Stopping Rule Estimation parameters
A and E are recorded. In our experiments we recorded a
value of approximately 97% for A and 30 for E.

The second phase involves iterative pruning of the au-
toassociator model My with 41 nodes by eliminating nodes
based on the variance in bottleneck node outputs over the
validation dataset. The symbols and notations used in the
procedure Bottleneck Layer Pruning are: (i) M; is the au-
toassociator model with ¢ nodes in the bottleneck layer,
(ii) a; is the prediction accuracy of M; over the valida-
tion dataset, (iii) e; counts the epochs while training the
autoassociator model M;, (iv) a; is the learning parameter
associated with j** node in the bottleneck layer (initialized
with values between 0.1 and 0.5), (v) Var; is the variance
in the outputs (obtained by passing the validation data) as-
sociated with j** node in the bottleneck layer when model
M; reaches the stopping criteria, (vi) 7Tyqr, is the variance
threshold for pruning the bottleneck nodes, and (vii) ¢ is
the learning parameter («) increment factor. A formal pro-
cedure illustrating the Bottleneck Layer Pruning follows.

Procedure Bottleneck Layer Pruning(M;)
{
for j—1to i
Var; «+ 0;
end for



// Tyer is set to 0.00001 in our experiments.
while Var; > 7,4,

a; < 03

e; — 0;

Assign random weights to M;

do
Train M, using gradient descent
rule.
Calculate a; over the validation
dataset.
e; —e;+1;

until a; = A || ¢, = FE
for j«—1 to 1
Calculate Vary;
end for
if Var; = ming=1.;(Varg)
// § is set to 0.1 in our experiments.
o — aj+0;
end if
end while
if Var; < 7yar
Prune node j;
end if
1—1—1;
if i>0
Call Bottleneck Layer Pruning(M;);
end if

NNPCA (and PCA) identify linear correlations among
features. It is possible that there may be strong nonlinear
relationships among features leading to better dimension
reduction. To test for nonlinear relationships, we perform
a nonlinear component analysis (NLCA) on normalized
25% training data subset. For NLCA, Kramer [21] sug-
gests adding two hidden layers with nonlinear nodes to the
NNPCA architecture. Lu and Hsieh [22] further simplify
Kramer’s five layered architecture with a four layer neu-
ral network with hyperbolic tangent activations and show
that their simplified architecture alleviates overfitting. In
our experiments we used a four layer neural network similar
to [22], but with sigmoidal nodes in the hidden layers (i.e.,
bottleneck layer and decoding layer) to achieve bounded
outputs. This neural network architecture was initialized
with 10 nodes in the decoding layer (our experiments with
higher number of nodes resulted in unstable architectures)
and 41 nodes in the bottleneck layer. Dimension reduction
was performed using the Stopping Rule Estimation and
Bottleneck Layer Pruning as in NNPCA. The early stop-
ping criterion parameters were recorded as A = 76.2214
and E = 5. Bottleneck Layer Pruning was performed (with
Tvar et to 0.0001 and § to 0.01) on 40 NLCA models.

Figure 3 shows the prediction accuracies over valida-
tion data by pruning the bottleneck layers in NNPCA and
NLCA neural networks. The plot (in solid line) in Figure 3

ISBN 0-7803-9814-9/$10.00 (©2004 IEEE

100

90

80

XX KKK K R XXX K KK e X

70

60

50

40

Accuracy over validation dataset

30
20

—— NNPCA
X NLCA ) ) ) ) )

10
40 35 30 15 10 5

25 20
Nodes in the Bottleneck Layer

Fig. 3. Variation in prediction accuracies of NNPCA and NLCA net-
works over validation data. The solid lined plot shows prediction
accuracies for NNPCA autoassociator models. The dashed plot
shows prediction accuracies for NLCA neural networks.

shows that the prediction accuracies for NNPCA autoasso-
ciator models range from approximately 97% - 74% from
My, to Myg, which contains 19 nodes in the bottleneck
layer. For the next model Mg, the prediction accuracy
drastically drops to 43% and continues to drop thereafter,
suggesting that the autoassociator model Mg is the opti-
mal choice to generate the transformed dataset containing
19 components, each component corresponding to a single
node in its bottleneck layer. We refer to this NNPCA trans-
formed dataset as NNPCADATA hereafter. The dashed-
line plot in Figure 3 shows that the prediction accuracy
peaks for the NLCA neural network with 12 nodes in the
bottleneck layer suggesting that there are 12 significant
components in the data. Hereafter, we refer to the NLCA
transformed dataset with 12 components as NLDATA.

III. CLASSIFIERS FOR MISUSE DETECTION

We present two classifiers: (1) Non-linear classifier (NC),
and (2) CART Decision Tree classifier (DC) to experimen-
tally verify the effects of reducing the dimensions of the
TCP traffic data on the detection accuracy and false pos-
itive rate. Classification was performed on four datasets
summarized in Table I. For our experiments with NC and
DC, we use 25% of KDD Cup 1999 data (and its low-
dimensional counterparts) for training and the remaining
75% for testing.

A. Non-linear Classifier (NC)

NC is a classification technique in which the mean of a
class is represented by the mean vector M. The standard
deviation vector S defines the boundaries of the cluster in a
z-dimensional euclidean space. Training samples are used
to generate sample mean and standard deviation for each
class C. The mean vector M; = {my,ma, -+ ,mp, - ,m,}
and standard deviation vector S; = {s1, 82, - , Sk, " , Sz}



form the prototype for classes C;—1;023 corresponding to
normal and attack instances in the dataset. Here, my is
the mean of the training samples for the k** component of
the dataset, and sj, is the standard deviation of that com-
ponent. NC performs an independent test in each dimen-
sion. The membership of a sample X = {z;, 29, - , 2.}
to a class C is determined by the maximum number of
dimensions in which the class membership criterion X €
C & |z; —my| < ns; Vi is satisfied. Here n is a tunable
parameter. We perform experiments on NC by varying the
n-parameter values from 1 to 10.5 and present the results
(in Section IV) in terms of detection accuracy and false
positive rate.

B. Decision Tree Classifier (DC)

We use Classification and Regression Trees (CART) [23]
as a second approach to build a misuse detection classifier.
CART has become popular in a wide range of applications
ranging from data mining to predictive modeling, due to
its general framework that can be configured to produce
different decision tree models for classification. The pro-
cess of obtaining an optimal classification model consists
of three stages [24]: (1)choosing the splitting criterion, (2)
pruning, and (3) choosing complexity parameter. We use
Gini Impurity as the splitting rule. The Gini impurity is
a generalization of variance impurity, which is a measure
of the variance associated with any two decision variables.
The Gini impurity criterion is:

k
Gini Impurity =1.0-5=1.0— ZP (J/T)2

=1

where S is the sum of squared probabilities P (J/T)
summed over all levels of dependent variables, J is the
total number of classes (with 22 attack classes and a nor-
mal class) in the dataset and T is the number of nodes
in the decision tree. In our experiments DC was trained
to grow on the training data until it was not possible to
grow any further. After the full tree was generated, it was
pruned using the cost complexity pruning criterion given
as: M R+a(Size), where MR is the misclassification rate at
node ¢, given by M R = 1—max;—1.7 P (j/t). MR measures
the minimum probability of misclassification of a training
pattern at node t and « is the penalty parameter that de-
termines the largest possible tree with lowest complexity.
We analyze the performance of four DC models obtained
by varying the complexity parameter from 0.0 to 0.0002
and present results (in Section IV) in terms of detection
accuracy and false positive rate.

IV. RESULTS AND DISCUSSION

We present the performance of the Non-linear classifier
(NC) and the decision tree classifier (DC) in terms of detec-
tion accuracy and false positive rate. The detection accu-
racy of an IDS is the percentage of attack samples detected
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as attacks. The false positive rate of an IDS is the percent-
age of normal samples detected as attacks. We analyze the
Receiver Operating Characteristic (ROC) curves for each
classifier based IDS over four datasets: (1) ORIGDATA,
(2) PCADATA, (3) NNPCADATA, and (4) NLDATA and
present our insights. We compare the performance of the
three component analysis methods in terms of Gain in In-
formation GI measure introduced in Section I.
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Fig. 4. ROC curves of NC over the four datasets. The curves shift
toward the upper right corner when reduced datasets are used
instead of original dataset.

Figure 4 shows ROC curves for NC on the four datasets.
The detection accuracy and false positive rates plotted here
were obtained by varying the values of the n-parameter of
NC from 1 to 10.5. Our experiments showed that when
n-parameter > 8, the variation in average detection ac-
curacy was almost constant (approximately 98%), while
there was an alarming increase in false positive rates on all
four datasets implying that the classifier itself is unusable
as an IDS when n-parameter > 8. Hence, we conducted
our experiments on NC by varying the n-parameter only
upto 10.5. The plot in Figure 4 shows that NC has rea-
sonably good average detection accuracy 97.9304% over all
four datasets, but shows an increase in false positive rates
from ORIGDATA to NLDATA, with false positive rates of
PCADATA and NNPCADATA being in between the other
two datasets. To investigate whether the raise in false pos-
itives is because of the naivety of a classifier or because of
the loss of information due to dimensionality reduction, we
analyze the ROC curves of DC over the four datasets.

Figure 5 shows ROC curves for DC over the four
datasets. The detection accuracies and false positive rates
of DC were observed on four different decision tree mod-
els for each dataset. The models were obtained by prun-
ing the complete decision tree until it shrinks to approxi-
mately 50% fo its original size. This reduction in size was
achieved by varying the complexity parameter. The aver-
age detection accuracy of the DT classifier is 99.6438 over
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Fig. 5.  ROC curves of DC over the four datasets. The curves
show that detection accuracies and false positive rates over four
datasets remain approximately same.

all the datasets. Varying the complexity parameter (0.0 to
0.000735) for experiments on ORIGDATA, the size of the
decision tree models varied from 118 to 41 nodes with a
minimum false positive rate of 0.2268 for the full decision
tree model (with 118 nodes). For PCADATA, the size of
the decision tree models varied from 113 to 41 nodes (by
varying the complexity parameter from 0.0 to 0.000711)
with a minimum false positives rate of 0.2609 for the de-
cision tree model with 113 nodes. Similarly, for NNPCA-
DATA the size of decision tree models varied from 190 to
75 nodes (by varying the complexity parameter from 0.0
to 0.0002) with a minimum false positive rate of 0.4922 for
the decision tree with 190 nodes. For NLDATA, the size of
decision tree models varied from 260 to 87 nodes (by vary-
ing the complexity parameter from 0.0 to 0.000145) with a
minimum false positive rate of 0.8227 for decision tree with
260 nodes. Our experiments with the decision tree models
on NLDATA showed that the average detection accuracy
on five decision tree models was very high (99.589%) even
after prunning the complete decision tree to one-third of
its orginal size.

TABLE III
MINIMUM FALSE POSITIVES RATES (F.P.R.) WITH DETECTION
ACCURACIES (D.A.) FOR NC AND DC ON THE FOUR DATASETS.

FPR. DA,
DATASET NC | DC | NC | DC
ORIGDATA | 8.2821 | 0.2268 | 99.0108 | 90.0428
PCADATA | 20.4105 | 0.2600 | 99.1161 | 99.9167
NNPCADATA | 50,5463 | 0.4922 | 98.5206 | 99.7516
NLDATA 510756 | 0.5227 | 97.2306 | 99.6350

Table III shows minimum false positive rates for NC and
DC over four datasets. A row-wise observation of F.P.R

ISBN 0-7803-9814-9/$10.00 (©2004 IEEE

values in Table III clearly indicate that the increase in false
positive rates on reduced datasets (PCADATA, NNPCA-
DATA, and NLDATA) as compared to the ORIGDATA for
NC is due to the naivety of NC used in misuse detection
applications. A column-wise inspection of F.P.R. values
indicates that the growth trend in false positives (see the
shift in ROC curves to upper right corner in Figure 4) dras-
tically decreases on reduced datasets with DC (see Figure
5).
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Fig. 6. A graphical interpretation of Specificity Mismatch Measure
for DC. The attack list is available in UCI KDD archive. Attack
IDs were given after arranging the attacks in alphabetical order.

We use the results of DC with relatively high detection
accuracies and low false positive rates (shown in Table IIT)
to show the Gain in Information GI (refer Section I) due to
PCA, NNPCA, and NLCA transformations. Figure 6 illus-
trates the Specificity Mismatch Measure. The bars point-
ing upwards indicate a gain in information in terms of de-
crease in false positives due to dimension reduction. The
bars pointing downwards indicate loss in information in
terms of increase in false positives. The average Specificity
Mismatch Measure over 22 attacks for PCA, NNPCA, and
NLCA reduction methods were -0.000015, -0.00012, and -
0.00027 respectively, indicating loss in information due to
dimensionality reduction with all three methods. Figure
6 shows that PCA gains information for spy attack (with
attack ID 19). NNPCA shows significant gains in infor-
mation for imap (5), multihop (9) and spy attacks despite
having less than 10 training instances for each of these at-
tacks. NLCA shows gain in information for multihop and
spy attacks.

Figure 7 illustrates the Sensitivity Mismatch Measure
for 22 attacks over the three reduction methods. The bars
pointing upward indicate gain in information in terms of in-
crease in detection accuracies due to dimension reduction.
The bars pointing downward indicate loss in information
in terms of decrease in detection accuracies. The average
Sensitivity Mismatch Measure over the 22 attacks for PCA,
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Fig. 7. A graphical interpretation of Sensitivity Mismatch Measure
for DC.

and NLCA were -0.02829 and -0.05216 respectively, indi-
cating loss in information due to dimensionality reduction.
For NNPCA, the average Sensitivity Mismatch Measure
was 0.0269 (a positive value) indicating gain in information.
Figure 7 shows significant loss in information in NNPCA
and NLCA reduced datasets for back (with attack ID 1),
imap, pod (14), teardrop (20), and warezmaster (22) at-
tacks. This loss is due to very less training instances (only
0.2694% of the total training instances) for these attacks.

The overall Gain in Information GI in data with DC
due to PCA, NNPCA, and NLCA reductions were recorded
as -0.02893, +0.026798, and -0.05243 respectively, showing
that the data reduced using NNPCA method (NNPCA-
DATA) gained information when compared to all other
datasets over ORIGDATA with 41 features.

V. CONCLUSIONS

We have developed signed quantitative measures GI, @,
and O to test the performance of feature extractors in in-
trusion detection applications. We use these measures to
evaluate the performance of PCA, NNPCA, and NLCA fea-
ture extractors on misuse detection systems employing non-
linear and decision tree classifiers. We show that the neural
network feature extraction methods are more effective than
PCA in reducing dimensions and retaining the causal dy-
namic information that is essential for maintaining high
detection accuracy and low false positive rate in misuse
detection systems. We are extending our work on quanti-
tative measures to find optimal combinations of classifiers
and feature extractors for intrusion detection systems.
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