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Abstract—In the context of Network Intrusion De-
tection, we test a lately reported technique which
generates a set of fuzzy rules to recognize unknown
abnormal patterns using a test-function, what we
call a-tiny-island-in-a-huge-lake. Our concern is
whether or not we can train the system only with a
set of already known normal patterns. Yet another
of our concern is what happens in an extreme case
where a sample of abnormal patterns are extremely
few comparing to the normal ones, and what if it
eventually shrinks to zero, which is what they call
a-needle-in-a-haystack.

I. Introduction

This paper reports a snapshot of our on-going ex-
periments in which a common target we call a-
tiny-island-in-a-huge-lake is explored with different
methods ranging from a data-mining technique to
an artificial immune system. Our implicit inter-
est is a network intrusion detection, and we assume
data floating in the huge lake are normal while ones
found on the tiny island are abnormal. Our goal
here is twofold. One is to know whether or not it
is possible to train a system using just normal data
alone. The other is to study a limit of the size
of the detectable area, when we decrease the size of
the island eventually shrinking to zero, equivalently
so-called a-needle-in-a-haystack (See Fig. 1) which
is still an open and worth while tackling problem.
To learn these two issues, a fuzzy rule extraction
system with fixed triangle/trapezoid membership
functions are exploited in this paper.

Fig. 1. A fictitious sketch of fitness landscape of a-needle-in-a-
haystack. The haystack here is drawn as a two-dimensional flat
plane of fitness zero.

When we think of a network intrusion detection,

we have a large collection of normal patterns while
the number of possible anomaly patterns we know
is extremely few, which is of usual cases. Then our
concern is how we can train a system with a lack of
negative training data.

Furthermore, we usually don’t know what do
anomaly patterns look like in advance. It is usually
too late when we know it. Hence, our second con-
cern is whether or not we can train the system with
only a set of normal patterns. So far, lots of such
approaches have been proposed with very success-
ful results. In other words, those intrusion detec-
tion systems train themselves with already known
normal patterns and then it succeeds in warning
when a so far unknown anomaly pattern is given,
though we doubt it more or less.

“A tiny island in a huge lake” — this is a prob-
lem we’d proposed in which a few number of un-
known patterns should be recognized or classified
from an enormous number of known patterns [1],
which is up to now still an open issue. Originally
the problem described, in particular, a fitness land-
scape when we searched for a weight configuration
which gives a network with fully-connected spiking
neurons a function of associative memory. In this
paper, we regard the problem from a view point of
anomaly detection by an immuno-fuzzy approach.
That is, we take it just a general pattern classifi-
cation problem on the condition, however, that we
have two classes one of which has an extremely few
patterns while the other has almost infinite number
of patterns. Or, we might as well take it a task of
discrimination of a few of non-self cells as anomaly
patterns from enormous amount of self cells from
artificial immune system point of view.

In order to explore this issue, we formalize the prob-
lem as follows. We assume we have n-dimensional
patterns all of whose real-valued co-ordinates lie



in [−1, 1]. This construct our self/non-self space.
Anomaly patterns have its co-ordinates each of
whose value lies in [−a, a], while all others are
regarded as normal patters. We can control the
difficulty of the task by changing the value of a.
In the ultimate case in which the pattern whose
co-ordinates are all zero, is called a-needle-in-a-
haystack problem.

II. EXPERIMENT

A set of fuzzy rules is used to cover the non-self
patterns. As already mentioned, self/non-self sells
are represented by n-dimensional real valued vec-
tors each of whose coordinate lies in [−1, 1]. That
is, the self/non-self space is [−1, 1]n, and a self/non-
self pattern is represented by a vector (x1, · · · , xn)
where xi ∈ [−1, 1]. Then a fuzzy rule to detect
non-self patterns is

If x1 is T1, · · ·, and xn is Tn then x is non-self

where Ti is a fuzzy linguistic terms which is either
one of {Low, Low-Middle, Middle, Middle-High,
High}. Each of Ti maps the xi to a real value be-
tween 0 and 1, expressing the degree to how it is
likely to the linguistic value. This is calculated by
a membership function, which is defined here us-
ing fixed shaped triangular and trapezoidal fuzzy
membership functions.
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Fig. 2. Five fixed shaped membership functions each of which
describes how likely a coordinate is either Low (L), Middle-Low
(ML), Middle (M), Middle-High (MH), or High (H). Note that
the coordinates in [−1,1] are translated into [0,1] with interpre-
tation being intact.

Then a genetic algorithm evolves these fuzzy rules,
with chromosomes being (T1, · · · , Tn), starting with
those chromosomes randomly created. To be more
specific, our chromosome is made up of n integer
genes whose value is chosen from {0, 1, 2, 3, 4}. The

fitness of a rule is evaluated by applying the rule to
all the self patterns x = (x1, · · · , xn), one by one,
and calculated as

fitness(R) = 1− max
x∈Self

{ min
i=1,· ··,n{µTi(xi)}}

which implies how the rule covers the non-self
space.

The size of self cells is fixed to 400; each GA run
is iterated for 1000 generations; size population of
chromosmes are 100, to be comparable with the
original Dasgupt et al’s experiment [6].

III. RESULTS & DISCUSSION

As a preliminary experiment, we tried a random
search for the 20-dimensional needle by creating
5000 candidate strings of 20 binary bit at random,
assuming all 0 string alone is the needle. The result
is shown in Figure. 2, and we found it is still not
such a difficult problem if we use a standard PC
found everywhere nowadays.
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Fig. 3. The number of happened-to-be-the-needle out of 5000
random creations of the candidate.

Then what will happen if we exploit one of the
lately reported more sophisticate methods?

As our goal is to find a rule to identify an is-
land, that is whether or not the search point x =
(x1, ·· · , xn) fulfills the condition that −a < xi < a
for all i = 1, ·· · , n, all we need is one rule, that is,

IF x1 is Middle, and · · ·, and xn is Middle

THEN x is on the island.

And we found an evolution converges to a successful
such chromosome

(2 2 2 2 2 2).
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Fig. 4. Evolution to find the island in the 6-dimensional lake.
Upper plot is when xi ∈ [0.25, 0.75] and lower plot is for a small
island where xi ∈ [0.45,0.55] (i = 1, · · · , 6).

However, this holds only on the condition that the
dimension is small and the island is fairly large. In
Figure 4. we plot two cases of evolution. One is
the island made up of the points xi ∈ [0.25, 0.75]
and the other is xi ∈ [0.45, 0.55], both in the 6-
dimensional lake. This discrepancy in the size of
the lake depending on the dimensionality is around
a critical condition for the success of the evolution.
Our temporary goal of 20-dimensional a-needle-in-
a-haystack is far beyond from this critical point.
A trial of a search for the island of xi ∈ [0.45, 0.55]
(i = 1, · · · , 20) in the 20-dimensional lake converged
a chromosome

(0 1 3 4 0 4 4 1 4 4 1 1 4 1 4 3 0 0 0 2).

Alas, the curse of dimensionality.

As for the size of the island, we might explore the
evolution in which shape of membership functions
are also adaptively evolved, such as Gaussian one,
expecting very narrow membership function corre-
sponding to the linguistic term MIDDLE.

IV. CONCLUSION

We have described how we would be able to find a
small island in a huge lake with a system training
only using data in a lake. This is a metaphor in
which a very few of unpredictable abnormal trans-
action patterns hidden in an enormous amount of
normal patterns, in the context of network intru-
sion detection.

We need test samples to test the system we are de-
signing. So far, so many such sample are proposed.

For example, Ayara et al. [4] used randomly gener-
ated 8-bit binary patterns assuming they are nor-
mal patterns; Kim & Bentley [5] used Fisher’s Iris
Flower Database, which includes the data of three
different species of Iris flower, by taking one set as
a normal pattern set and the rest as an abnormal
set. Then with a tenfold cross-validation method,
it was claimed the best true positive rate reached
100% and the worst false positive rate was only
1%; or more directly, some others such as Gomez
et al. (2004) [6] used the 1998 DARPA intrusion de-
tection evaluation data-set prepared by MIT, also
known as KDD cup 99 data-set.1 We have also
a newer such public domain data-set called KDD
cup 2003 which was used in the data mining com-
petition held in conjunction with the Ninth Annual
ACM SIGKDD Conference.2

We assume three conditions for a set of database to
be used for the purpose of train and test a system
we are designing as follows.

(1) dataset is comprised of all possible patterns.
(2) Training should be only by normal samples
(3) Number of normal sample should be enormous

while abnormal sample is only a few.

When an iris flower is normal then are others ab-
normal? None of the above mentioned examples
fulfills all of the three conditions.

We are still neutral as for the possibility of design-
ing an intrusion detection system using test samples
in this way. Or rather negative if we are not beat-
ing around the bush.

We hope this article will play a role of call for chal-
lenges to this issue.
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