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Abstract - In the context of Network Intrusion Detection, we
test a lately reported technique which generates a set of fuzzy
rules to recognize unknown abnormal patterns using a test-
function, what we call a-tiny-island-in-a-huge-lake. Our
concern is whether or not we can train the system only with a
set of already known normal patterns. Yet another of our
concern is what happens in an extreme case where a sample of
abnormal patterns are extremely few comparing to the normal
ones, and what if it eventually shrinks to zero, which is what
they call a-needle-in-a-haystack
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I.  INTRODUCTION

This paper reports a snapshot of our on-going
experiments in which a common target we call a-tiny-
island-in-a-huge-lake is explored i-th different methods
ranging from a data-mining technique to an artificial
immune system. Our implicit interest is a network
intrusion detection, and we assume data floating in the
huge lake are normal while ones found on the tiny island
are abnormal. Our goal here is twofold. One is to know
whether or not it is possible to train a system using just
normal data alone. The other is to study a limit of the
size of the detectable area, when we decrease the size of
the island eventually shrinking to zero, equivalently so-
called a-needle-in-a-haystack (See Fig. 1) which is still
an open and worth while tackling problem. To learn these
two issues, a fuzzy rule extraction system with fixed
triangle/trapezoid membership functions are exploited in
this paper.

When we think of a network intrusion detection, we
have a large collection of normal patterns while the
number of possible anomaly patterns we know is
extremely few, which is of usual cases. Then our concern
is how we can train a system with a lack of negative
training data.

Furthermore, we usually don't know what do anomaly
patterns look like in advance. It is usually too late when
we know it. Hence, our second concern is whether or not
we can train the system with only a set of normal
patterns. So far, lots of such approaches have been
proposed claiming they had very successful results. In
other words, those intrusion detection systems train

themselves with already known normal patterns and then
it succeeds in warning when a so far unknown anomaly
pattern is given, though we doubt it more or less.

Fig. 1. A fictitious sketch of fitness landscape of a-
needle-in-a-haystack. The haystack here is drawn as a
two-dimensional flat plane of fitness zero.

A tiny island in a huge lake --- this is a problem we'd
proposed in which a few number of unknown patterns
should be recognized or classified from an enormous
number of known patterns [1], which is up to now still an
open issue. Originally the problem described, in
particular, a fitness landscape when we searched for a
weight configuration which gives a network with fully-
connected spiking neurons a function of associative
memory. In this paper, we regard the problem from a
view point of anomaly detection by an immuno-fuzzy
approach.

That is, we take it just a general pattern classification
problem on the condition, however, that we have two
classes one of which has an extremely few patterns while
the other has almost infinite number of patterns. Or, we
might as well take it a task of discrimination of a few of
non-self cells as anomaly patterns from enormous
amount of self cells from artificial immune system point
of view.

In order to explore this issue, we formalize the
problem as follows. We assume we have $n$-
dimensional patterns all of whose real-valued co-
ordinates lie in [-1,1]. This constructs our self/non-self
space. Anomaly patterns have their co-ordinates each of
whose value lies in [-a,a], while all others are regarded
as normal patterns. We can control the difficulty of the
task by changing the value of a. In the ultimate case in
which the pattern whose co-ordinates are all zero, is
called a-needle-in-a-haystack problem.



Il.  EXPERIMENT

A set of fuzzy rules is used to cover the non-self
patterns. As already mentioned, self/non-self cells are
represented by n-dimensional real valued vectors each of
whose coordinate lies in [-1, 1]. That is, the self/non-self
space is [-1,1]", and a self/non-self pattern is represented
by a vector (xy, ..., X,) where x; € [-1,1]. Then a fuzzy
rule to detect non-self patterns is

If X, is Ty, ..., and X, is T, then X is non-self
where T; is a fuzzy linguistic terms which is either one of
{Low, Low-Middle, Middle, Middle-High, High}. Each of
T; maps the x; to a real value between 0 and 1, expressing
the degree to how it is likely to the linguistic value. This
is calculated by a membership function, which is defined
here using fixed shaped triangular and trapezoidal fuzzy
membership functions.

We know how many rules are needed in this problem
—only one rule is sufficient. In this sense too, this test-set
is a good one.
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Fig.2. Five fixed shaped membership functions each of
which describes how likely a coordinate is either Low
(L), Middle-Low (ML), Middle (M), Middle-High (MH),
or High (H). Note that the coordinates in [-1,1] are
translated into [0,1] with interpretation being intact.

Then a genetic algorithm evolves these fuzzy rules, with
chromosomes being (Ty, ..., T,), starting with those
chromosomes randomly created. To be more specific, our
chromosome is made up of n integer genes whose value
is chosen from {0, 1, 2, 3, 4}. The fitness of a rule is
evaluated by applying the rule to all the self patterns x =

(X1, ..., Xn) and calculated as
fitness( ) | — max | min {pee (o)t
X Geif im o HT T

which implies how the rule covers the non-self space.
The size of self cells is fixed to 400; each GA run is
iterated for 1000 generations; size population of
chromosmes are 100, to be comparable with the original
Dasgupta et al's experiment~\cite{gome}.

Il. RESULTS & DISCUSSION

As a preliminary experiment, we tried a random search
for the 20-dimensional needle by creating 5000 candidate
strings of 20 binary bit at random, assuming all 0 string
alone is the needle. The result is shown in Fig. 2, and we
found it is still not such a difficult problem if we use a
standard PC found everywhere nowadays.
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Fig.3. The number of happened-to-be-the-needle out of
5000 random creations of the candidate.

Then what will happen if we exploit one of the lately
reported more sophisticate methods?

As our goal is to find a rule to identify an island, that is
whether or not the search point X = (X, ..., X,) fulfills the
condition that -a<x;<aforalli=1, ..., n, all we need
is one rule, that is, IF x; is Middle, and..., and X, is
Middle THEN x is on the island. And we found an
evolution converges to a successful such chromosome

(222222).

However, this holds only on the condition that the
dimension is small and the island is fairly large. In Fig. 4.
we plot two cases of evolution. One is the island made up
of the points x; € [0.25, 0.75] and the other is x; € [0.45,
0.55], both in the 6-dimensional lake. This discrepancy in
the size of the lake depending on the dimensionality is
around a critical condition for the success of the
evolution. Our temporary goal of 20-dimensional a-
needle-in-a-haystack is far beyond from this critical
point. A trial of a search for the island of x; € [0.45, 0.55]
(i=1, ..., 20) in the 20-dimensional lake converged a
chromosome

(01340441441141430002).
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Alas

As for the size of the island, we might explore the
evolution in which shape of membership functions are
also adaptively evolved, Such as Gaussian one, expecting
very narrow membership function corresponding to the
linguistic term MIDDLE.

The scheme of training only with normal sample with
the exactly same set of 5 membership functions as the
one described above, and an almost same way of genetic
algorithm, Gomez et al applied this technique to the
dataset from KDD CUP 99. That is, the dataset is 10\%
version of KDD-CUP 99 removing all the categorical
attributes, which results in the 492,021 data each made
up of 33 attributes which are normalized between 0 and 1
using maximum and minimum values found — also the
same way as ours. An 80% of the normal samples were
picked randomly and used as training data set, while the
remaining 20% was used along with the abnormal
samples as a testing set. Then they claimed, for example,
the detection rate of 98.22% while false alarm rate being
1.9%.
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Fig.4. Evolution to find the island in the 6-

dimensional lake. Upper plot is when x; € [0.25, 0.75]
and lower plot is for a small island where x; e [0.45,
0.55](i=1, ..., 6).

Comparing to our poor results, what is the difference?
The difference between two experiments is size of
abnormal samples, which suggest the method proposed
by Gomez et al. works when number of abnormal
samples and normal sample is similar. Otherwise, i.e.,
when we are to look for one of a few abnormal samples
embedded in huge normal samples, the method does not
work.

IV. CONCLUSION

We have described how we would be able to find a
small island in a huge lake with a system training only
using data in a lake. This is a metaphor in which a very

few of unpredictable abnormal transaction patterns
hidden in an enormous amount of normal patterns, in the
context of network intrusion detection. We need test
samples to test the system we are designing. So far, so
many such sample are proposed. For example, Ayara et
al.~\cite{ayar} used randomly generated 8-bit binary
patterns assuming they are normal patterns; Kim &
Bentley~\cite{kim} used Fisher's Iris Flower Database,
which includes the data of three different species of Iris
flower, by taking one set as a normal pattern set and the
rest as an abnormal set. Then with a tenfold cross-
validation method, it was claimed the best true positive
rate reached 100\% and the worst false positive rate was
only 1%; or more directly, some others such as Gomez et
al.~(2004)~\cite{gome} used the 1998 DARPA intrusion
detection evaluation data-set prepared by MIT, also
known as KDD cup 99 data-set.
\footnote{http://kdd.ics.uci.edu/databases/kddcup99} We
have also a newer such public domain data-set called
KDD cup 2003 which was used in the data mining
competition held in conjunction with the Ninth Annual
ACM SIGKDD
Conference.\footnote{http://www.cs.cornell.edu/projects/
kddcup}

We assume three conditions for a set of database to be
used for the purpose of train and test a system we are
designing as follows.

Data-set is comprised of all possible patterns.
Training should be only by normal samples

e Number of normal sample should be
enormous while abnormal sample is only a
few.

When an iris flower is normal then are others

abnormal? None of the above mentioned examples
fulfills all of the three conditions.

We are still neutral as for the possibility of designing
an intrusion detection system using test samples in this
way. Or rather negative if we are not beating around the
bush. We hope this article will play a role of call for
challenges to this issue.
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