Can a fuzzy rule look for a needle in a haystack?

Akira Imada

Brest State Technical University
Moskowskaja 267, 224017 Brest, Republic of Belarus
akira@bsty.by

Abstract. This paper reports a snapshot of our on-going experiments
in which a common target we call a-tiny-island-in-a-huge-lake is explored
with different methods ranging from a data-mining technique to an ar-
tificial immune system. Our implicit interest is a network intrusion de-
tection, and we assume data floating in the huge lake are normal while
ones found on the tiny island are abnormal. Our goal here is twofold.
One is to know (i) whether or not it is possible to train a system using
Just normal data alone. The other is to study (ii) a limit of the size of
the detectable area, when we decrease the size of the island eventually
shrinking to zero, equivalently so-called a-needle-in-a-haystack which is
still an open and worth while tuckling problem. To learn these two is-
sues, a fuzzy rule extraction system — one with fixed triangle/trapezoid
membership functions for our first goal, and for the second goal with
Gaussian membership functions whose shape is adaptively determined
for the second goal, are exploited in this paper.

1 Introduction

A sultan has granted a commoner a chance to marry one of his 100 daughters
by presenting the daughters one at a time letting him know her dowry that
had been defined previously. The commoner must immediately decide whether
to accept or reject her and he is not allowed to return to an already rejected
daughter. The sultan will allow the marriage only if the commoner picks the

» 1

daughter with the highest dowry. — “Sultan’s Dowry Problem

In real world, we have many problems in which it is easy to access to any one of
the many candidate solutions which could be the true solution but most likely
not, which we don’t know in advance.

The ultimate extreme is called a-needle-in-a-haystack problem. The needle orig-
inally proposed by Hinton & Nowlan [1] was exactly the one configuration of 20

! According to the author(s) of the web-page of Cunningham & Cunningham, Inc.
(http://c2.com) the problem was probably first stated in Martin Gardner’s Mathe-
matical Recreations column in the February 1960 issue of The Scientific American.
To explore the problem more in detail, see, e.g., http://mathworld.wolfram.com. We
thank Mariusz Rybnik at University Paris XII for suggesting that the problem is
reminiscent of our context.



binary bits. In other words, the search space is made up of 22° points and only
one point is the target. No information such as how close is a currently searching
point to the needle.

Yet another problem, a-tiny-flat-island-in-a-huge-lake — this is a problem we
came across when we had explored a fitness landscape defined on all the possi-
ble synaptic weight values of a fully-connected spiking neurons to give them a
function of associative memory [2]. To simplify it we formalized the problem in
more general form as follows.

Testfunction 1 (A tiny flat island in a huge lake) ? Find an algorithm to
locate a point in the region A all of whose coordinates are in [—a,a] (a < 1) in an
universe of the n-dimensional hypercube all of whose coordinate x; lie in [—1,1]
(i=1,...,n).

Our implicit interest is a network intrusion detection where we usually do not
know what does an illegal transaction pattern look like until it completes the
intrusion when actually it is too late. Hence, our interest is to train the intrusion
detection system only using legal patterns. From this context, we assume data
floating in the lake are normal while those found on the island are abnormal.
In this paper, we approach the problem from this view point. That is, we take it,
more in general, just a pattern classification problem, but under the constraint
that we have two classes one of which includes an extremely few patterns while
the other includes an almost infinite number of patterns. Or, we might as well
take it a task of discrimination of a few of non-self cells as anomaly patterns
from enormous amount of self cells which represent normal patterns.

We have so far exploited the following lately reported approaches: (i) artificial
immune system approach, especially a negative selection algorithm in which con-
stant or variable sized hyper-sphere detectors detect non-self cells (see, e.g. [3]);
(i) smmuno-fuzzy approach where a set of fuzzy rules is designed to cover non-
self region (see, e.g. [4]); (iil) evolutionary computation approach where a set of
detectors randomly created at the beginning eventually evolves to detect non-
self; and so on.

In this paper, we study a fuzzy rule extraction using a neural network proposed
by Castellano et al. [5]. The system they proposed were neatly described in the
paper, and it seems to be very sound and efficient, except for the way in that their
normal/abnormal data are used to train and test the system. They employed an
Iris-flower-database in a popular public domain. The database contains three
different classes of iris family and one class is assumed to be self whilst the other
two are assumed to be non-self. The training samples are chosen at random from
these two classes and train the system. Then system is tested using the rest of

2 It is not necessarily to be said for the top of the island to be “flat”, but the originally
this was a test-bed for evolutionary computations, and the fitness of the island region
is one and zero in a lake region, that is why.



the data in the database. The result was successful. We, however, doubt the
real applicability of the idea of using artificial data set in such a way, at least
in a context of intrusion detection. This is principally because of the following
two reasons: (i) we don’t know what does a non-self datum look like until it
completes its intrusion successfully; and (ii) the number of non-self (anomaly)
data available is extremely fewer than the number of self (normal) data.

Hence our current interest is also two-fold. Firstly, (i) training should be made
only by self data; and secondly, (ii) the non-self region should be tiny. We explore
these two points using two different fuzzy models.

2 Methods

Two fuzzy models are as follows.

2.1 Preliminary Experiment — Immuno-Fuzzy Model

A set of fuzzy rules is used to cover the non-self patterns. As already mentioned,
self /non-self sells are represented by n-dimensional real valued vectors each of
whose coordinate lies in [—1, 1]. That is, the self/non-self space is [-1,1]", and
a self/non-self pattern is represented by a vector (z1,- -, x,) where x; € [—1,1].
Then a fuzzy rule to detect non-self patterns is

If 1 is Ty, - - -, and z, is T, then x is non-self
where T; is a fuzzy linguistic terms which is either of
{Low, Low-Middle, Middle, Middle-High, or High}.

Each of T; maps the x; to a real value between 0 and 1, expressing the degree
to how it is likely to the linguistic value. This is calculated by a membership
function, which is defined here using fixed shaped triangular and trapezoidal
fuzzy membership functions.

Then a genetic algorithm evolves these fuzzy rules, with chromosomes being
(Ty,---,Ty), starting with those chromosomes randomly created. To be more
specific, our chromosome is made up of n integer genes whose value is chosen
from {0,1,2,3,4}. The fitness of a rule is evaluated by applying the rule to all
the self patterns x = (1, -+, xy), one by one, and calculated as

fitness(f) =1 — max { min {pr,(2:)}}

which implies how the rule covers the non-self space.



L ML M MH H

OO 1/6 2/6 3/6 4/6 5/6 1

Fig. 1. Five fixed shaped membership functions each of which discribes how liklly a co-
ordinate is either Low (L), Middle-Low (ML), Middle (M), Middle-High (MH), or High
(H). Note that the coordinates in [—1,1] are translated into [0, 1] with interpretation
being intact.

2.2 A Fuzzy Neural Network Approach

The goal is to classify the data taken from the n-dimensional data-set into ei-
ther of the pre-defined m classes. For the purpose, Castellano et al. [5] used the
inference mechanism of the zero-order Takagi-Sugeno fuzzy model; then realized
the idea by a fuzzy neural network model. To train the fuzzy neuronal network,
they employed a combination of (i) a competitive learning to determine the ar-
chitecture of the fuzzy neural network at first and (ii) a gradient descent learning
to optimize the synaptic weights afterwards. We, on the other hand, employ an
evolutionary computation technique to train the network, since we already know
the optimal network structure under our current interest, and as such, our con-
cern is just to obtain the solution of weight configuration of the fuzzy neural
network.

In the following three sub-subsections, Takagi-Sugano fuzzy model, a realization
of the model by fuzzy neural network, and how we optimize the weight of the
fuzzy neural network by an evolutionary computation are described more in
detail.

Takagi-Sugeno Model. Though Castellano et al. [5] stated the method very
clearly in their paper, let us briefly describe it with an intention of making this
paper self-contained. Takagi-Sugeno fuzzy inference model is made up of a set
of H rules, such as

Ry: IF (21 is AY) and --- and (z, is AF)
THEN (y; is vg1) and - -+ and (Y, 1S Vim)

where Ry is the k-th rule (k = 1,---H), x; denotes the i-th variable of the
input data (i = 1,---,n), y; denotes the j-th output variable (j = 1,---,m),
AF denotes a fuzzy set which is usually expressed by a linguistic term such as
“Medium-Large” but here expressed by a shape of membership function defined
one by one on the corresponding input variable, and vy; denotes a fuzzy singleton



each defined on the output variables indicating the likeliness of how the input
belongs to the j-th class according to the k-th rule.

AF is defined by Gaussian membership functions

pik (i) = exp{—(x; — wik)Q/UiQk}

Then defuzzification for an input x° = (29, ---,29) is via the equation:

H H
) = (=) v}/ Y (x0)
k=1 k=1

where "
0 0
pe(x%) = T ] par (2?)
i=1
is the results of application of the Larsen product operator.

In other words, the procedure of inference is as follows. When an input x =
(1, --xy,) is given, each of the H rules evaluates the x and output the likeliness
of the class, from one class to the next, to which x belongs to. The evaluation
by k-th rule of x; is by the corresponding membership function u;x(z;) which is
specified by giving two parameters w;, and o; so that it returns a value ranging
from 0 to 1. See, e.g., Fig. 1 where the i-th coordinate of the input x is evaluated
by A% the i-th antecedent of the IF part of the Ruley, which is represented by a
membership function not by a usual linguistic term like “Small”. The returned
membership value in this example in the figure is 0.71, suggesting, say, “The
likeliness of if the variable is “Medium Large” is 0.71.”

1t Wi, =0.70
OCjc =0.60
0.8}
(0.71)
0.6
0.4
0.2
o
-1 -0.5 (o] 0.5 1

x; = 0.348
Fig. 2. A fictitious sketch of an evaluation of x;, the i-th entry of the input x, by the

i-th antecedent part of the k-th rule A¥.

Using those n values of p;,(x;), each of the H rules calculates py(x), and finally
these H values are combined to calculate m values of y;, the resultant defuzzified



value for each of the m classes.

Fuzzy Neural Network Implementation. The procedure described in the
previous sub-subsection can be realized when we assume a neural network archi-
tecture such as depicted in Fig. 2. The 1st layer is made up of n input neurons.
The 2nd layer is made up of H groups of a neuronal structure each contains n
neurons where the i-th neuron of the k-th group has a connection to the i-th
neuron in the Ist layer with a synaptic connection which has a pair of weights
(wik, o3k ). Then k-th group in the second layer calculates the value py(x) from
the values which are received from each of the n neurons in the first layer. The
3rd layer is made up of m neurons each of which collects the H values from the
output of the second layer, that is j-th neuron of the 3rd layer receives the value
from k-th output in the second layer with the synapse which has the weight vy

Fig. 3. Architecture of the proposed fuzzy neural network which infers how an input
x = (x1,--xn) is likely to belong to the j-th class by generating outputs y; each of
which reflect the degree of the likeliness. In this example, a 20-dimension data input
will be inferred to which of the 3 classes the input belongs by using 2 rules.

How it learns? Castellano et al. [5] used (i) a competitive learning to deter-
mine how many rules are needed under initial weights created at random. Then,
in order to optimize the initial random weight configuration, they use (ii) a gra-
dient method performing the steepest descent on a surface in the weight space
employing the same training data, that is, supervised learning.

Here, on the other hand, we use a simple genetic algorithm, since our target
space is specific enough to know the network structure in advance, i.e., only
unique rule is necessary. Our concern, therefore, is just obtaining the solution
of weight configuration of the network. That is to say, all we want to know is



a set of parameters w;, oy, and vg; (i =1,---n), (k=1,---H), (j =1,---m)
where n is the dimension of data, H is the number of rules, and m is the number
of outputs. Hence our chromosome has those n x H X m genes. Starting with
a population of chromosomes whose genes are randomly created, they evolve
under simple truncate selection where higher fitness chromosome are chosen, with
uniform crossover and occasional mutation by replacing some of a few genes with
randomly created other parameters, expecting higher fitness chromosomes will
be emerged. These settings are determined by trials and errors experimentally.

3 Experiment

An experiment was carried out in the 20-dimensional space. Our assumption is
normal data exist in the lake region while abnormal data in the island region. We
control the size of the island by changing the parameter value a. Furthermore,
it is easy to guess that only one inference rule is enough to classify an input into
either of the two classes. The architecture of the fuzzy network is, therefore, 20
input nodes, 1 rules, and 2 output nodes.

4 Results and Discussion

Though our experiments have sometimes reversed our expectations depending
on parameter setting, we are obtaining a series of successful results.

Where is the tiny island? In the preliminary experiment using a five fixed
shaped triangular and trapezoidal fuzzy membership functions, evolution con-
verges to the chromosome

{M,M,M,---, M}
which implies
IF z1 is Middle, and - - -, and x99 is Middle THEN no-self.

However, this holds only on the condition that the island is fairly large.

How tiny island can be detected? In Fig. 3, we showed an example of
obtained membership function corresponding to one antecedent of the rule (Left),
as well as one of the output singletons obtained in the same experiment (Right).
Training Samples are from the assumed legal data exist in the lake region to
identify the illegal data exists in the tiny island region defined as a = 0.1. In
the figure, although only one example of membership function is shown out of
20 others, the other 19 membership factions are more or less similar to the one
shown in the figure. This suggest that

Ry: IF all of ,, is near the origin THEN (y; is HIGH) and (y2 is LAW).

Namely, the input belongs to the abnormal class.



0.6 0.6
0.4 0.4
0.2 0.2
o [o] 1
-1 -0.5 o 0.5 1 o 0.25 0.5 0.75 1

Fig. 4. An example of experimental result of a membership function of one antecedent
membership function of a rule (Left), and one of the two output singletons of the same
experiment (Right). Training Samples are from the assumed legal data exist in the
lake, while the illegal data is assumed to be in the tiny island defined as a = 0.1.

5 Summary

In this paper, we have reported our on-going investigations, that is, how already
proposed methods work on a special situation of what we call a-tiny-island-in-
a-huge-lake. When we increase the difficulty of the problem by making the size
of the island shrink to zero, it will become what they call a-needle-in-a-haystack
[1]. As far as we know, this issue has resisted to be fully solved and still remains
open. Though our results so far has not been matured yet, we hope a lot of
experiments await our exploration which might result in useful observations in
considering how we design a network intrusion detection system.

References

1. G. E. Hinton and S. J. Nowlan (1987) How Learning can Guide Evolution. Com-
plex Systems, 1, pp. 495-502.

2. A. Imada (2004) “How a Peak on a Completely-flatland-elsewhere can be Searched
for? — A Fitness Landscape of Associative Memory by Spiking Neurons.” Proceed-
ings of Advanced Computer Systems (ACS) and Computer Information Systems
and Industrial Management Applications (CISIM), Vol.2, pp. 171-150.

3. Zhou Ji and D. Dasgupata (2004) “Augmented Negative Selection Algorithm with
Variable-Coverage Detectors.” Proceedings of the Congress on Evolutionary Com-
putation. pp. 1081-1088.

4. J. Gomez, F. Gonzalez, and D. Dasgupta (2003) ” An Immuno-Fuzzy Approach to
Anomaly Detection” proceedings of the 12th IEEE International Conference on
Fuzzy Systems, Vol. 2, pp. 1219-1224.

5. G. Castellano and A. M. Fanelli(2000) ” Fuzzy Inference and Rule Extraction using
a Neural Network.” Neural Network World Journal Vol. 3, pp. 361-371.

This article was processed using the I¥TEX macro package with LLNCS style



