The Belief-Desire-Intention Model of Agency

Michael Georgeff Barney Pell Martha Pollack
Milind També’  Michael Wooldridge

* Australian Al Institute, Level 6, 171 La Trobe St
Melbourne, Australia 3000
georgef f @aii.oz. au
T RIACS, NASA Ames Research Center
Moffett Field, CA 94035-1000, USA
pel | @t ol eny. ar c. nasa. gov
* Department of Computer Science/Intelligent Systems Rragr
University of Pittsburgh, Pittsburgh, PA 15260, USA
pol | ack@s. pitt.edu
# Computer Science Department/ISI, University of Southeatif@rnia
4676 Admiralty Way, Marina del Rey, CA 90292, USA
tanbe@si . edu
* Department of Electronic Engineering, Queen Mary and Wadt{Tollege
University of London, London E1 4NS, United Kingdom
M J. Wool dri dge@mw. ac. uk

1 Introduction

Within the ATAL community, the belief-desire-intention (BDI) melchas come to be
possibly the best known and best studied model of practical reasoningagkeete are
several reasons for its success, but perhaps the most compelling aretB&titmodel
combines a respectable philosophical model of human practical reasoniigingly
developed by Michael Bratman [1]), a number of implementations (in thARrchi-
tecture [2] and the various PRS-like systems currently availabled&ygral successful
applications (including the now-famous fault diagnosis systenti@ispace shuttle, as
well as factory process control systems and business process managememd[ &),
nally, an elegant abstract logical semantics, which have been taken up and elaborated
upon widely within the agent research community [14, 16].

However, it could be argued that the BDI model is now becoming someveited d
the principles of the architecture were established in the mid-1988$)are remained
essentially unchanged since then. With the explosion of interesteéfiig@nt agents
and multi-agent systems that has occurred since then, a great many other architec-
tures have been developed, which, it could be argued, address some Fssuti t
BDI model fundamentally fails to. Furthermore, the focus of agent researchAl in
general) has shifted significantly since the BDI model was originallyliped. New
advances in understanding (such as Russell and Subramanian’s model ofétound
optimal agents” [15]) have led to radical changes in how the agents comn{ani
more generally, the artificial intelligence community) views its entegr

The purpose of this panel is therefore to establish how the BDI mdeaiedls in re-
lation to other contemporary models of agency, and in particular where itrcstroald



go next.

2 Questions for the Panelists

The panelists (Georgeff, Pell, Pollack, and Tambe) were asked to respondatidhve
ing questions:

1. BDI and other models of practical reasoning agents.
Several other models of practical reasoning agents have been successfully devel
oped within the agent research and development community and Al in general.
Examples include (of course!) the Soar model of human cognition, anelsod
which agents are viewed as utility-maximizers in the economic sense. The lat
model has been particularly successful in understanding multi-agent inb@sct
So, how does BDI stand in relation to these alternate models? Can thestsibed
reconciled, and if so how?

2. Limitations of the BDI model.
One criticism of the BDI model has been that it is not well-suited to cetygias
of behaviour. In particular, the basic BDI model appears to be inapiatepior
building systems that must learn and adapt their behaviour — and suemsyate
becoming increasingly important. Moreover, the basic BDI model givearoli-
tectural consideration to explicitly multi-agent aspects of behaviowreMecent
architectures, (such as InteRRaP [13] and TouringMachines [5]) do ekpficit-
vide for such behaviours at the architectural level. So, is it necessaanfagent
model in general (and the BDI model in particular) to provide for suclesypf
behaviour (in particular, learning and social ability)? If so, how carBBé model
be extended to incorporate them? What other types of behaviour aregné&san
architectural level from the BDI model?

3. Next steps.
What issues should feature at the top of the BDI research agenda? How can the
relationship between the theory and practice of the BDI model be bettersinddr
and elaborated? Programming paradigms such as logic programming have well
defined and well-understood computational models that underpin them3eLm.
resolution); BDI currently does not. So what sort of computationatiehonight
serve in this role? What are the key requirements to take the BDI mautelttne
research lab to the desktop of the mainstream software engineer?

3 Response by Georgeff

The point | wanted to make in this panel was that the notions of contplend change

will have a major impact on the way we build computational systems, teatdsoftware
agents — in particular, BDI agents — provide the essential components ngcessar
cope with the real world. We need to bring agents into mainstream compigercs,

and the only way we can do that is to clearly show how certain agent architectures can
cope with problems that are intractable using conventional approaches.



Usability

Uncertainty
Opportunistic
Dynamic
Parallel/Interactive

Procedural

Context sensitive

Complexity
o) Y
%0 o@/ /oo OOO
(2 <@ (S 2
Q Xy 2,
2 2. o, 7
oY e %’/)
) °k (]
g //‘& I
T %,

% Q’%y
A
S

Fig. 1. Business Drivers

Most applications of computer systems are algorithmic, working wétffiget infor-
mation. But in a highly competitive world, businesses need systesmaté much more
complex than this — systems that are embedded in a changing world, with @aecess
only partial information, and where uncertainty prevails. Moreover ftequency with
which the behaviour of these systems needs to be changed (as new indoromaties
to light, or new competitive pressures emerge), is increasing dramatioadjyiring
computer architectures and languages that substantially reduce the coyrgbekiime
for specification and modification. In terms of Figure 1, business needtriaireg to
the top right hand corner, and it is my contention that only softwaretagem really
deliver solutions in that quadrant.

As we all know, but seem not to have fully understood (at least in thephagi-
cists have) the world is complex and dynamic, a place where chaos is tinematrthe
exception. We also know that computational systems have practical longatvhich
limit the information they can access and the computations they can peGanmen-
tional software systems are designed for static worlds with perfeatlatge — we
are instead interested in environments that are dynamic and uncertain (dc); et
where the computational system only has a local view of the world ffies. Jimited ac-
cess to information) and is resource bounded (i.e., has finite commahtasources).
These constraints have certain fundamental implications for the debidpe ainder-
lying computational architecture. In what follows, | will attempt to shihat Beliefs,
Desires, and Intentions, and Plans are an essential part of the state of stechssy

Let us first consider so-called Beliefs. In Al terms, Beliefs represent keyé of
the world. However, in computational terms, Beliefs are just some Wagpoesenting
the state of the world, be it as the value of a variable, a relational datatwasymbolic
expressions in predicate calculus. Beliefs are essential because the wayfhisic
(past events need therefore to be remembered), and the system only has eeVocdl v



the world (events outside its sphere of perception need to be remembdmdpver,
as the system is resource bounded, it is desirable to cache importamatian rather
than recompute it from base perceptual data. As Beliefs represent (possipbrfect
information about the world, the underlying semantics of the Beliefiponent should
conform to belief logics, even though the computational representaded not be
symbolic or logical at all.

Desires (or, more commonly though somewhat loosely, Goals) forhanessen-
tial component of system state. Again, in computational terms, a Goal mmgjysbe
the value of a variable, a record structure, or a symbolic expressisonie logic. The
important pointis that a Goal represents some desired end state. Comatntimputer
software is "task oriented” rather than "goal oriented”; that is, each task (wostine)
is executed without any memory of why it is being executed. This meanshiai/s-
tem cannot automatically recover from failures (unless this is explicittieddoy the
programmer) and cannot discover and make use of opportunities as thqyeatexly
present themselves.

For example, the reason we can recover from a missed train or unexpectedsflat tyr
is that we know where we are (through our Beliefs) and we remember to wieere
want to get (through our Goals). The underlying semantics for Gaa¢spiective of
how they are represented computationally, should reflect some logicioé des

Now that we know the system state must include components for BelidiSaals,
is that enough? More specifically, if we have decided upon a course of gtaitm
call it a plan), and the world changes in some (perhaps small) way, whaldsiveu
do — carry on regardless, or replan? Interestingly, classical decisionytibags we
should always replan, whereas conventional software, being task-orienteds @ar
regardless. Which is the right approach?

Figure 2 demonstrates the results of an experiment with a simulatettrging to
move around a grid collecting points [11]. As the world (grid) isydmic, the points
change value and come and go as the robot moves and plans — thus a plan is never
good for long. They axis of the graph shows robot efficiency in collecting points xhe
axis the speed of change (i.e., the rate at which the points in the grithanging). The
“cautious” graph represents the case in which the system replans at every ¢bange
as prescribed by classical decision theory), and the “bold” graph in whichytstem
commits to its plans and only replans at "crucial” times. (The case of commreiti
software, which commits to its plans forever, is not shown, but gibidher efficiency
than classical decision theory when the world changes slowly, but rapatigroes
worse when the world changes quickly). In short, neither classical dadis@ory nor
conventional task-oriented approaches are appropriate — the system needsiit co
to the plans and subgoals it adopts but must also be capable of recamyitherse at
appropriate (crucial) moments. These committed plans or procedures are rattesl
Al literature, Intentions and represent the third necessary component of system state.
Computationally, Intentions may simply be a set of executing threadprocess that
can be appropriately interrupted upon receiving feedback from the possialyging
world.

Finally, for the same reasons the system needs to store its currentidnte(that
is, because it is resource bound), it should also cache generic, parameterizefbPlan
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Fig. 2. Rational Commitment

use in future situations (rather than try to recreate every new planffretiprinciples).
These plans, semantically, can be viewed as a special kind of Belief, but betthese o
computational importance, are sensibly separated out as another componestent s
state.

In summary, the basic components of a system designed for a dynamictaimcer
world should include some representation of Beliefs, Desires, latentind Plans, or
what has come to be called a BDI agent. | have said here nothing about the wiigh
these components are controlled and managed, which is of course cruciahtaytire
which BDI agents cope with uncertainty and change in a way that is not posgib
conventional systems. There is much in the literature about this, angdiffarent and
interesting approaches.

Finally, because of the logical or physical distribution of informaatand process-
ing, itis important that agent systems be distributed, givingtds®-called multi-agent
systems. Apart from the usual benefits provided by distributed sgstaniti-agent sys-
tems also have the substantial benefit of containing the spread of untestédin each



agent locally dealing with the problems created by an uncertain and changirdy worl

4 Response by Pollack

| want to begin by clarifying the distinction between three things:

— Models of practical reasoning that employ the folk-psychology concegislaf,
desire, and intention, perhaps among others. Let's call these Belief-Det@rdion
(BDI) models.

— Particular BDI models that center on claims originally propounded by Bxatfh]
about the role of intentions in focusing practical reasoning. Specifidattman
argued that rational agents will tend to focus their practical reasoning oimthe
tentions they have already adopted, and will tend to bypass full coasioierof
options that conflict with those intentions. Let’s call this BratmaZiaim, and let’s
call computational models that embody this claim IRMA models (for theelliat
gent Resource-Bounded Machine Architecture” described in [2]).

— The Procedural Reasoning System (PRS) [7, 6], a programming envirofonent
developing complex applications that execute in dynamic environmedtsam
best be specified using BDI concepts.

One can reject Bratman'’s Claim, but still subscribe to the view that Bbdlefs
are useful; the converse, of course, is not trdend while it is possible to build a PRS
application that respects Bratman’s Claim — indeed, as mentioned in theuiation,
several successful applications have done just this — it is also p@ssibuild PRS
applications that embody alternative BDI models. It is up to the desigharPRS
application to specify how beliefs, desires, and intentions affect and anenmcéd by
the application’s reasoning processes; there is no requirement that geescations
conform to Bratman'’s Claim.

The questions set out in the Introduction might in principle beedsi each of the
three classes of entity under consideration: BDI models, IRMA modeBR&-based
applications. However, | think it makes the most sense here to intahmet as being
addressed at IRMA models, in part because these are the most specific ofethe th
classes (it would be difficult to address all BDI models within a few ppgasl in part
because IRMA models have received significant attention within the Al cariyu
both in their realization in several successful applications, and in a nunfilbetailed
formal models.

Bratman’s Claim addresses at a particular, albeit central, question in praetieal r
soning: how can an agent avoid getting lost in the morass of optioesfion available
to it? The formation of intentions and the commitments thereby entailed are seen as

1 However, one could reject all BDI models, including IRMA snarguing that they have no
explanatory value. The debate over this question has rage iphilosophical literature; see,
e.g., Carrier and Machamer [3, Chap. 1-3].

2 Bratman actually came at things the other way round. He wenbehy humans formed in-
tentions and plans, and concluded that doing so providems thi¢h a way of focusing their
practical reasoning.



mechanism — possibly one amongst many — for constraining the setiohs@bout

which an agent must reason. Practical reasoning tasks such as means-end reasoning
and the weighing of alternatives remain important for IRMA agents. BMARgents’
intentions help focus these reasoning tasks.

In response to the first question posed, then, it seems clear that bothr&btre
utility maximization models include importantideas that can potentisdlintegrated in
an IRMA agent. As just noted, IRMA agents still need to perform means-enadnieas
(in a focused way), and Soar, with its chunking strategies, can make thesrapdn
reasoning process more efficient. Again, IRMA agents still need to weignattees
(in a focused way), and to do this they may use the techniques studiee literature
on economic agents. It has been generally accepted for many years that agents cannot
possibly perform optimizations over the space of all possible cowkastion [17].
Bratman’s Claim is aimed precisely at helping reduce that space to make theeckqui
reasoning feasible.

The second question concerns the development of techniques to enable IRkt ag
to learn and to interact socially. Certainly, if Bratman’s Claim is a viabie,dhen it
must be possible to design IRMA agents who can learn and can interact widmene
other. However, all that is required is that Bratman’s Claim be compatiltle(some)
theories of learning and social interaction: Bratman’s Clagalf does not have to tell
us anything about these capabilitie$o date, | see no evidence that there is anything
in either Bratman’s Claim or its interpretation in IRMA models that wbalake an
IRMA agent inherently poorly suited to learning or social interaction.

The third question asks about an appropriate research agenda for threrested
in IRMA models. What seems most crucial to me is the development of c@tiqoor
ally sound accounts of the various practical reasoning tasks that mustfbenpest by
IRMA agents. There has been a great deal of attention paid to questions oftroemmi
and intention revision, and this is not surprising, given thatdtepgestions are central
to Bratman’s Claim. But there are other reasoning tasks that all IRMA ageunss
perform as well. For example, they must deliberate about alternatives thafither
compatible with their existing plans or have “triggered an overrid@; [2cently, John
Horty and | have been developing mechanisms for weighing alternativle icontext
of existing plans [10]. Another example is hinted at in my earlier commexil IRMA
agents need to be able to perform means-end reasoning. But unlike staretard-m
end reasoning in Al (plan generation), an IRMA agent must do this reastetingy
account its existing plans. Work on plan merging, notably that of Y48}, jnay be rel-
evant here. One final example: IRMA agents must be capable of committiragtialp
plans. If they were required always to form complete plans, they wousdd-commit,
and filter out too many subsequent options as incompatible. But thisethiaiis that
IRMA agents must have a way of deciding when to add detail to their egiptans—
when to commit to particular expansions of their partial plans. To myadge, this
guestion has not been investigated yet.

In addressing questions like these, we need to focus, at least for nowe atet
velopment of computationally sound mechanisms: algorithms and hesiribat we

3 However, it might contribute to them; see, e.g., Epheadl. [4] for some preliminary work on
using the intention-commitment strategy in multi-agerttisgs to increase cooperation.



can employ in building IRMA agents (perhaps using PRS!) Formal und&ngs can,
and if at all possible, should accompany these mechanisms, but unlessttepin
specific algorithms and heuristics they seem unlikely to have much impact.

5 Response by Tambe

| was invited on this panel as a representative of the Soar group witlcylartinterests
in multi-agent systems. Thus, in this short response, | will maiatus on the rela-
tionship between Soar and BDI models. For the sake of simplicity, epe@g&sumption
in my response is considering PRS, dMARS, and IRMA to be the paradigBbt
architectures. Of course, it also should be understood that despite elwetyears of
research using Soar, | alone cannot possibly capture all of the diversé\setvs of
Soar researchers.

I will begin here by first pointing out the commonality in Soar andIBBodels.
Indeed, the Soar model seems fully compatible with the BDI architecturesaned
above. To see this, let us consider a very abstract definition of the Soal.nSaar is
based on operators, which are similar to reactive plans, and states (whiactdritd
highest-level goals and beliefs about its environment). Operators afiiegl by pre-
conditions which help select operators for execution based on an agent'st@iaten
Selecting high-level operators for execution leads to subgoals and thiesaachical
expansion of operators ensues. Selected operators are reconsidered if thie@tion
conditions match the state. While this abstract description ignoresfisant aspects
of the Soar architecture, such as (i) its meta-level reasoning layer, ants (fijghly
optimized rule-based implementation layer, it will sufficient for the safkaefining an
abstract mapping between BDI architectures and Soar as follows:

1. intentionsare selected operators in Soar;

2. beliefsare included in the current state in Soar;

3. desiresare goals (including those generated from subgoaled operators); and

4. commitment strategiesre strategies for defining operator termination conditions.
For instance, operators may be terminated only if they are achieved, unaitleiev
or irrelevant.

Bratman'’s insights about the use of commitments in plans are appliceBbar as well.
For instance, in Soar, a selected operator (commitment) constrains thepeestars
(options) that the agent is willing to consider. In particular, theragor constrains the
problem-space that is selected in its subgoal. This problem-space irdostrains
the choice of new operators that are considered in the subgoal (unlegssituation
causes the higher-level operator itself to be reconsidered). Intergstiugh insights
have parallels in Soar. For instance, Newell has discussed at lengthetaf pybblem
spaces in Soar.

Both Soar and BDI architectures have by now been applied to several large-scale
applications. Thus, they share concerns of efficiency, real-time, and sitalabihrge-
scale applications. Interestingly, even the application domains haveoaéslapped.
For instance, PRS and dMARS have been applied in air-combat simulatioch) vghi
also one of the large-scale applications for Soar.



Despite such commonality, there are some key differences in Soar and Bi2isno
Interestingly, in these differences, the two models appear to complement thacis o
strengths. For instance, Soar research has typically appealed to cognithrmlogy
and practical applications for rationalizing design decisions. In contBd3t,archi-
tectures have appealed to logic and philosophy. Furthermore, Soar bagaien an
empirical approach to architecture design, where systems are first consandtedme
of the underlying principles are understood via such constructedmgstThus, Soar
includes modules such as chunking, a form of explanation-based |leaamith@, truth
maintenance system for maintaining state consistency, which as yet appeaale b
sent from BDI systems. In contrast, the approach in BDI systems appdaggadirst
clearly understand the logical or philosophical underpinnings and thidshdystems.

Based on the above discussion, it would appear that there is tremendpeseco
interaction in the Soar and BDI communities, with significant oppatiemfor cross-
fertilization of ideas. BDI theories could potentially inform and enrich Soar model,
while BDI theorists and system builders may gain some new insigits $oar’s exper-
iments with chunking and truth maintenance systems. Yet, there is artwmdte lack
of awareness exhibited in both communities about each others’ researchangerd
here is that both could end up reinventing each others’ work in differeguises.

In my own work, | have attempted to bridge this gap, roughly basetd®miapping
defined above. For instance, Cohen and Levesque’s research on joint int¢b#ihns
and Grosz and Kraus's work orHBREDPLANS [9] has significantly influenced the
STEAM system for teamwork, which | have developed in Soar. However, thisione
such attempt. This panel discussion was an excellent step to attempt te thrisigap
in general.
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