
Finding a Needle in a Haystack:
From Baldwin Effect to Quantum Computation

Brest State Technical University
Moskowskaja 267, Brest 224017 Republic of Belarus

akira@bsty.by

Abstract

If we want to break someone else’s PIN – Personal Identi-
fication Number – of, say, an ATM – Automated Teller
Machine –, how many trials would be necessary when
we want to be efficient? This is a sort of what we call
a-needle-in-a-hay-stack problem. In 1987, in their sem-
inal paper, Hinton & Nowlan proposed a Genetic Al-
gorithm with a needle being a unique configuration of
20-bit binary string while all other configurations being
a haystack. What they proposed was to exploit a life-
time learning of individuals in their Genetic Algorithm,
calling it the Baldwin effect in a computer. Since then
there has been a fair amount of exploration of this ef-
fect, claiming, ”This is a-needle-in-a-hay-stack problem,
and we’ve found a more efficient algorithm than a ran-
dom search.” Some of them, however, were found to be
the results of an effect of like-to-hear-what-we-would-
like-to-hear. In this talk, we will try a bird’s eye view
on a few examples we have so far, and how they were
explored, including the approach by means of quantum
computation which claims, ”The steps to find a needle
are O(

√
N) while those of exhaustive search by a tra-

ditional computer are O(N) where N is the number of
search points.”

I. Introduction

Usually in an ATM – Automated Teller Machine or in a
private web page, we need to show our PIN – Personal
Identification Number, and for the security reason we
are allowed to try inputs just a couple of time, typically
three times. So it might interest us how many times
would be necessary if we are allowed to repeat a trial-
and-error procedure until we reach the legitimate num-
ber? Though typically PIN is a 4-digit decimal, we now
assume n-bit binary PIN. Let me show two really simple
strategies, that is, (i) random search and (ii) exhaustive
one-by-one search. In Fig. 1, results of both strategies
as for the number of trials until we find a hidden and
unique PIN, averaged after 100 runs as a function of n.
In both cases we see the number of trials explode expo-
nentially as number of bits increases. The motivation of
this paper is to argue if we have more efficient strategies

or not.

0

5

10

15

20

25

30

5 10 15 20 25
Number of bits

Nu
m

be
r o

f in
div

idu
als

 w
ho

 tr
ied

10
6

x

0

5

10

15

20

25

30

5 10 15 20 25

Number of bits

Nu
m

be
r o

f in
div

idu
als

 w
ho

 tr
ied

6
x10

Fig. 1. Top: The number of trials needed to find out a hidden and
unique PIN, averaged after 100 runs as a function of n. Bottom: A
result by a random search. Right: An exhaustive search one by one.

II. Baldwin Effect

It was Hinton & Nowlan [1] who firstly proposed com-
putational model of the Baldwin Effect. It was in 1987.
The scenario was exactly the same as above mentioned
PIN breaking. What they proposed was a lifetime learn-
ing of each of the individuals in an algorithm based on
population search. That is, each individual has adaptive
genes in addition to the original 0’s and 1’s. Let’s denote
it here as 9’s. For example, the individual is like:

(01100900099110011901).



Then each individual is allowed to assign 0 or 1 at the
location where 9’s are, which is referred to as learning of
individual. Individuals are allowed to try this learning,
say, 1000 times in their lifetime. If, by chance, individ-
ual matches to the needle, then the number of learnings
before the success is the fitness of the individual. This
might be called the Baldwin effect. It has attracted,
and is still attracting, many computer scientists. In
2005, Mills & Watson [2] made a more deeply analyt-
ical approach to the issue. They analyzed in exactly
the same universe as the one Hinton & Nowlan explored
almost two decades ago, while many others saw the phe-
nomenon or applied the model to a more sophisticated
problems, and later, in 2006, Mills & Watson extended
the study to a more complex but still a simple universe
of two needles whose length is different with each other
on a completely flat plateau [3]. What is the Baldwin
effect more specifically? Mills & Watson clearly sum-
marized, “The Baldwin Effect indicates that individually
learned behaviors acquired during an organism’s lifetime
can influence the evolutionary path taken by a popula-
tion, without any direct Lamarckian transfer of traits
from phenotype to genotype. ... Our knowledge of mod-
ern genetics suggests that an organism’s lifetime adap-
tations cannot influence the course of evolution because
learned characteristics do not change ones own genes.
... The hypothesis appears very similar to Lamarck’s
disproved beliefs that an acquired trait is directly inher-
ited by offspring.”

A. Discussion in this Section

Hinton & Nowlan showed that the number of genes
whose value is 9 reduced over time of evolution. From an
engineering point of view, however, this is not interest-
ing any more. Why? Because it implies that we already
knew the secret PIN if at least one of those individuals
reached the needle in the first generation. It is enough.
The top graph in Fig. 2 with filled circles shows the ef-
fect of lifetime learning in the initial population. We can
see enormous reduction of the number of individuals un-
til the needle is firstly found. But, alas, if we count the
total number of points which are visited by any of those
individuals during their lifetime learning, then we realize
the result is almost the same as the random search. In
fact, the time needed to reach the needle is almost the
same in all those three cases; that is, random search,
exhaustive search, and search by lifetime learning.

III. Neutral Mutation on Intron

A. Reduced Even-n-Parity Problem

Even-n-parity problem is a classic benchmark problems
in evolutionary computation research. Given any n-bit
binary input, it returns 1 if the number of 1 of the input

is even, otherwise it returns 0. Assume now we are con-
structing a population of candidate solutions of even-n-
parity logic circuit only by using XOR and EQ Boolean
functions, which is called a reduced even-n-parity prob-
lem. We can evaluate each of those candidate solutions
by giving it all possible combinations of n-bit binary
string one by one. When we check each result of whether
the output is correct or not, we will notice that there are
only three cases: (i) all of the results for those 2n test
cases are correct; (ii) a half of the results are correct,
and (iii) all are incorrect.

The number of all possible candidates when we are al-
lowed to use either of XOR and EQ gates from 1 up to
N will be

N∑

i=1

2ini+1.

The number of solutions are analytically given by Collins
[4]. For n = 12, for instance, the author wrote the num-
ber of solutions is 2.568 × 10134 while the number of all
possible candidates is 1.315 × 10142 when we use up to

0

10000

20000

30000

40000

50000

5 10 15 20 25

Nu
m

bb
er

 o
f i

nd
ivi

du
al

s 
wh

o 
tri

ed

Number of bits

0

5

10

15

20

25

30

5 10 15 20 25

Nu
m

bb
er

 o
f t

ot
al

 p
oi

nt
s 

vis
ite

d

Number of bits

x10
6

Fig. 2. Top: The total number of individuals until one of them reaches
to the needle (filled circle). Bottom: The total number of points vis-
ited by any individuals during its lifetime learning until one of them
reaches to the needle (filled circle). The same set of data of number of
individuals who made random search shown in Fig. 1 is also in both
figures for comparisn purpose (partly filled circle). Note the scale of
y-axis of the top figure was totally different from others.



100 gates of either XOR or EQ. That is to say, the ra-
tio of solutions in the search space is 0.00042%. So we
might say the solutions are like needles in a haystack.

Then we have a very interesting discussion described in
the following two subsections.

B. Finding Needles in Haystacks is Not Hard with
Neutrality?

In 2002, Yu and Miller [6] applied Cartesian Genetic
Programming (CGP) [7] to the even-n-parity problem.

Algorithm 1 (Candidate Creation in CGP)

(1) Create 100 gates of XOR or EQ at random.
(2) Select randomly one output gate out of those 100

gates created.
(3) From one gate to the next, set the two input con-

nections to either of the output line previously set
gate or one of the n input lines at random.

Let me show an example, paraphrasing the one from
Yu & Miller’s paper [6], assume now we create 6 gates
instead of 100 just for the sake of simplicity. The gate
is numbered a, b, c, d, e, f, and the gate f is the output
unit. Then a genotype will be

((EQ, 1, 2)a(EQ, 3, a)b(XOR, a, a)c

(XOR, b, 3)d(EQ, 4, c)e(EQ, d, 4)f=out).

The phenotype of this example genotype is

1 EQ 2 EQ 3 XOR 4 EQ 5.

Note that the 3rd gene c and the 5th gene e do not
contribute to construct the phenotype, and hence these
are called introns. As you might notice that this CGP
representation inevitably includes introns. Mutation of
the intron will have no effect on the phenotype and this
is why the mutation is called neutral.

By running an evolutionary algorithm with one parent
and 4 offspring, the authors showed this neutral mu-
tation on the intron enhances the ability to search for
the solutions. To be more specific, with the maximum
number of gates being 100 and the maximum iteration
being 10,000, carefully tuned 48 CGP runs out of 100
for n = 12 find a solution (48%), while a random search,
that is, any randomly generated 4,000,000 candidates for
n = 12, were not solutions (0%).

C. Finding Needles in Haystacks is Harder with
Neutrality?

Collins doubted the result of the paper by Yu and Miller
in the above subsection. In his paper, he argued that
10,000 iterations with 4 offspring are a sample of at most

40,000 points in the search space [5]. The CGP Yu &
Miller reported for n = 12 results in all EQ gates, and
the solution density in the case of 12 parity with one
type of gate is 0.003756%. Hence an expected success
rate should be

1 − (1 − 0.00003756)40000 = 0.778

and as such, Yu & Miller’s average success rate of 48%
mentioned above might be said not to be a good one. He
proposed a random sampling of candidates as follows.

Algorithm 2 (Randomly sampling non-CGP rep-
resentations)

(1) Create 100 random gates either from XOR or EQ.
(2) Set the output to the 100-th gate.
(3) For each gate:

(i) Set the type of the gate to either XOR or EQ
at random.

(ii) Set one of the input connection of the gate to
the previous gate.

(iii) Set the other input connection to a randomly
selected input line.

(4) Repeat (3) up to N.

Then author wrote, “We recorded 0.0204% success from
a sample of 10 million trials.” Notice that this result was
without an evolution where Yu & Miller’s didn’t find any
solutions in 40 million trials.

D. Discussion in this Section

XOR XOR XOR XOR XOR XOR XOR XOR XOR XOR XOR XOR XOR XOR XOR

2

1

3 4 5 6 7 8 9 10 11 12 13 14 15 16
out

Fig. 3. An example of solutions of reduced even-16-parity found by a
human not by a computer algorithm.

XOR

XOR
XOR

XOR

XOR
XOR

XOR

XOR
XOR

XOR

XOR
XOR

XOR

XOR

XOR

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

out

Fig. 4. Yet another example of solutions of reduced even-16-parity.



Collin’s logic seems to be clear. However, what about
the condition of “the number of gates up to 100?” Al-
though he also admitted and wrote, “This sampling
method is also not ’fair’ – it over samples short func-
tions as well,” the situation would be worse than that.
Implication of Yu & Miller’s paper is that the solutions
will be no more possible to be found for n larger than
12. And the list in the Collin’s paper regarding the den-
sity of the solutions in the search space was limited to
n < 16. However, just a brief consideration shows it’s
really easy to find one of the simplest solutions even for
n = 16 as shown in the Fig. 3 and 4. Or even for much
bigger n. Those are simply the first and second trials
on the paper by me as a human, not by an computer
algorithm. Theoretically, Yu & Mille’s method of creat-
ing initial population could produce both of these two
simple solutions, because intron could make some gates
inactive, but not so likely or rather few. Collin’s way,
on the other hand, will never create both of these two.
Though it is frequently said that an evolutionary algo-
rithm can create sophisticated solutions that a human
could not, The above is of opposite case.

IV. Search by Quantum Random Walk

0

5

10

1.5

20

25

30

0

 10
6

4000000 8000000 12000000 16000000

x

Nu
mb

er
 of

 in
div

idu
als

 w
ho

 tr
ied

Fig. 5. Plots of the points already shown in the top of Fig. 1, but this
time against the total number of points in the corresponding search
space not against the number of bits.

Fig. 6. A fictitious plot of the Grover’s Quantum algorithm to search
for a needle in a haystack.

Back in 1997, Grover [8] proposed an algorithm exploit-

ing concepts in quantum mechanics to search for a needle
in a haystack more efficiently than a traditional compu-
tation. As previously mentioned, we don’t know essen-
tially more efficient algorithm to search for a needle in a
haystack than the one whose complexity is O(N) where
N is the number of points in the whole search space. For
example, we can see the complexity is O(N) as shown
in Fig. 6 if we plot the data already shown in Fig. 2 as a
function of number of points of the search space instead
of the number of bits.

Grover’s proposed algorithm was proofed to be able to
search for the needle with a complexity of O(

√
N) as

shown in the fictitious graph in Fig. 6. However, practi-
cal quantum computer hardware has never existed yet.
Up to now, all we have had are just a few toy imple-
mentation of quantum computers.1 Nevertheless, argu-
ments regarding the possibility of quantum algorithms
becomes more and more active these days. Concerning
the topic of this paper – search for a needle – see, for
example, Kempe’s wonderful introductory overview of
quantum random walks. The author wrote, ”We will
give a thorough introduction to the necessary terminol-
ogy without overburdening the reader with unnecessary
mathematics.”

Let me stop now since we are running out of space and
time. Hoping to have a hot and useful discussion on this
topic in the session at Elk.

References

[1] G. E. Hinton, and S. J. Nowlan “How Learning Can
Guide Evolution.” Complex Systems, Vol. 1, 1987,
pp. 495–502

[2] R. Mills, and R. A. Watson “Genetic assimilation
and canalization in the Baldwin effect.” In Proceed-
ings of the European Conference on Artificial Intel-
ligence, 2005, pp. 353-362.

[3] R. Mills, and R. A. Watson ”On Crossing fitness
Valleys with the Baldwin Effect.” In Proceedings of
Artificial Life X, 2006, pp. 493–499.

[4] M. Collins “ Counting Solutions in Reduced
Boolean Parity.” In Workshop Proceedings of the
Conference on Genetic and Evolutionary Compu-
tation, 2004, pp. 26–30.

[5] M. Collins “Finding Needles in Haystacks is Harder
with Neutrality.” In Proceedings of the 2005 Con-

1 At the moment I wrote this paper, I found an article in New York
Times which read “D-Wave, a start-up company in Burnaby, British
Columbia, demonstrated ’the world’s first commercial quantum com-
puter’ in February.” But many Physicists and Computer Scientists
are still fishy about that. The head line was “A Giant Leap Forward
in Computing? Maybe Not. If a ’practical quantum computer’ had
been built and demonstrated, it would be a wonderful thing.” — New
York Times on 8th March 2007 by Jason Pontin.



ference on Genetic and Evolutionary Computation,
2005 pp. 1613 – 1618.

[6] T. Yu, and J. Miller “Finding Needles in Haystacks
Is Not Hard with Neutrality.” In Proceedings of
the European Conference on Genetic Programming,
LNCS 2278, Springer, 2002, pp. 13–25.

[7] J. F. Miller, and P. Thomson “Cartesian genetic
programming.” In Proceedings of the European
Conference on Genetic Programming, LNCS 1802,
Springer, 2000, pp. 121–132.

[8] L. K. Grover “Quantum Mechanics helps in search-
ing for a needle in a haystack.” Physical Review
Letter, Vol. 79, 1997, pp. 325–328.

[9] J. Kempe “Quantum Random Walks – An Intro-
ductory Overview.” Contemporary Physics, Vol. 44
Issue 4 (Preprint quant-ph/0303081), 2003, pp. 307-
327.


