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Generalized Transformation Form 

Abstract  

Paper presents application of generalized transformation form for information encryption. It 

allows encryption of multiple information with different keys in one data sequence, and its 

decoding depends on access to key. Fact that two keys can be used to decode the same 

information, one key can be the public key and the other private key 

Keywords: transformation forms, cryptography, encryption and decryption algorithm 

Introduction  

Transforms play a crucial role in various branches of science. In image processing, its 

2D forms are used for filtration, selection of features for recognition, etc1. There is a 

multitude of various 2D transforms2: e.g. Fourier, cosine, wavelet, Hadamard. 

                                                 
1 J. S. Lim: Two-dimensional signal and image processing – Englewood Clifs, Prentice-Hall International Inc., 1990 
2 A. K. Jain: Fundamentals of Digital Image Processing – Englewood Clifs, Prentice-Hall International Inc., 1989 



Transforms can be introduced in different ways. For discrete transforms used in image 

processing, one possibility is open by vector calculus. In vector calculus transforms can be 

treated as transformations of the coordinate system. Transformation of coordinate system 

changes components of all vectors, related to this system. In this interpretation, transform can 

be viewed as “algorithm” for calculation of “new” coordinates based on “old” ones. 

In tensor calculus it is possible to express such transformation of coordinates without 

reference to specific coordinate system – in form that could be called general form of 

transformation. Paper presents this general form of transformation, method on deriving its 

parameters and some practical applications. 

Transformation of coordinates 

Given is the set of linearly independent vectors, forming affine coordinate system 

n
e,,e,e

21
K . Coordinates of any vector x  relative to this coordinate system can be expressed 

as3: 
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In conformance with conventions used in tensor calculus, subscripts designate the 

consecutive vector’s numbers, right subscripts – coordinates of covariant vectors, and right 

superscripts – coordinates of contravariant vectors. 
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Matrix 
j

iA '  denotes the transformation matrix of coordinate system n
e,,e,e

21
K

 into 

coordinate system 
'e,,'e,'e
''2'1 n

K
. For any transformation matrix of coordinate system 

j
iA '  there 

is such transformation matrix of coordinates 
'i

jA , that we have5: 

                                                 
3 P. K. Raszewskij: Rimanowa geometrija i tenzornyj analiz – Moskwa, Nauka, 1964 
4 P. K. Raszewskij: op. cit. pp 11 
5 E. Karaśkiewicz: Zarys teorii wektorów i tensorów – Warszawa, PWN, 1974 
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This matrix allows to calculate coordinates of the vector in respect to coordinate system 

n
e,,e,e
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, based on its coordinates in respect to system 
'e,,'e,'e
''2'1 n

K 6: 
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Expression (4) is generalized form of discrete transformation. Filling in the matrix of 

coordinate transformation 
'i

jA  with relevant values, we can obtain any discrete transformation. 

Forming the transformation matrix based on given basis functions 

For given basis vectors, i.e. basis functions, we can determine the transformation 

matrix 'i
jA  finding its entries. For example, let’s check the relation of generalized form of 

transformation, with discrete 1D cosine transform, given by the formula7: 
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where 1,,1,0 −= Nn K , N  is a number of samples of analyzed signal, and ( )kα  equals to: 
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Taking that N  is a dimension of the space, formula (5) can be expressed as: 
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hence: 
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We can see, that the entries of the transformation matrix 'i
jA  contain the tabulated 

basis functions of cosine transform. 

By analogy, we can tabulate the Discrete Fourier Transform, given by the formula8:  

                                                 
6 E. Karaśkiewicz: op. cit .  
7 H. Schroeder: One- and Multidimensional Signal Processing – Chichester, John Wiley and Sons, LTD, 2000 
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and, in this case the formula (8) will have the form: 
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Similarly, tabulating the basis function of discrete transforms, we can express them in 

the form given by the formula (4). As the basis functions, we can use any set of functions 

( )xfi : 

( )ifA i
i
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' = , (11)

under the condition, that the transformation matrix 'i
iA  will have the inverse matrix i

iA ' , i.e. 

determinant ( )'det i
iA  is not vanishing. Subject to ( ) 0det ' =i

iA , set of basis function is a 

linearly dependent set. Practically, we could also use such a set, but we have to remember that 

it will be impossible to recover the original data after its transformation in such a system. An 

example of such a system is the following set of basis functions: 
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for which the transformation matrix has the form: 
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Discrete form of such transformation will result in splitting the signal into two parts. 

First part contains whole signal with reduced number of data caused by averaging, and second 

part consisting of sequence of zeros. In this case the exact recovering the original signal is not 

possible. 

Finding the transformation matrix for unknown basis functions 

Any transformation of vector coordinates in case of coordinate system given by n – 

vectors into another n - vectors coordinate system, is described by n simultaneous equations 

with n - coefficients. It gives us nn ×  unknowns contained in the matrix 'i
jA . In order to find 

the matrix 'i
jA , we must have n  vectors with known coordinates in „old” and „new” frames of 

coordinates. This will form n  sets of equations, each set consisting of n  equations: 

                                                                                                                                                         
8 A. Oppenheim, R. Schafer, J. Buck: Discrete-Time Signal Processing – International Edition 2nd Edition, 1999 
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Application of generalized transformation in cryptography 

The transformation matrix 'i
jA  allows to transform one data set into any other data set, 

under the condition of equal cardinality of both sets. Let consider example of twenty three 

elements data sequence:  

''
''

' AlicehasCatx
cathasAlicex

i

i

=
=

. (15)

Data sequence ix  is an input sequence, and 'ix  is an output sequence. In order to 

determine the transformation matrix, we must have another twenty three input and output 

sequences. Lacking sequences could be generated randomly. This will give us transformation, 

converting the sequence „Alice has cat.” into the sequence „Cat has Alice”. 'i
jA  can be treated 

as encrypted message, which to be read require the key ix , and 'ix  is the encrypted message. 

This approach has a drawback, namely that the encrypted message size is mach 

smaller than the size of transformation matrix 'i
jA . But the way of forming the transformation 

matrix 'i
jA  gives a chance to encrypt many messages with several keys. This significantly 

hamper the process of breaking the code, because without the knowledge of proper key it is 

not known, which of encrypted message is correct. From the other side, we can encrypt many 

messages devoted to different recipients, to be recognized based on possessed key. 

Finding the transformation matrix 'i
jA  without knowing all the 

i

n
x  or 

'i

n
x  is very 

difficult. However, knowing the transformation matrix 'i
jA , we can find the inverse 



transformation matrix j
iA '  evaluating the inverse matrix of 'i

jA . It is possible thus to recover 

all the keys based on knowledge of all encrypted messages. This operation is possible, 

however, when it is possible to calculate the inverse matrix of j
iA ' , i.e. subject to 

condition ( ) 0det ' ≠i
jA . If we insist on making impossible to recover the keys, based on 

encrypted messages, it suffices they form a linearly dependent set of vectors, i.e. two keys 

should decode the same message. In such a case, it is theoretically impossible to determine 

any key, based on encrypted information. 

Conclusions  

Generalized form of transformation makes possible to encrypt simultaneously many 

messages in one data sequence. Each encrypted message is related to one key. Having the 

relevant key, we can read the related message. This can significantly hinder operation of 

decoding algorithms, because we encrypt true massage as well as false message. In such case, 

it will be impossible to decide, without knowing the relevant key, which of the messages is 

true. Subject to the condition ( ) 0det ' ≠i
jA , it is not possible theoretically either to recover one 

of the key based on knowing the other key or encrypted message. 
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