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Abstract

This article is written for the purpose of
breaking the ice in the round table discus-
sion of this conference — The International
Conference on Neural Network and Artificial
Intelligence. Thus the topic of this article is,
“What is intelligence?” when we talk about
artificial intelligence in general, and artificial
neural network in particular. In the history
of the field of artificial intelligence, we have
had many arguments claiming that artificial
intelligence is not intelligent enough yet, or
not possible to be intelligent even in the fu-
ture. We take a brief look at such arguments
in the history, and then try a speculation con-
cerning if a machine intelligence is as flexible
as human intelligence, or not. Two thought
experiments with spiking neurons from this
point of view are shown following a further
consideration on a role of consciousness for
being intelligence.

1 Introduction

In the ’Star Trek’ prequel, Spock’s father tells
him, “You will always be a child of two
” urging him not to keep such a tight
And Spandery Old
Spock, known as Spock Prime, tells his younger
self: “Put aside logic. Do what feels right.” —
by Maureen Dowd, from her article in the New

York Times on 10th May 2009.

worlds,
vise on his emotions.

Once my friend, who worked in a world famous elec-
tric company as an engineer, told me, ”It’s amateur-
ish,” when I admired a food in a Chinese restaurant
telling him, ”It’s really wonderful that they cook ev-
ery time in a slightly different way whenever I order
the same one, and every time it’s delicious.” He told
me, ”Real professional should cook exactly the same

way every time.”

McClelland, one of the authors of the seminal book
"Parallel Distributed Processing’ (Rumelhart and
McClelland, 1986)!, who had started the book by
asking, “Why are people smarter than machines?”
asked more than two decades later, “Is it still true
that people are smarter than machines? And if so:
Why?” in his paper entitled ’Is a machine real-
ization of truly human-like intelligence achievable?’
(McClelland 2009).

Quite pessimistic. However, as far as its applica-
tion to industry is concerned, the state of the art
of machine intelligence reaches an impressive level
nowadays. But what is human-like intelligence?

Assume, for example, we are in a foreign country
where we are not so conversant in its native lan-
guage, and assume we ask, "Pardon?” to show we
have failed to understand what they were telling us.
Then intelligent people might try to change the ex-
pression with using easier words so that we under-
stand this time, while others, perhaps not so intel-
ligent, would repeat the same expression, probably
with a little louder voice.

Or, what if your canary stops singing? In Japan,
we have legendary three different strategies for this:
(i) Wait until she sings again; (ii) Do something so
that she sings again; and (iii) Kill her if she doesn’t
sing any more. A good suggestion to be intelligent,
however, might be “Be always flexible. Don’t stick
to one strategy even if you encounter a similar event
as you met before.”

This conference names ” Artificial Intelligence and
Neural Network,” expecting an establishment of ar-
tificial intelligence by means of neural network. In

1The book introduced the connectionist model of cognition
by means of neural networks. Also known by its abbreviation
of PDP.



fact, we have had lots of successful reports proudly
declaring we have designed an intelligent machine.
Then question arises. What is intelligence? Some
of what they call an intelligent machine perform the
given task much more efficiently, effectively, or pre-
cisely than human. However we human are not usu-
ally very efficient, effective nor precise, but rather
spontaneous, flexible, unpredictable, or even erro-
neous sometime.

What we expect when we address a human-like in-
telligence is, a behavior not exactly the same one as
before even in a same situation.

Assume a neural network that has a fixed configura-
tion of synaptic strengths. It will repeat exactly the
same action whenever it comes across the same situ-
ation as the one in which the neural network learned
the action. However may it be a very sophisticated
one, could we call it an intelligent behavior? This is
the main topic of this article.

Before we proceed into this topic, let’s take a brief
look at what happened in the artificial intelligence
community’s history.

2 What is intelligence?

As when Drefus asks "How can a determi-
nate process give rise to experienced indeter-
minacy?” (Phenomenology) one could equally
well ask: ”How can small neural activity give
rise to experienced largeness or blueness or
anger?” and so reject neurology as well as Ar-
tificila Intelligence. - from MIT Artificial In-
telligence Memo. No. 154. by Seymour Pa-
pert.

Is Artificial Intelligence intelligent?

In fact, the topic is not a new at all. As long ago
as the 1960’s, in an early days when the research
area of artificial intelligence just started to attract
people’s interests, Hubert Dreyfus (1964) posed a
harsh criticism in his paper ’Alchemy and Artificial
Intelligence.’

What then was the reaction of artificial intelligence
community? Seymore Papart, one of the founders
of the field of artificial intelligence, rebuffed Drey-
fus’ claim in his article "The Artificial Intelligence
of Hubert L. Dreyfus: A budget of Fallacies.”?

2Also available at http://dspace.mit.edu/bitstream/
handle/1721.1/6084/AIM-154.pdf?sequence=2, with a stump
"Draft — Not for distribution.’ on it.

Papert started the dispute by writing, “In December
1965 a paper by Hubert Dreyfus revived the old game
of generating curious arguments for and against Ar-
tificial Intelligence.” Papert continued to write his
motivation as, “What does affect me is that so many
people praise his papers because they like his conclu-
sions, and show no concern for the quality of his
arguments.”

The other founders of the field of artificial intelli-
gence, such as Herbert Simon and Alan Newell, also
strongly rebuffed. Or, Edward Feigenbaum wrote,
“What does he offer us? Phenomenology! That ball
of fluff. That cotton candy!” Otherwise ignored like
Marvin Minsky who wrote, “They misunderstand,
and should be ignored.” See McCorduck (2004) who
descrived well about this rivalry between the two
parties in her book.

When Dreyfus expanded ’Alchemy and Artificial In-
telligence’ and published as a book titled 'What
Computers Can’t Do?’ in 1972, no one from the ar-
tificial intelligence community responded any more.
Nevertheless, Dreyfus kept his criticism. The 3rd ed-
dition was published by changing the title to 'What
Computers still Can’t Do: a critique of artificial rea-
son’ (Dreyfus 1992)3.

McCorduck (2004) quoted Papert as saying (p.230),
“.. all social sciences are, for Dreyfus, as wrong-
headed as AI, This is not an attitude widely held in
universities.” And then McCorduck posed a ques-
tion, “If Dreyfus is so wrong-headed, why haven’t the
artificial intelligence people made more effort to con-
tradict him?”

Though it would be hard to know what it can and
what it can’t do, or to judge which side had well pre-
dicted the future at that time, Brooks (1991) who
was then with Artificial Intelligence Lab at Mas-
sachusetts Institute of Technology as Dreyfus did
too, wrote, “Artificial intelligence started as a field
whose goal was to replicate human level intelligence
in a machine. Farly hopes diminished as the magni-
tude and difficulty of that goal was appreciated. ...
No one talks about replicating the full gamut of hu-
man intelligence any more.”

3 Also available at http://www.rand.org/pubs/papers/
2006/P3244.pdf.



Can computer play chess?

Yet another hot topic in the history of developing
artificial intelligence is, chess playing computer.

Again Dreyfus vs. Papert. In his book published in
1972, Dreyfus wrote, “In fact, in its few recorded
games, the Newell, Shaw, Simon program played
poor but legal chess, and in its last official bout (Oc-
tober 1960) was beaten in 35 moves by a ten-yea-old
novece.” * The expression was taken in 'The New
Yorker’ Junuary 11, 1966 edition as an article in
"The Talk of the Town.” it was to attract a sensa-
tion as to what’s going on in computer world, though
the article concluded with the phrase, we don’t care
what the machine is going to do.”.

Then, one day Papert arranged a chess match be-
tween Dreyfus and a computer chess program®, as
McCorduck (2004) quotes Papert as saying, “I or-
ganized the famous chess match. That was beauti-
ful.” (p. 231). McCorduck (2004) continues, “The
results of the game were printed in the bulletin of the
Special Interest Group in Artificial Intelligence, the

Association for computing Machinery,

“A ten-year-old can beat the machine” —
Dreyfus: But the machine can beat Drey-

fus.

Aside from this tiny event in the history, much more
sensational news was, the first real chess match in
the history between a human world champion and a
computer, which was held in 1996. That is, the then
world champion Garry Kasparov vs. IBM’s Deep
Blue. In a six-game match Deep Blue won one game,
tied two and lost three. The next year, Deep Blue
defeated Kasparov also in a six-game match.

Nowadays, everyone knows the Deep Blue did not
employ an intuitive skill of a human grand-master
and instead relied on a brute force to evaluate bil-
lions of future positions. Is it intelligent employing
a brute computing power to search for all the pos-
sibilities to select the optimal one? Most people do
not think in that way these days.

4See the 3rd edition "What computers still can’t do’ (Drey-
fus 1992, p.83).

5Notithing to do with topic of chess, but also ironical de-
scription regarding machine translation at that time can be
read in this same article. That is, Machin translated "Time
flys like an arrow,’ in Russian into 'Time enjoy eating flies
like an arrow,’ in English

SProgram called MacHack designed by Richard Green-
blatt.

Is intelligence for a perfect performance?

Dreyfus (1965) wrote “.. a little intelligence is not
intelligence at all but stupidity. Any program that
does just one thing well is at best more like an idiot
savant than like an intelligent man.”

As already suggested, we doubt this assertion by
Dreyfus, more or less. Brooks (1991) wrote, “It
is clear that their domain of expertise is somewhat
more limited, and that their designers were careful to
pick a well circumscribed domain in which to work.
Likewise it is unfair to claim that an elephant has no
intelligence worth studying just because it does mot
play chess.”

In this article, however, our aim is not “revealing the
secrets of the holy grail of artificial intelligence,” as
Brooks (1990) put it, nor we don’t expect artificial
intelligence to be as efficient or perfect as human,
but focus on its flexibility, spontaniety, or unpre-
dictability. Frosini (2009) wrote “.. contradiction
can be seen as a virtue rather than as a defect. Fur-
thermore, the constant presence of inconsistencies in
our thoughts leads us to the following natural ques-
tion: 1is contradiction accidental or is it the neces-
sary companion of intelligence?”

Is neural network intelligent?

In order for us to expect a different action of the
agents every time whenever the agents come across
an identical situation, any neural network with a set
of fixed synaptic weight values never will do. So,
why don’t we try to make an agent learn during its
action? In other words, by modifying those synaptic
weights during its action.

Floreano et al. (2000) reported their interesting ex-
periment in which the authors controlled mobile
robots by a neural network so that the robots navi-
gate properly by modifying synaptic weights of the
neural network during navigation. The modification
was based on a set of four Hebbian-like rules with
each of the rules specified by a number of param-
eters. Each of the connection weights determines
which rule with which parameters to modify itself
during its navigation. Starting with a random con-
figuration of the weights, a population search even-
tually converges an optimized configuration. Later,
Stanley (2003) united these four rules into one equa-
tion with two parameters. Recently, Durr (2008)
proposed a more general equation of learning, to
which we will go back later a little more in detail.



The experiments above were made using McCulloch
& Pitts neurons with a sigmoid function, that is,
neurons take continuous value of state.

Then Floreano (2006) performed a similar experi-
ment using spiking neurons. The implementation
was somewhat cleverly tricky as follows. He ex-
ploited a fully connected neurons of Spike Response
Model” with sensory neurons. The network consists
of excitatory and inhibitory neurons with outgoing
synaptic weight all being either 1 or —1 depending
on it pre-synaptic neuron. Then a genetic algorithm
determined just which connections to be pruned. It
worked amazingly well.

Or, as Di Paolo (2002) suggested, we can apply
above mentioned more general learning rule pro-
posed by Durr (2002) to apply to a spiking neuron
network as:

wij = Mij (A?j + A}jzi + A?ij + Aszizj),

where 7;; is learning ratio and z; is firing rates of
neuron i. We can search for the optimal parameter
set of 1, A°, A’ A%, and A? for each of the connec-
tions by an evolutionary algorithm.

In the next section, we use a neural network
with spiking neurons with spike-timing-dependent-
plasticity, or STDP — a counterpart of Hebbian
learning for the McCulloch & Pitts neurons.

3 A path-finding problem

Path-finding or path integration is not a simple toy
problem. Since the theoretical suggestion of the role
of Hippocampus as a spatial map of a free moving
rat (O’Keefe 1976), or empirical discovery of a roll
of place cell firing for a sensory control. See (Mc-
Naughton et al. 2008) and (Poucet 2004) and refer-
ences therein.

We consider possibilities of applying two neural net-
work models already reported, to a seemingly the
simplest problem ever to see whether the resultant
behaviors of the agent are intelligent or not. The
problem is the shortest pash finding where we have
no obstacles such as wall, corridor, or dangerous
river, as Stolle et al. (2002) once made the agents
explored in it, with a different objective though.

Ironically, such an empty environment is not as easy
to be explored as imagined. In fact, in many appli-
cations of path-finding, obstacles sometimes are not

Twhich is the simplest model of spiking neuron according
to Izhikevich (2004).

obstacle but implicit guides to the goal.

Anyway, our benchmark is finding a shortest path in
the Cartesian coordinate from (0,0) to (m,n) with-
out no obstacle in between. Assuming now a grid-
world to make calculation simple, the number of
paths with minimum Manhattan distance from (0,0)
to (m,n) is

m+n

Z mCz X nCm+n—i-
i=0

So, we have a infinitely large number of such routes
of the identical minimum Manhattan distance for a
large enough m and n. The question could be “Can
the agent be flexible to go in a different shortest path
whenever it tries anew?”

Here, for a change, let me try a little different sce-
nario. As it might be easily pointed out that we have
only unique shortest path, say, from (0,0) to (m,0).
And we change the question to, “Nevertheless the
agent takes its route spontaneously?” It implies if
the agent follow the feeling rather than pursuing the
optimal efficiency, or not.

In the following two subsections we speculate two
models of spiking neurons which are already pub-
lished in the literature to solve the other more com-
plicated problem.

3.1 Recurrent neural network with
evolved spike timing dependent
plasticity

Di Paolo (2002) used a recurrent neural network
made up of leaky-integrate-and-fire conductance
model of spiking neurons to control a robot. Let’s
summarize the method. Membrane voltage of each
neurons v(t) evolves with time as:

Tm¥0 = Viest — U+ Gex (t) (Eeac - U) + gin(t) (Em - U),

where 7, is the membrane time constant, Vs is
the rest potential, E., and FE;, are reversal poten-
tials, and g., and g¢;, are conductance with suffics
ex and in being meant excitatory and inhibitory, re-
spectively.

When no income spike exists conductances decay ex-
ponentially as:
TinGin = —Jin-

TexJex = —Yex

If a spike arrives to neuron j from an excitatory pre-
synaptic neuron ¢, then g, of neuron j is increased



by the current value of the synaptic weight w;;(t).
That is:

Jex = Jeax T Wij (t)

If the incoming spike is from inhibitory pre-synaptic
neuron, then

Gin = Gin + wi; (t).

The Poisson spike trains coming from the two sen-
sors are fed into specific two neurons in the recurrent
neural networks. Florian (2004) who also used this
model explained the reason clearly as follows.

“Fach sensor of activation s drives two input spik-
ing neurons, one being fed with activation s and the
other with activation 1—s. Thus, both the activation
of the sensor and its reciprocal was fed to the net-
work, and there are 70 input neurons in the network.
The reason of this duplication of the sensory signal
in the spiking neural network is twofold. First, this
allows the network to be active even in the absence
of sensory input. For example, if the agent is in a
position where nothing activates its sensors (there is
no object in its visual range, no tactile contact etc.),
there must be however some activity in the neural
network, in order for the effectors to be activated
and the agent to orientate to stimuli. Second, this
mechanism tmplies that the total input of the net-
work is approzimately constant in time (the number
of spikes that are fed to the network by the input).”

Spiking timing dependent plasticity

To simply put, spiking timing dependent plastic-
ity is an algorithm to potentiation of the synapse
when post-synaptic spike immediately follows the
pre-synaptic spike and the depression of the synapse
if the order of spikes is opposite. To be more specific,

=

where s is a time from pre-synaptic firing to post-
synamptic firing. Di Paolo changed synaptic weights
by means of two recording function per syanpse
P~(t) and P*(t) following (Song et al., 2000). He
clearly describes:

if >0
if s<0

At exp(—s/TT)
—A" exp(—s/T7)

“Fvery time a spike arrives at the synapse the cor-
responding PT(t) is incremented by AT, and every
time the post-synaptic neuron fires the corresponding
P~ is decremented by A~. Otherwise, these func-
tions decay exponentially with time constant T~ and
7+ respectively. P~ is used to decrease the synap-
tic strength every time the pre-synaptic neuron fires:

Wij — Wij + Wmae P~ (t). Analogously, Pt is used
to decrease the synaptic strength every time the pre-
synaptic neuron fires: wij — Wij + Wimae P~ (t).”

Then with those four parameters for each of
synapses being a chromosome, the optimal values
of these parameters from one synapse to the next
for the whole networks are searched for by a genetic
algorithm. Fitness is simply the Euclidian distance
between the point the agent reaches after prespeci-
fied time and the point of destination, in our prob-
lem in this paper.

3.2 Feedforward neural network with
reward-modulated spike timing
dependent plasticity

Next of our speculation is following the model by
Florian (2005) — a neural network made up of
stochastic leaky integrate-and-fire neurons. Mem-
brane potential v;(t) of neuron i at time ¢ evolves
in discrete time §t according to:

v (t) = vi(t—6t) exp(—ét/n)—i—z wij (t—6t) f;(t—5t),

J

where 7; is a time constant of neuron ¢, w;; is synap-
tic weight value from neuron j to neuron i, and
f;j(t) =1 if neuron j fires at time ¢ otherwise 0.

The neuron i fires stochastically with probability
0t /7, exp(By(v; — 6;)) if the value is less than 1, oth-
erwise 1.

If the neuron fires, the the membrane potential is
reset to a reset-potential V.

We experiment here, among others, with a feedfor-
ward architecture with two sensor neurons, input
layer with 4 neurons, hidden layer with 8 neurons,
output layer with 2 neurons. All neurons from one
layer to the next layer are fully connected. At the
beginning of a run, the synaptic weights were ini-
tialized with random values from —1 to 1 except for
those from the sensor neurons which take a value
from 0 to 1 at random.

Since we have no obstacle, the activation of the sen-
sor neurons takes a random value between 0 and 1.
The sensor neurons fired Poisson spike trains, pro-
portional to the activation, with a firing rate r = 200
Hz. Namely, the probability of emitting one spike
during dt, is rét.

The motor activations a;(t) (i = 1,2) of the output
neurons evolve according to the following equation



with time constant 7. = 2s.

a;(t) = ai(t—6t) exp(—0t/7e)+(1—exp(—1/veTe)) fi(t)-

The factor of f;(t) is to normalize the activation to
1 when the neuron fires regularly with frequency v,
= 25 Hz. One output neuron’s activity determines
the distance r, the amount the agent moves at time
t, and the other output neuron’s activity determines
the direction 6 toward which the agent should move,
that is, # = 2ma;(t) from the direction of the a-
axis. Then agent moves with its increment being
dx = rcosf and dy = rsinf. Note that the world is
no more discrete grid-world.

3.3 Simple heuristics

Are we happy with the above two experiments?
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Figure 1: An example of a path starting from (0,0)
to the goal (300,0) by a random walk incorporated

with a heuristic strategy.

Thus, by means of a controlled random walk, we
can make the agent explore starting at (0,0) with
the goal being (0, N) which looks spontaneous more
or less, and different spontaneity from run to run.
Clearly, however, it is not the result of an intelligent
action.

So, ’an always different reaction in a similar situ-
ation’ is a necessary condition at the best but not
sufficient for the neural network to be intelligent.
This might be an example of “a very simple algo-
rithm can sometimes obtain the same results as the
holistic, intuitive human mind,” as Papert (1965)
put it.

4 Consciousness

Science has always tried to eliminate the sub-
jective from its description of the world. But

what if subjectivity itself is its subject? — from
“A Universe of consciousness: How Matter be-
comes imagination” — by Gerald M. Edelman
and Giulio Tononi.

Now we see that spontaneity, flexibility, or unpre-
dictability are not sufficient to be a human-like in-
telligence. The next what we should take into ac-
count is, these properties should be made at least
consciously.

What is conscious then?

In their paper ’Science of the conscious Mind,” As-
coli et. al (2008) wrote: “We need to design math-
ematically sound metrics reflecting definite aspects
and elements of our subjective experiences, and a
corresponding system of quantitative measures. Im-
portant phenomenological experience may be tied to
individuals (consciousness of beauty, responsibility
ete.), rather than to concrete objects whose features
could be explained by the pattern-recognition proper-
ties of neural networks.”

The authors continues: “The idea of semantic space,
defined as the set of all possible meanings that words
can express, may be formalized with the notion of
cognitive mapping. Cognitive maps index represen-
tations by their context, such as spatial location, and
are employed by mammals for path-finding and nav-
igation,” citing (Samsonovich et. al 2005) as an ex-
ample of such path-finding navigation of rodent us-
ing spatial location by hippocampus.

Izhikevich (2006) also defined consciousness as at-
tention to memory. Now we try our navigation prob-
lem using memory function in the brain.

4.1 Navigation by hippocampus

Following Muller et al. (1996), we speculate here a
navigation using a cognitive map created in a re-
current connections of CA3 pyramidal cells as place
cells with functions of long-term potentiation mod-
eled by spiking neurons.

This model is based on the finding by O’Keefe and
Dostrovsky (1971) that firings of hippocampal neu-
rons in freely moving rats is location specific, that
is, they fire rapidly only when the rat is in a specific
location. Hence, such neurons are now called place
cells, and these neurons are pyramidal cells of the
CA3 and CA1 regions of the hippocampus.



Here assumption is, the mapping information,
namely, distance relation of the points in the en-
vironment, is represented as the strength of long-
term potentiation modifiable Hebbian synapses. In
other words, the mapping information is stored in
the strength of the connection, specifically here, in
the strengths of CA3 to CA3 synapses of their re-
current connection. So, the short intervals between
pre- and post-synaptic spikes are expected to cause
increased synaptic strength.

Since each cell is a place cell, any path in the graph
corresponds to a path in 2-D space.

Then the question is, the optimal paths in neural
space are optimal too in geometrical space of sur-
roundings.

What Muller (1996) proposed is, strength of a
synapse is determined according to a decreasing
function of the distance between two points the two
neuron represent. Namely, the longer the distance
the weaker the strength. That is, synaptic strength
should decrease with distance between two points.

Now let me summarize Muller’s experiment. First,
a recurrent network should be constructed to repre-
sent a cognitive map as follows. (i) Create n place
cells; (ii) Connect each cell to p other cells so that at
least one route exists from any cell to any other cell;
(iii) Each cell is randomly assigned a location in 2-D
space represented by pixels; (iv) All the synapses are
given a strength according to the distance between
the two locations in 2-D space.

Then a path in 2-D space is found as follows: (i)
The starting and goal points in 2-D space are se-
lected; (ii) Starting at the neuron corresponding to
the starting points in 2-D space, a series of synaptic
connections which eventually lead to the neuron cor-
responding to the goal point in 2-D space so that the
sum of strengths of these synapses is maximized; (iii)
Then the route in the recurrent network is translated
into a path in 2-D space by listing the corresponding
points to the neurons in the route obtained in the
recurrent network.

4.2 Navigation by hippocampus in-
telligent?

Back in 1997, in their graduate-level seminar
home page at the University of Illinois at Urbana-
Champaign®, Joe Sullivan exemplified animals’ in-

8The page ’Topics in Neuroethology’ is still available at
http://nelson.beckman.illinois.edu/courses/neuroethol/

telligent navigation in their familiar surroundings
such as: Merriam’s kangaroo rat can learn the dis-
tribution of food patches around its nest in three
evenings of foraging; Marmoset monkeys reliably re-
locate food sites and do not revisit a place where
food was already eaten on that foraging trip; and
Black-capped chickadees hide insects and seeds in
numerous, widely spread caches in trees over its
home range.

It may not sound like an intelligent behavior, but as
already quoted Brooks (1990), an elephant could be
intelligent even if it cannot play chess.

5 Belief, desire and intention

The belief-desire-intention (BDI) model is a well
studied model of practical reasoning agents orig-
nally developed by Bratman (1967). Or Pereira et
al. proposed a modelling emotional BDI agents.
Since this topic is beyond the scope of this article,
we will not go in to detail about it, but it belief, de-
sire, and/or intention could be yet other condition
for machine inteligence to be close to human-like in-
telligence.

6 Concluding remarks

Thus, the only question which can reasonably
be discussed at present is not whether robots
can fall in love, or whether if they did we would
say they were conscious but rather to what ex-
tent a digital computer can be programmed to
exhibit the sort of simple intelligent behavior.”
— from “Alchemy and Artificial Intelligence”
by Hubert L. Dreyfus.

It might hard to conclude that artificial neural net-
work is intelligent, at least at this moment. And
such a real human-like intelligent behavior of an ar-
tificial neural network does not seem to be strongly
required in industry world.

What about a robot pet? We find lots of commer-
cial products of those robot pets. We already have
a toy robot like SONY’s AIBO. It learns splendidly
an environment. It acts differently in a different
situation according to how it learned these situa-
tions. However, it acts exactly in the same way if
it comes across the same situation it has already
learned. AIBO can now plays a roll of a wonder-
ful pet, for example. However, this identical-action-
in-identical-situation would lose the owners interest,

models/spatial_learning /spatial_learning.html



sooner or later.

McClelland (2009) we already cited in Introduction
concluded the paper writing “It may well be, then,
that over the next decade, the butterfly will finally
emerge from the chrysalis, and truly parallel com-
puting will take flight.” So let’s be optimistic.

Now to conclude this article, let me propose also a
very simple looking but a little more sophistcated
benchmark of path-finding problem. as a challenge.
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Figure 2:

Robot started at home at (0,0) with a limited
amount of fuel to move the field. The mission is to
explore along a maximum loop that never crossed,
and should return home just when the robot ex-
hausted all the fuel it had at the start. See Figure 2.
Can we design a robot such that it navigates flexibly
enough to take a different route from one run to the
next using a memory which stored in previous runs,
and with some intention?
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