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Abstract

New Robotics designates an approach to robotics
that, in contrast to traditional robotics, employs
ideas and principles from biology. While in the
traditional approach there are generally accepted
methods (e.g. from control theory), designing
agents in the New Robotics approach is still largely
considered an art. In recent years, we have been
developing a set of heuristics or design principles,
that on the one hand capture theoretical insights
about intelligent — adaptive — behavior, and on the
other provide guidance in actualy designing and
building systems. In this paper we provide an
overview of al the principles but focus on the
principles of “ecological balance” which concerns
the relation between environment, morphology,
materials, and control, and “sensory-motor
coordination”  which concerns self-generated
sensory stimulation as the agent interacts with the
environment and which is a key to the development
of high-level intelligence. As we will argue,
artificial evolution together with morphogenesis is
not only “nice to have’ but is in fact a necessary
tool for designing embodied agents.

1. Introduction

In the past the focus in the field of robotics has been on
precision, speed, and controllability; more recently there
has been an increasing interest in adaptivity, learning, and
autonomy. The reasons for this are manifold, but an
important one is the growing concern in the research
community for using robots to study intelligent systems.
This has led to a new set of goals for this new kind of
robotics. Of course, one of the important goals remains the
development of useful artifacts, but it is no longer the
major one. More important is an increased understanding
of the principles underlying intelligent behavior. A typical

starting point is the modeling of some aspects of
biological systems, such as how ants find their way back
to the nest after finding food, how dogs catch a Frisbee
while running, how rats navigate in a maze, or how people
recognize a face in a crowd. Experience has shown that
building a robot (or a computer model) considerably
enhances our understanding of the natura system. A third
goal is the abstraction of genera principles of intelligent
behavior, which is the main topic of this paper.

Recently, a host of terms have been invented to
characterize this new approach to the design of intelligent
systems, one that, in contrast to the traditional ones of
artificial intelligence and robotics, draw inspiration from
biology. The field of adaptive systems, as loosely
characterized by conferences such as SAB (Simulation of
Adaptive Behavior) or AMAM (Adaptive Motion in
Animals and Machines), or the journals of Artificial Life
and Adaptive Behaviour, is very heterogeneous and there
is a definite lack of consensus on the theoretical
foundations. As a consequence, agent design is — typically
— performed in an ad hoc and intuitive way. Although
there have been some attempts at elaborating principles
(e.g. Brooks, 1991; Bryson, 2002; Maes, 1993), general
agreement is still lacking. In addition, much of the work
on designing adaptive systems is focused on software, i.e.
the programming of the robots. However, what we are
really interested in is not just the programming aspects,
but rather designing entire systems. The research
conducted in our laboratory, but also by many others, has
demonstrated that often, better, cheaper, more robust and
adaptive agents can be developed if the entire agent is the
design target rather than only its controller. This implies
taking embodiment into account and going beyond the
programming level proper. Below, we will characterize in
detail what we mean by embodiment; for now we take it to
mean the physical setup of the agent which includes the
body plan, sensors, actuators, etc. Because we are not only
looking at programs, we prefer to use the term
“engineering agents’ rather than “programming agents’.

1



If this idea of engineering agents is the goal, the question
arises as to what form the theory should have, i.e. how the
experience gained so far can be captured in a concise
scientific way. Philosophers have a preference for verbal
and logic-based descriptions. However, verba theories
often gloss over important details and thus lack the
required precision. Logic-based theories are typically very
limited in their expressive power. Moreover, they suggest
assumptions about the real world that simply do not hold.
For example, there is an underlying assumption of discrete
states that can be achieved by applying certain types of
operators, an assumption that has misled many researchers
in the past. Researchers from traditiona artificial
intelligence and cognitive science believe that the best
way to make progress is to employ symbol processing
concepts (e.g. Newell and Simon, 1976). This idea has
lead to interesting applications from a computer science
perspective but has contributed little to our understanding
of the nature of natural forms of intelligence.

Physicists and control engineers have a preference for
differential equations, but they are better suited for
analysis than for design. The mathematical theory of
dynamical systems that capitalizes on this formalism is
considered by many to ultimately be the best candidate.
While this approach yields very interesting results for
relatively simple robotic systems (e.g. Smithers, 1995;
Steinhage and Schoener, 1997; Berthouze, 2000;
Yamamoto and Kuniyoshi, 2001), it seems to be very
difficult to apply it to complex systems beyond the
metaphorical level. Moreover, applying this type of theory
for design purposes does not seem to be straightforward.
For the time being, it appears that progress over the last
few years in the field has been slow (though there have
been some interesting developments, e.g. Yamamoto and
Kuniyoshi, 2002), and we may be well-advised to search
for an “intermediate” solution, between no theory at all (or
purely verbal ones), and a rigorous mathematical one. And
in order to do this processing, morphology has to be
exploited. We use the term “morphological computation”
to designate the idea that part of the computational task is,
so to speak, taken over by the morphology.
"Morphological computation” is aso exploited in the
design of artificial retinas and has a long history, as well
as generaly in the field of space-variant sensing (e.g.
Hutchinson et al., 1988; Ferrari et al., 1995).

A set of design principles as a theoretical framework for
understanding intelligence seems desirable for a number
of reasons. Firgt, at least at the moment, there do not seem
to be any rea dternatives. The information processing
paradigm, another potential candidate, has proven ill-
suited to come to grips with natural, adaptive forms of
intelligence. Second, because of the current unfinished
status of the field, a set of principlesis flexible and can be
dynamically changed and extended. Third, design
principles present heuristics for actualy building systems.
In this sense, they instantiate the synthetic methodology
(see below). And fourth, evolution can also be viewed as a
designer, abeit a “blind one”, but an extremely powerful
one nevertheless. We hope to convince the reader that a
framework founded on a set of design principlesis a good

way to make progress, and that researchers will take it up,
modify the principles, add new ones, and try to make the
entire set more comprehensive and coherent. The response
so far has been highly encouraging and researchers as well
as educated lay people are apparently able to relate to
these principles very easily.

Although most of the literature is still about programming,
some of the research explicitly deals with complete agent
design and includes aspects of morphology (e.g. Sims,
19944, b; Pfeifer, 1996; Lipson and Pollack, 1999; Pfeifer
and Scheier, 1999; Hara and Pfeifer, 2000a; Bongard and
Pfeifer, 2001; Bongard, 2002, 2003; Pfeifer, 2003). Our
own approach over the last six years or so has been to try
and systematize the insights gained in the fields of
adaptive behavior and intelligence in general by
incorporating ideas from biology, psychology,
neuroscience, engineering, and artificial intelligence into a
set of design principles, as argued above; they form the
main topic of this paper.

A first version of the design principles was published at
the 1996 conference on Simulation of Adaptive Behavior
(Pfeifer, 1996). A more elaborate version has been
published in the book “Understanding Intelligence’
(Pfeifer and Scheier, 1999). More recently, some
principles have been extended to incorporate ideas on the
relation between morphology, materials, and control
(Ishiguro et a., 2003; Hara and Pfeifer, 2000a; Pfeifer,
2003). An updated detailed summary will be published in
Pfeifer and Glatzeder (in preparation).

We start by giving a very short overview of the principles.
We then discuss the information theoretic implications of
embodiment, i.e. the relation between physics and
information processing, using a number of case studies. In
particular we illustrate the concept of “ecological
balance”. We then show how the principle of “sensory-
motor coordination” can be used to explain important
aspects of the development of higher levels of intelligence.
Subsequently it is demonstrated how artificial evolution
together with morphogenesis can be employed to design
ecologically balanced systems. We will speculate that,
together with a sophisticated physics-based simulation, it
might eventually lead to the design of systems with higher
levels of intelligence. We will make clear that these
considerations are only applicable to embodied systems.

This is not a technical paper but a conceptual one. The
goal is to provide a framework within which technical
research can be conducted that takes into account the most
recent insights in the field. In our argumentation we will
resort mostly to research conducted in our own laboratory
but also to research performed in the community at large.
In this sense, the paper has somewhat of a tutorial and
review flavor and should be considered as such.
Moreover, it is intended for an interdisciplinary audience
and thus largely avoids technical jargon.

2. Design principles: Overview



There are, in essence, two different types of design
principles. some are concerned with the genera
“philosophy” of the approach. We call them “design
procedure principles’, as they do not directly pertain to
the design of the agents themselves but rather to the way
of proceeding, to the methodology. Another set of
principles is concerned more with the actual design of the
agent. We use the qualifier “more” to express the fact that
we are often not designing the agent directly but rather the
initial conditions and the learning and developmental
processes or the evolutionary mechanisms as we will
elaborate later. The current overview will, for reasons of
space, be very brief; a more extended version is

A-Princ6 | Redundancy

A-Princ7 | Ecologica

balance

A-Princ8 | Vaue

Partial overlap of
functionality based on
different physical processes

Balance in complexity of
sensory, motor, and neural
systems: task distribution
between morphology,
meaterials, and control

Driving forces,

developmenta mechanisms;
self-organization

forthcoming (Pfeifer and Glatzeder, in preparation).

Table 1: Overview of the design principles.

Label Name Description
Design procedure principles
P-Princ. 1 = Synthetic Understanding by building
methodol ogy
P-Princ2 | Emergence Systems should be designed
for emergence (for increased
adaptivity)
P-Princ3 | Diversity- Tradeoff between exploiting
compliance the givens and generating
diversity solved in
interesting ways
P-Princ4 | Time Three perspectives required:
perspectives | “Here and now”,
ontogenetic, phylogenetic
P-Princ5 | Frame-of- Three aspects must be
reference distinguished: perspective,
behavior vs. mechanisms,
complexity
Agent design principles
A-Princl | Three ecological niche
constituents | (environment), tasks, and
agent must always be taken
into account
A-Princ2 | Complete Embodied, autonomous,
agent sdlf-sufficient, situated
agents are of interest
A-Princ3 | Paralld, Parallel, asynchronous,
loosely partly autonomous
coupled processes, largely coupled
processes through interaction with
environment
A-Princ4 | Sensory- Behavior sensory-motor
motor coordinated with respect to
coordination | target; self-generated
sensory stimulation
A-Princ5 | Cheap design | Exploitation of niche and
interaction; parsimony

P-Princ 1: The synthetic methodology principle. The
synthetic methodology, “understanding by building”,
implies on the one hand constructing a model — computer
simulation or robot — of some phenomenon of interest
(e.g. how an insect walks, how a monkey grasps a banana,
how babies learn to make distinctions in the real world, or
how we recognize a face in a crowd). On the other we
want to abstract general principles from the constructed
model (some examples are given below). The term
“synthetic methodology” was adopted from Braitenberg's
seminal book “Vehicles. Experiments in synthetic
psychology” (Braitenberg, 1984).

P-Princ 2: The principle of emergence. If we are
interested in designing adaptive systems we should aim for
emergence. The term emergence is controversial, but we
use it in a very pragmatic way, in the sense of not being
preprogrammed. When designing for emergence, the final
structure of the agent is the result of the history of its
interaction with the — simulated or real world —
environment. Strictly speaking, behavior is aways
emergent, as it cannot be reduced to internal mechanism
only; it is aways the result of a system-environment
interaction. In this sense, emergence is not all-or-nothing
phenomenon, but a matter of degree: the further removed
from the actual behavior the designer commitments are
made, the more we call the resulting behavior emergent.
Systems designed for emergence tend to be more adaptive
and robust. For example, a system specifying initia
conditions and developmental mechanisms  will
automatically exploit the environment to shape the agent’s
final structure. Another example from locomotion (see
below) is the exploitation of the intrinsic material
properties of an agent: if the spring-like properties of the
muscles are exploited, the details of the trajectories of the
joints are emergent and need not be controlled.

P-Princ 3: The diversity-compliance principle. Intelligent
agents are characterized by the fact that they are on the
one hand exploiting the specifics of their ecological niche
and on the other by behavioral diversity. In a conversation
| have to comply with the rules of grammar of the
particular language, and then | have to react to what the
other individual says, and depending on that, | have to say
something different. Always uttering one and the same
sentence irrespective of what the other is saying would not
demonstrate great behavioral diversity. This principle or
trade-off comes in many variations in cognitive science,
i.e. the plasticity-stability tradeoff in learning theory
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(Grossberg  1995), assimilation-accommodation in
perception (Piaget 1970), and exploration-exploitation in
evolutionary theory (Eiben and Schippers 1998).

P-Princ 4: The time perspectives principle. A
comprehensive explanation of behavior of any system
must incorporate at least three perspectives. (a) state-
oriented, or the “here and now”, (b) learning and
development, the ontogenetic view, and (c) evolutionary,
the phylogenetic perspective. The fact that these
perspectives are adopted by no means implies that they are
separate. On the contrary, they are interdependent, but it is
useful to tease them apart for the purpose of scientific
investigation. Note the connection to the principle of
emergence: if atime perspective can be explained as being
emergent from another, we have a deeper kind of
explanation. For example, if the “here and now” can be
explained as being emergent from the ontogenetic one,
this constitutes scientific progress.

P-Princ 5: The frame-of-reference principle. There are
three aspects to distinguish between whenever designing
an agent: (a) the perspective, i.e. are we talking about the
world from the agent's, observer's, or designer's
perspective; (b) behavior is not reducible to internal
mechanism; trying to do that would constitute a category
error; and (c) apparently complex behavior of an agent
does not imply complexity of the underlying mechanism.
Although it seems obvious that the world “looks’ very
different to a robot than to a human because the robot has
completely different sensory systems than a human, this
fact is surprisingly often ignored. Second, behavior cannot
be completely programmed, but is always the result of a
system-environment interaction. Again, it is surprising
how often this obvious fact is ignored even by roboticists.
And third, the complexity of the environment plays an
essentia rolein the behavior and thus in the ways in which
this complexity is perceived by an observer. Thus,
behavioral complexity cannot be attributed to the agent
alone, but to the agent-environment interaction (see the
discussion of “Simon’s Ant” in (Simon 1969); also (Seth
2002)).

A-Princ 1. The three-congtituents principle. (@) The
definition of the ecological niche (the environment), (b)
the desired behaviors and tasks, and (c) the agent itself.
The main point of this principle is that it would be a
fundamental mistake to design the agent in isolation. This
is particularly important because much can be gained by
exploiting its physical and socia environment.

A-Princ 2: The complete agent principle. The agents of
interest are autonomous (a relative notion relating to the
degree of independence of other agents), self-sufficient
(i.e. they can sustain themselves over extended periods of
time), embodied (i.e. realized as physical systems), and
situated (i.e. they can acquire information about the
environment through their own sensory systems as a result
of their interaction with the real world). This perspective,
adthough extremely powerful and obvious, is not
considered explicitly very often.

A-Princ 3: The principle of parallel, loosely coupled
processes. Intelligence is emergent from an agent-

environment interaction based on a large number of
parallel, loosely coupled processes that run
asynchronously and are connected to the agent’s sensory-
motor apparatus. The term “loosely coupled” is used in
contrast to hierarchically coupled processes in which there
is a program calling a subroutine and the calling program
has to wait for the subroutine to complete its task before it
can continue. In that sense, this hierarchica control
corresponds to very strong coupling. However, on a
complete agent, there can be a very strong coupling of
processes by the fact that the system is embodied: two
joints coupled by a physical link (bones) are very strongly
coupled as well. “Loosely coupled” aso refers to the
coupling through the interaction with the environment.t

A-Princ 4: The principle of sensory-motor coordination.
All intelligent behavior (e.g. perception, categorization,
memory) is to be conceived as sensory-motor
coordination. This sensory-motor coordination, in addition
to enabling the agent to interact efficiently with the
environment, serves the purpose of structuring its sensory
input. One of the powerful implications is that the problem
of categorization in the real world is greatly simplified
through the interaction with the real world because the
latter supports the generation of “good” patterns of
sensory stimulation, “good” meaning correlated, and
stationary (at least for a short period of time). This
principle is essentia in the development of higher-level
cognition (see below).

A-Princ 5: The principle of cheap design. Designs must
be parsmonious, and exploit the physics and the
constraints of the ecological niche. This principle is
related to the diversity compliance principle in that it
implies, for example, compliance with the laws of physics.
An example are robots with wheels that exploit the fact
that the ground is mostly flat (whichis given, for example,
in office environments).

A-Princ 6: The redundancy principle. Agents should be
designed such that there is an overlap of functionality in
the different subsystems. Examples are sensory systems
where, for example, the visual and the haptic systems both
deliver spatial information, but they are based on different
physical processes (electromagnetic waves vs. mechanical
touch). Merely duplicating components does not lead to
useful redundancy; the partial overlap of functionality and
the different physical processes are essential. Note that
redundancy is required for diversity of behavior and to
make a system adaptive. If there is a haptic system in
addition to the visual one, the agent can also function in
complete darkness, whereas one with 10 cameras ceases to
function if the light goes ouit.

A-Princ 7: The principle of ecological balance. This
principle consists of two parts: the first one concerns the
relation between the sensory system, the motor system,
and the neura control. The “complexity” of the agent has

1 In this case “indirectly coupled” might be the better term. For
example, the legs in insect walking are partly coordinated
through the interaction with the real world: if one leg is lifted,
the force on dl the other legs changes instantaneously, which
can be exploited for coordination (Cruse et al. 2002).

4



to match the complexity of the task environment, in
particular: given a certain task environment, there has to
be a match in the complexity of the sensory, motor, and
neural system. The second is about the relation between
morphology, materials, and control: given a particular task
environment, there is a certain balance or task distribution
between morphology, materials, and control (for
references to both ideas, see, e.g. Hara and Pfeifer, 2000g;
Pfeifer, 1996; Pfeifer, 1999, 2000; Pfeifer and Scheier,
1999). Often, if the morphology and the materials are
right, control will be much cheaper. Because we are
dealing with embodied systems, there will be two
dynamics, the physica one or body dynamics and the
control or neural dynamics. There is the important
guestion of how the two can be coupled in optimal ways.
The research initiated by Ishiguro and his colleagues (e.g.
Ishiguro et a., 2003) promises deep and important
pertinent insights. We will be giving examples of this
principle later in the paper.

A-Princ 8: The value principle. This principle is, in
essence, about motivation. It is about why the agent does
anything in the first place. Moreover, a value system tells
the agent whether an action was good or bad, and
depending on the result, the probability of repetition of an
action will be increased or decreased. Because of the
unknowns in the real world, learning must be based on
mechanisms of self-organization. There is a frame-of-
reference issue in that values can be implicit or explicit. If
an agent is equipped, say, with neural networks for
Hebbian learning, we can, as outside observers, say that
this congtitutes value to the agent because in this way it
can learn correlations, certainly a useful thing. If as a
result of a particular action, a particular internal signal —
neura or hormonal — is generated that modulates learning,
we talk about an explicit value system (we adopted the
term from Edelman, 1987).

The topic of value systems is central to agent design and
must be somehow resolved. However, it seems that to date
no generally accepted solutions have been developed. As
this is not the central topic of this paper, we will not
further elaborate on this issue. We anticipate that there
will be a subset of principles devoted to precisely these
i ssues.

Although it does capture some of the essentia
characteristics of adaptive systems, the set of principles
described above is by no means complete. A series of
principles for designing evolutionary systems and
collective systems s currently under development.

As mentioned earlier, al these principles only hold for
embodied systems; they could not possibly be applied in
the context of traditional symbol processing systems. In
this paper, we focus on the principles of ecological
balance and sensory-motor coordination which lie at the
heart of embodiment.

3. Information theoretic
implications of embodiment

There is a triviad meaning of embodiment, namely that
“intelligence requires a body”. In this sense, anyone using
robots for his or her research is doing embodied artificial
intelligence. It is also obvious that if we are dealing with a
physical agent, we have to take into account gravity,
friction, torques, inertia, energy dissipation, elasticity of
materials, etc. However, there is a non-trivial meaning of
embodiment, namely that there is atight interplay between
the physical and the information theoretic aspects of an
agent. The design principles all directly or indirectly refer
to this issue, but some focus specifically on this interplay,
such as the principle of sensory-motor coordination
(embodied interaction with the environment induces
sensory-motor patterns); the principle of cheap design
(proper embodiment leads to simpler and more robust
control); the redundancy principle (proper choice and
positioning of sensors leads to robust behavior); and the
principle of ecological balance (capitdization of the
relation between morphology, materials, and neural
control). For the purpose of illustration we will focus on
ecologica balance and sensory-motor coordination in this
paper. We proceed by presenting a number of case studies
illustrating the application of these principles to designing
adaptive behavior.

A short note on terminology is required here. We
mentioned  information  theoretic  implications  of
embodiment. What we mean is the effect of morphology,
materials, and environment on neural processing, or better,
the interplay between all of these aspects. The important
point is that the implications are not only of a purely
physical nature.

Whenever we have an embodied system, through the
embodiment itself, al aspects of an agent — sensors,
actuators, limbs, the neural system — are aways highly
connected: changes to one component will potentially
affect every other component. From this perspective we
should never treat, for example, sensory and motor
systems separately. However, for the purpose of
investigation and writing, we must isolate the components,
but at the same time we must not forget to view everything
in the context of the complete agent. Having said that, we
now proceed with a few case studies, first focusing on the
sensory side, then the motor side, and finally on their
integration.

Sensory systems

In previous papers we have investigated in detail the effect
of changing sensor morphology on neural processing (e.g.
Lichtensteiger and Eggenberger, 1999; Maris and te
Boekhorst, 1996; Pfeifer, 2000a, b; Pfeifer and Scheier,
1999). Here we only summarize the main results; for
details, the reader isreferred to the literature.

The morphology of sensory systems has a number of
important implications. In many cases, when the
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morphology of the sensory systems is suited for the
particular task environment, more efficient solutions can
be found. For example, it has been shown that for many
tasks motion detection is all that is required. Motion
detection can often be simplified even more if the light-
sensitive cells are not spaced evenly, but if there is a non-
homogeneous arrangement. For example, Franceschini
and his co-workers found that in the house fly the spacing
of the facets in the compound eye is more dense toward
the front of the anima (Franceschini et al., 1992).
Allowing for some idealization, this implies that under the
condition of straight flight, the same motion detection
circuitry — the elementary motion detectors, or EMDs —
can be employed for motion detection for the entire eye.
Based on these ideas, Franceschini et d. built fully analog
robots exploiting this non-homogeneous morphological
arrangement. It can be shown that this arrangement, in a
sense, compensates for the phenomenon of motion
pardlax. It has been shown in experiments with artificial
evolution on real robots that certain tasks, e.g. keeping a
constant lateral distance to an obstacle, can be solved by
proper morphological arrangement of the ommatidia, i.e.
frontally more dense than laterally (Lichtensteiger and
Eggenberger, 1999).

There is an additional important implication of
morphology. It can be shown, that — again for specific
interactions — learning speed can be increased significantly
by having the proper morphology (Lichtensteiger and
Pfeifer, 2002). The reason this works is that through the
particular arrangement of the facets and the specific
interactions, sensory data with particular statistical
distributions are generated that support learning. The
interesting aspect of this experiment, in contrast to many
other experiments on machine learning, is that no specific
distributions of the input data are assumed, but that they
are generated through the interaction with the
environment, through a sensory-motor coupling.

Note that the sensor morphology alone does not tell us
very much; it is only if we take the specific interaction
with the environment into account (which includes the
actions of the motor system as well), that we are able to
understand the role of morphology in behavior.

Franceschini and Changeux also found that there is a
vergence scanning mechanism that pulls the retina back
and forth in the focal plane (Franceschini and Changeux,
1994). The functional role of this retina movement is still
open to investigation, but one purpose is clearly that it
enhances the sensor’s visua range. Shimoyama and his
co-workers have designed and built a millimeter-scale
model of a compound eye (Hoshino et a., 2000). Not only
is there a non-homogeneous arrangement of the microlens
array — ranging from 2 degrees between two “ommatidia’
in the center, to 6 degrees at the periphery — but there is
active scanning in that the retina can be moved back and
forth.

Note that in this case, there is generation of sensory data
through a sensory-motor coordination: as the retina is
moved back and forth, data are generated that enable the

organism to cover the area directly in front of the fly that
would be otherwise inaccessible (for motion detection) for
geometric reasons. Once again, we see the importance of
the motor system for the generation of sensory signals, or
more generally for perception. It should also be noted that
these motor actions are physica processes, hot
computational ones, but they are computationaly relevant,
or put differently, relevant for neura processing. This is
another demonstration that not all physical actions can be
replaced by computation.

Not only do the retinas of insects have non-homogeneous
morphology, but the retinas of mammals, including
humans, are heterogeneous as well: the spacing in the
center is more dense than on the periphery, which is unlike
standard cameras in which the distribution of the light-
sensitive cells is homogeneous. One of the reasons why
animals can process visua signals so rapidly is that the
retina aready does a lot of pre-processing before the
signals are sent on for further processing. This massively
parallel peripheral processing ability is crucia to achieve
real-time behavior. And in order to do this processing,
morphology has to be exploited. This idea is also
exploited in the design of artificial retinas and has a long
history, as well as generaly in the field of space-variant
sensing (e.g. Ferrari et al., 1995).

We now turn to the motor system.

Motor systems

In this section we present three case studies, the “passive
dynamic walker”, “Stumpy”, and the quadruped “Puppy”
that can al be used to explain the concept of “ecological
balance” as well as the principle of “cheap design”. While
the passive dynamic walker has no actuation, “Stumpy”
and the quadruped “Puppy” are equipped with simple
artificial muscles.

The passive dynamic walker

The passive dynamic walker which goes back to McGeer
(19904, b), illustrated in figure 1a, is a robot (or, if you
like, a mechanical device) capable of walking down an
incline without any actuation and without control. In other
words, there are no motors and there is no microprocessor
on the robot; it is brainless, so to speak. In order to
achieve this task the dynamics of the robot, its body and
its limbs, must be exploited. This kind of walking is very
energy efficient and there is an intrinsic naturalness to it.
However, its “ecological niche” (i.e. the environment in
which the robot is capable of operating) is extremely
narrow: it consists only of inclines of certain angles.
Energy-efficiency is achieved because the leg movements
are entirely passive, driven only by gravity in a pendulum-
like manner. To make this work, a lot of attention was
devoted to morphology and materials. For example, the
robot is equipped with wide feet of a particular shape to
constrain lateral motion, soft heels to reduce instability at
heel strike, counter-swinging arms to negate yaw induced



by leg swinging, and latera-swinging arms to stabilize
side-to-side lean (Collins et al., 2001).

Figure 1. Two approaches to robot building. (@) The passive
dynamic waker by Steve Collins (Coallins et a., 2001), (b) the
Honda robot Asimo.

A different approach has been taken by the Honda design
team. There the goal was to have a robot that could
perform a large number of different types of movements.
The methodology was to record human movements and
then to reproduce them on the robot which leads to a
relatively natural behavior of the robot. On the other hand
control — or the neura processing, if you like — is
extremely complex and there is no exploitation of the
intrinsic dynamics as in the case of the passive dynamic
walker. The implication is also that the movement is not
energy efficient. It should be noted that even if the agent is
highly complex, like the Honda robot, there is nothing in
principle that prevents the exploitation of its passive
dynamics. In human walking for example — and humans
are certainly highly complex systems — the forward
swing of the leg is largely passive as well. Of course, the
Honda robot can do many things like walking up and
down stairs, pushing a cart, opening a door, etc., implying
that its ecological niche is considerably larger than that of
the passive dynamic walker.

In terms of the design principles, this case study illustrates
the principles of cheap design and ecological balance. The
passive dynamic walker fully exploits the fact that it is
aways put on inclines that provide its energy source and
generates the proper dynamics for walking. Loosely
speaking, we can aso say that the control task, the neura
processing, is taken over by having the proper morphology
and the right materials. In fact, the neural processing
reduces to zero. At the same time, energy efficiency is
achieved. However, if anything is changed, e.g. the angle
of the incline, the agent ceases to function. This is the
trade-off of cheap design. In order to make it adaptive, we
would have to add redundancy. There is no contradiction
between cheap design and redundancy: even highly
redundant systems such as humans exploit the givens of an
ecological niche (e.g. gravity, friction, motion parallax).

Even though the passive dynamic walker is an artificial
system (and a very simple one), it has a very natural feel
to it. The term “natural” not only applies to biological
systems, but artificial systems aso have their intrinsic

natural dynamics. Perhaps the natural feel comes from the
exploitation of the dynamics, e.g. the passive swing of the

leg.

In conclusion, as suggested by the principle of ecological
balance, there is a kind of trade-off or balance: the better
the exploitation of the dynamics, the simpler the control,

and the less neural processing will be required.

Muscles — control from materials

The passive dynamic walker had no actuation. However,
the energy efficiency of this approach can be preserved by
incrementally adding actuation. This has been done by
Martijn Wisse and his colleagues a Delft University in
Holland (Wisse and Frankenhuyzen, 2003) in the
construction of the almost passive dynamic walking robot
“Mike’. Mike uses pneumatic actuators, which is akind of
artificial muscle: it consists of a rubber tube embedded in
a fabric and contracts when air pressure is applied (more
about artificial muscles below). We now present two case
studies where very simple types of artificial “muscles’ are
used, which employ elastic materials (in “Stumpy” and in
the springs of the quadruped “ Puppy”).

Cheap diverse locomotion — “ Stumpy”: Recently, there
has been an increased interest in applying and further
investigating these ideas through the construction of
robots. An illustrative example is the walking and hopping
robot Stumpy (lida et al., 2002; Paul et al., 2002) (figure
2). Stumpy’s lower body is made of an inverted “T”
mounted on wide springy feet. The upper body is an
upright “T” connected to the lower body by arotary joint,
the “waist” joint, providing one degree of freedom in the
frontal plane. The horizontal beam on the top is weighted
on the ends to increase its moment of inertia It is
connected to the vertical beam by a second rotary joint,
providing one rotational degree of freedom, in the plane
norma to the verticad beam, the “shoulder” joint.
Stumpy’ s vertical axis is made of aluminum, while both its
horizontal axes and feet are made of oak wood.

Although Stumpy has no real legs or feet, it can locomote
in many interesting ways: it can move forward in a straight
or curved line, it has different gait patterns, it can move
sideways, and it can turn on the spot. Interestingly, this
can all be achieved by actuating only two joints with one
degree of freedom each. In other words, control is
extremely simple — the robot is virtualy “brainless’. The
reason this works is because the dynamics, given by its
morphology and its materials (elastic, spring-like
materials, surface properties of the feet), is exploited in
clever ways. There is a delicate interplay of momentum
exerted on the feet by moving the two joints in particular
ways (for more detail, see lida et a., 2002 and Paul et a.,
2002).



Figure 2. The dancing, walking, and hopping robot Stumpy. (a)
Photograph of the robot. (b) Schematic drawing (details, see
text).

Let us briefly summarize the ideas concerning ecol ogical
balance, i.e. the interplay between morphology, materials,
and control. First, given a particular task environment, the
(physical) dynamics of the agent can be exploited which
leads not only to a natural behavior of the agent, but also
to higher energy-efficiency. Second, by exploiting the
dynamics of the agent, control can often be significantly
simplified while maintaining a certain level of behaviora
diversity. Third, materials have intrinsic control
properties. And fourth, because ecological balance is
exploited, Stumpy displays a surprisingly diverse behavior
(dancing, walking, and hopping in different ways). In this
sense, Stumpy aso illustrates the diversity-compliance
principle: on the one hand, it exploits the physical
dynamics in interesting ways and on the other it displays
high diversity.

Cheap, rapid locomotion — the quadruped “Puppy”:
Another case study that nicely illustrates the principle of
ecological balance, is the quadruped “puppy” developed
by lida (lida and Pfeifer, 2004).

One of the fundamental problems in rapid locomotion is
that the feedback control loops, as they are normally used
in walking robots, can no longer be used as the response
times are too slow. One way to go about this problemisto
try and eliminate as much as possible the need for sensory
feedback. How this can be done is demonstrated in what
follows. In addition, it is shown how rapid locomotion can
be achieved through slow but powerful actuation. One of
the fascinating aspects of the quadruped “Puppy” is that
not only fast but also robust locomotion can be achieved
with no sensory feedback.

The design of “Puppy” was inspired by biomechanical
studies. Each leg has two standard servomotors and one
springy passivejoint. It carries eight motors, batteries, and
a micro-controller. To demonstrate a running gait using
this robot, we applied a synchronized oscillation based
control to four motors in the hip and shoulder (the motors
in the elbows and knees are not used for this experiment),
where each motor oscillates through sinusoidal position
control. No sensory feedback is used for this controller
except for the internal local feedback for the servomotors.

Figure 3. The quadruped “Puppy”. (&) Picture of entire
“puppy”. (b) The spring system in the hind legs. (c)
Diagram showing joints, servomotor actuated joints
[circles with crosses], and flexible spine [dotted ling].

The legs exhibit simple oscillations, but in the interaction
with the environment, through the interplay of the spring
system, the flexible spine (note that the battery is attached
to the elastic spine which provides precisely the proper
weight distribution), and gravity, a natural quadrupedal
gait occurs, which includes periods in which all four legs
are off the ground: in other words, there is a clear
distinction between a stance and a flight phase. The
system has self-stabilizing characteristics: there are no
sensors on the robot.

We found that this successful demonstration of running
behavior relies strongly on the underlying mechanism of
self-stabilization. The control of the robot is extremely
simple: the controller does not distinguish between the
stancefflight phase, acceleration, or inclination.
Nevertheless, the robot maintains a stable periodic gait by
properly exploiting its intrinsic dynamics. It is interesting
to note that the foot-ground contact must exhibit little
friction in order for this self-stabilization to work.

The self-stabilization property can now be used to control
forward velocity by simply varying a single phase
parameter of the oscillation, i.e. atemporal delay between
the fore and hind leg motors (the speed can vary between
20 and 50cm/sec). This is a nice illustration of the
necessity of ecological balance in an adaptive agent. There
are a number of other parameters which could control the
forward velocity apart from the phase such as oscillation
frequency, amplitude, and the spring constants (if
possible). However, an important aspect here is that an
indirect parameter, e.g. the phase, could be used for the
control of the forward velocity.

This case study demonstrates that complicated and
sophisticated designs typically employed in mechatronics
are not aways required in order to achieve behaviora
diversity. Rather, the interaction of body dynamics (as
determined by materidls and mass distribution),
environment (friction, shape of the ground), and control
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(amplitude, frequency) can be exploited for control
purposes. There have been a number of locomotion
studies in terms of use of material properties and self-
stabilization mechanisms in biomechanics (Kubow and
Full, 1999, and for review, Blickhan et al., 2003), and in
robotics (e.g. Raibert, 1986, Buehler, 2002). These studies
are closely related to our own work. An additiona idea
that is nicely illustrated by "Stumpy" and "Puppy" is the
one of "morphological computation”, a term introduced
earlier to designate computational properties of
morphology and materials. Computation for control can be
significantly reduced by exploiting morphologica
computation, but because systems with complex
morphologies have their own intrinsic dynamics — in
contrast to wheeled robots, for example — control is no
longer arbitrary, but has to comply with these dynamics.
For example, while a wheeled robot can continuously
speed up thisis no longer possible with a system that has
complex intrinsic dynamics. Also, rather than explicitly
controlling the speed as in wheeled robots, the dynamics
of the agent-environment interaction has to be modified by
changing appropriate parameters. In case of "Puppy", for
example, the phase between the oscillations of the fore
legs and hind legs can be varied to change the speed.

Reaching and grasping — sensory-motor coor dination:
Let us pursue the idea of exploiting the dynamics a little
further. Most robot arms available today work with rigid
materials and electric motors. Natural arms, by contrast,
are built of muscles, tendons, ligaments, and bones,
materials that are non-rigid to varying degrees. All of
these materias have their own intrinsic properties such as
mass, diffness, elasticity, viscosity, temporal
characteristics, damping, and contraction ratio to mention
but a few. These properties are al exploited in interesting
ways in natural systems. For example, there is a natural
position for a human arm which is determined by its
anatomy and by these properties. Reaching for and
grasping an object like a cup with the right hand is
normally done with the palm facing left, but could also be
done — with considerable additional effort — the other way
around. Assume now that the palm of your right hand is
facing right and you let go. Your arm will immediately
turn back into its natural position. Thisis not achieved by
neura control but by the properties of the muscle-tendon
system: in a sense the system acts like a spring — the more
you stretch it, the more force you have to apply and if you
let go the spring returns to its resting position. Also, the
human arm exhibits intrinsic damping. Normally reaching
equilibrium position and damping is conceived of in terms
of electronic (or neural) control, whereas in this case, this
is achieved (mostly) through the material properties. Or
put differently, the morphology (the anatomy), and the
materials provide physical constraints that make the
control problem much easier — at least for the standard
kinds of movements. The main task of the brain, if you
like, is to set the material properties of the muscles, the
spring constants. Once these constraints are given, the
control task is much simpler.

These ideas can be transferred to robots. Many researchers
have started building artificial muscles (for reviews of the
various technologies see, e.g., Kornbluh et a., 1998 and

Shahinpoor, 2000) and used them on robots, as illustrated
in figure 2. ISAC, a “feeding robot”, and the artificial
hand by Lee and Shimoyama use pneumatic actuators,
Cog the series elastic actuators, and the Face Robot shape
memory aloys.

Figure 4. Robots with artificial muscles. (a) The service robot
ISAC by Peters (Vanderbilt University) driven by McKibben
pneumatic actuators. (b) The humanoid robot Cog by Rodney
Brooks (MIT Al Laboratory), driven by series-elastic actuators.
(c) The artificial hand by Lee and Shimoyama (University of
Tokyo), driven by pneumatic actuators. (d) The “Face Robot” by
Kobayashi, Hara, and lida (Science University of Tokyo), driven
by shape-memory alloys.

Facial expressions aso provide an interesting illustration
for our point about material properties. If the facial tissue
has the right sorts of material properties in terms of
dadticity, deformability, stiffness, etc., the neural control
for the facia expressions becomes much simpler. For
example, for smiling, although it involves the entire face,
the actuation is very simple: the “complexity” is added by
the tissue properties. Another highly desirable property
that one gets for free if using the right kinds of artificial
muscles is passive compliance: if an arm, for example,
encounters resistance it will yield elastically rather than
pushing harder. In the case of the pneumatic actuators this
is due to the elastic properties of the rubber tubes.

The important point here is that we are not simply
replacing one type of actuator — an electrical motor — by a
different type. This would not be very interesting. The
point is that the new type of actuator — e.g. a pneumatic
one — has intrinsic physical properties such as elasticity
and damping that can be exploited by the neura control.

In section 2 we postulated a set of design principles for
adaptive motion. The principle of ecological balance, for
example, tells us that given a particular task environment,
there is an optimal task distribution between morphology,
materials, and control. The principle of emergence asks
the question of how a particular “balance” has emerged:
how it has come about. In the study of biological systems,
we can speculate about this question. However, there is a
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possibility of systematically investigating this balance, by
using artificial evolution and morphogenesis. Pertinent
experiments promise a deeper understanding of these
relationships. We also postulated the principle of
“sensory-motor coordination.” A fascinating question
would be whether evolved agents would employ this
principle. There is some evidence that this is indeed the
case (e.g. Beer, 1996; Nolfi and Floreano, 2001; Pfeifer
and Scheier, 1999). The remainder of this paper will be
devoted to exploring the design principles in an
evolutionary context.

4. Designing embodied agents using
artificial evolution and
mor phogenesis

Using artificial evolution for design has a tradition in the
field of evolutionary robotics (Nolfi and Floreano, 2001).
The standard approach is to take a particular robot and use
an evolutionary algorithm to evolve a controller for a
particular task. However, if we want to explore ecological
balance we must include morphology and materials into
our evolutionary algorithms.

The problem with including morphology and materials is
that the search space which is already very large for
control architectures increases exponentially. Moreover, if
sophisticated shapes and sensors are to be evolved, the
length of the genome which is required for encoding these
shapes will grow very large and there is no hope that
anything will ever converge on a good solution.

This issue can be approached in various ways; here we
just mention two. The first which we will not further
discuss in this paper is to parameterize the shapes, thus
introducing designer biases as to the types of shapes that
are possible. An example that has sirred a lot of
commation in the media is provided by Lipson and
Pollack’ s robots that were automatically produced (Lipson
and Pollack, 2000). They decided that the morphology
would consist of rods to which different types of joints
could be attached. Rods can, for example, be
parameterized as length, diameter, and material constants
etc., thus limiting the space of possible shapes, or in other
words, the types of morphologies. An example of the
morphologies producing using Lipson and Pollack’s
approach is shown in Figure 5(a). Then the search space,
even though it is dtill large, becomes manageable. In
contrast, our method for evolving a complete agent relies
on growth, and agents are composed of many spheres. It
could be argued that spheres can also be parameterized,
but our goal isto alow evolution to compose agents from
a large enough number of spheres so that the resulting
morphologies have arbitrary shapes, which are
independent of the geometries of the underlying building
blocks. Figure 5(b) shows one such evolved morphology
(this robot was evolved for a grasping task), illustrating
this point. While the work of Lipson and Pollack is
impressive, it still implies a strong designer bias. If we
want to explore different types of morphologies, we want
to introduce as little designer bias as possible. This can be

done using ideas from biology, such as working with large
numbers of building blocks, and including genetic
regulatory networks into the evolutionary process.

Figure 5. Comparison between robot morphologies. (a) Lipson's
sample robot morphology. (b) Bongard's sample robot
morphology.

The mechanics of artificial genetic regulatory networks

Here we provide only a non-technical introduction to
genetic regulatory networks (for details, see, e.g. (Bongard
and Pfeifer 2001), or (Bongard 2002, 2003)). It should be
stressed that athough this computational system is
biologically inspired, it does not constitute a biological
model; rather, it is a system in its own right. Also, when
we use biological terminology, eg. when we say that
“concentrations of transcription factors regulate gene
expression”, this is meant metaphorically.

The basic idea is the following. A genetic agorithm is
extended to include ontogenetic development by growing
agents from genetic regulatory networks. Delleart and
Beer (1994) first used a developmental model to evolve
controllers for robots acting in an abstract grid-type world,
but the “robots' were composed of rectangles, which had
no effect on their behavior. Nolfi and Parisi (1995) also
used a developmental model that grows neural network
controllers, but again the robots were non-embodied, and
lived in an abstract grid-world. In the algorithm presented
here, robots are both grown and evaluated within a three-
dimensional, dynamic simulator. This ensures that not
only the controller, but also the morphology of the robot
affects its behavior: in this way, we ensure that all of the
evolved robots are embodied, even though they are
simulated. Secondly, unlike the work of Lipson and
Pollack, the motors—and therefore the behavior—are
incorporated into sensory-motor loop, also ensuring that
the robots are situated.

In the example presented here, agents are tested for how
far they can push a large block (which is why they are
called “block pushers’). Figure 4a shows the physically
realistic virtual environment. The fitness determination is
a two-stage process. the agent is first grown and then
evaluated in its virtual environment. Figure 4b illustrates
how an agent grows from a single cell into a multicellular
organism.

10



3
» 3 & .,
- Ny
" 3 3
t=42 t=84 t= 125 It= 167
¥ 4
5 3 ! 1
) _:: 4 . 3
} 1?‘ “‘? h-T-\..
t=208 ~ t=250 5 t=2m2 * t=s33
y 1 1 1
! \ i . ;
3 L o
1-~-'? “ﬂ.*a T gy %‘ .q_;q
e ¥, 1l e" ] i
: J ¥ 7
t=375 t=418 t= 453 t= 1500

Figure 6. Examples of Bongard’'s “block pushers’. (&) An
evolved agent in its physically realistic virtual environment. (b)
growth phase starting from a single cell, showing various
intermediate stages (last agent after 500 time steps). Spheres
with different shading indicate differentiation.

The agorithm starts with a string of randomly selected
floating point numbers between 0 and 1. A scanning
mechanism determines the location of the genes. Each
gene consists of 6 floating point numbers which are the
parameters that evolution can modify. They are explained
in figure 7. There are transcription factors that only
regulate the activity of other genes, there are transcription
factors for morphology, and for neuronal growth.
Whenever a gene is “expressed”, it will diffuse a
transcription factor into the cell from a certain diffusion
site. The activity of this genetic regulatory network leads
to particular concentrations of the transcription factors to
which the cell is sensitive: whenever a concentration
threshold is exceeded, an action is taken. For example, the
cell may increase or decrease in size, if it gets too large, it
will split, the joint angles can be varied, neurons can be
inserted, connections added or deleted, structures can be
duplicated, etc. The growth process begins with a single
unit into which “transcription factors’ are injected (which
determines the primary body axis). Then it is left to the
dynamics of the genetic regulatory network. The resulting
phenotype is subsequently tested in the virtua
environment. Over time, agents evolve that are good at
pushing the block.
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Figure 7. The mechanisms underlying the genetic regulatory
networks. (@) Genes on the genome. Which regions are
considered to be genes is determined by an initia scanning
mechanism (values below 0.1 are taken as starting positions). (b)
and (c) An example of a particular gene. Nc means “non-coding”
region, Pr is a promoter site (start of gene), P1 through P6 are
the parameters of the gene. P1: the transcription factor (TF) that
regulates the expression of this gene (there are 20 different
regulatory TSs, so this value is rounded into the range [0,19].
P2: the TF the gene emits if expressed (there are 43 TFs [20
regulatory and 23 that cause phenotypic change], so thisvalueis
rounded into the range [0,42]). P3: the diffusion site, i.e. the
location in the cell from which the TF is diffused. P4: the
quantity of TF emitted by this gene, if expressed. P5, P6: lower
and upper bounds of the regulatory TF concentrations for which
the geneis expressed.

Emergence — the achievements of artificial evolution
and morphogenesis

Although simplein their basic form, these mechanism lead
to an interesting dynamics and produce fascinating results.
Here are some observations: (1) Organisms early on in
evolution are typically smadler than those of later
generations: evolution discovers that in order to push a
block of large size, it is necessary to have a large body. In
other words, evolution had to manipulate morphology in
order to achieve the task. (2) Evolution comes up with
means of locomotion. In small creatures, these are very
local reflex-like mechanisms distributed through the entire
organism. Larger creatures tend to have additional
tentacles that can be used to push against the block, which
requires a similar kind of control. This is in fact an
instance of the equivalent of what is termed “exaptation”
in biology: the exploitation of structures for a new
function (in this case pushing with a tentacle) that were
originally evolved for a different purpose (in this case
locomotion). Because they have been created by artificial
evolution and morphogenesis, they are, in some sense,
ecologically balanced (for this particular task
environment). (3) There is no direct relation between
genotype length and phenotypic fithess — the two are
largely dissociated. But of course, very short genomes can
not produce highly complex phenotypes. (4) There is
functional speciaization, i.e. cells differentiate into units
containing both sensors and actuators (the white colored
cells in figure 6), cells that only contain sensors but no
actuators (gray coloring), or cells not containing anything,
thus only providing passive structural support (black
coloring). (5) There is repeated structure, i.e. some
combination of cells occur in dightly modified form in
various places on the agent. As can be seen in Figure 6,
there is always a white sphere followed by alight gray one
at the end of the tentacles. Inspection of the specific neural
patterning in these pairs of spheres shows that they differ
to some extent from one another. An example from
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biology is fingers that are similar but exhibit graded
differences. (6) Some genes specialize to become “master
regulatory genes’, i.e. they regulate the activity of other
genes. Thus, to an outside observer, it looks as if a
hierarchical structure were evolving in the regulatory
network. Note that this hierarchy is emergent and results
from a “flat” dynamical system. Thus, it can change at a
later point in time, unlike “structural” hierarchies. Again,
metaphoricaly  speaking, artificial evolution has
discovered how to manage complexity, i.e. by evolving a
hierarchical organization. It is important to mention that
this has all been “discovered” by simulated evolution and
has not been programmed into the system. Stated
differently, it is emergent from the mechanisms of
simulated evolution and genetic regulatory networks.

The work of Eggenberger (1997, 1999) is among the first
to employ genetic regulatory networks to model growth
processes in computational systems. He succeeded in
evolving three-dimensional shapes. As in the case of
Bongard’'s system, the resulting shape (or organism) is
emergent from a complex dynamical system. Artificia
evolution not only shapes the agent’s morphology and
neural controller, but the interaction between its
morphology, controller, and its environment, i.e. its
ecological balance.

4. Discussion and conclusions

We have argued that there is till a lack of consensus in
the field of adaptive behavior on its theoretical
foundations. By employing design principles we have
attempted to take afirst step in the direction of providing a
coherent framework for design. In the present form we
have proposed the principles and have argued why they
are plausible. The passive dynamic walker, the quadruped
“Puppy”, and “Stumpy” provide illustrations of the
principles of cheap design and ecological balance.

While this is acceptable and interesting, the design
principles would be much more compelling and powerful
if they could be demonstrated to emerge from an
evolutionary process (which is one of the messages of the
principle of emergence). Using the principles of genetic
regulatory networks, we have worked out methods by
which entire agents can be evolved, including their
morphology, their material properties, and their control
systems.

There are anumber of limitations of this approach that we
will put on the research agenda for the coming years. One
is the incorporation of interaction with the environment
during ontogenetic development. Moreover, the “rewrite
rules” borrowed from Gruau’'s cellular encoding algorithm
(Gruau, 1994) for neurona growth will be replaced by
more biological mechanisms. Third, instead of defining a
fitness function, we will turn to “open-ended evolution”
where the survival of the individua is the sole criterion.
This requires the definition of pertinent resources such as
energy supply, blood sugar level, operating temperature,
etc. that need to be maintained. Fourth, we need to
incorporate the variation of material properties into the

evolutionary algorithm, so that this aspect can be studied
as well. As we have seen earlier, material properties are
essential as they can be exploited and often lead to more
simple and robust control (see, for example, the case study
on the quadruped “Puppy”). And last but not least, we
need to be able to increase the complexity of our task
environments which requires much more computational
power. The incorporation of redlistic and sophisticated
physics will be an essentia criterion: only if the
environment is sufficiently “responsive’ to an agent’s
interaction will there be a need for evolution to increase an
agent’s complexity.

Finaly, we believe our present model illustrates how
continual progress in the construction of increasingly
sophisticated evolutionary design tools for complete
agents can be achieved: since the work of Karl Sims
(1994), progress in this particular domain has been rather
ad hoc. Although our own models do have a principled
aspect in that they are trying to extract the essentia
mechanisms from genetic regulatory networks, there is a
certain ad hoc character because the inclusion of features
into the model is somewhat arbitrary.

The appearance of a particular evolutionary dynamic—in
this case, exaptation—without explicitly programming it
into our model indicates that we have to some degree
captured the “right” aspects of biological evolution. In
other words, we have added some complexity to our
model of evolution (genetic regulatory networks), but this
addition has been worthwhile because it has increased the
design power of artificial evolution by allowing exaptation
to occur. We propose using such a metric to judge the
merit of future evolutionary models that are sure to follow.
If an evolutionary model for artifact design incorporates
some new biological detail, and that detail enhances the
design potential of that model, then the inclusion of that
biological detail is warranted; otherwise, it should be
removed from the model, and some other biological detail
should be included. We believe that only by such
principled advance will the design of increasingly
sophisticated artificial evolutionary systems become
possible.

At the moment we are confined to simulation; the
experiments with artificial systems that can grow
physicaly in the rea world are only in their very initial
stages (for example in the field of nano-technology,
growth mechanisms are investigated). One way to get
around this problem, at least to some extent, is on the one
hand to have a good simulator that models the physics of
the environment, of the evolved individua and its
interactions with the real world (e.g. gravity, impact,
friction), and on the other to have rapid robot building kits
that enable the researchers to quickly build a robot to test
some individuals in the real world, using the evolved
creatures as blueprint. But even if done in simulation,
evolving an organism from scratch is a big challenge as
well.

One of the problems with the examples and ideas
presented in this paper is that they are mostly qualitative.
Clearly, more quantitative statements will be required to
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make the story more compelling. But we do hope that
researchers will take up the challenges posed by
embodiment.

Let us conclude by raising an issue that is alwaysin the air
when working with relatively simple systems (such as
block pushers), the one of scalability. By scalability we
mean in this context whether the methods proposed
(smulated genetic regulatory networks) will  be
sufficiently powerful to evolve much more complex
creatures capable of many behaviors in very different
types of environments. We believe this question is still
open as it is not clear to what extent the real world plays
an essential role in evolution, or whether simulated
environments can be made sufficiently complex.

One hope is, for example, that as the environments and
agents become more complex, performing not only one or
a few tasks, but perhaps hundreds or thousands, we will
begin to see a certain centralization of the neural substrate
which in the very simple creatures is largely distributed
through the entire agent.

Earlier, we pointed out the importance of sensory-motor
coordination for the development of higher levels of
intelligence. This idea is inspired by developmental
studies on humans in which the ability for sensory-motor
coordination is considered essential: through sensory-
motor coordination correlations within and between
different sensory modalities are induced, thus facilitating
the learning process. Because of its obvious advantages
we would expect our fittest agents to engage in sensory-
motor coordination. To display its rea power, the task
environment would have to be more demanding than mere
locomation. We started with a series of experiments where
agents have to grasp a large object, a task that obviously
requires sensory-motor coordination skills (Bongard,
2003). However, these experiments are too preliminary to
be conclusive, except that it seems possible, in principle to
evolve grasping in complex agents.

Related to the issue of scalability is the fact that we are
building and evolving agents for relatively simple or “low-
level” sensory-motor tasks like locomotion and pushing.
What is the relevance of these studies for higher forms of
cognition? We speculate that by looking at motion,
locomotion, and orientation, we can approach the
grounding problem, i.e. how categorization — the ability to
make distinctions in the real world — and abstract concepts
emerge within the growing organism. Metaphorically
speaking, a “body image” provides the foundation even
for abstract mathematical concepts, as, for example,
argued by Lakoff and Nunez (2000). And, we suspect, that
in the development of the body image, basic sensory-
motor skills play an essential role. While we can expect
significant contributions from developmental robotics, in
which the system to be modeled is human babies that grow
into adults, these studies will aways start from the
assumption of a given, human-like morphology. What we
propose here is more fundamental because we want to
explore what sorts of morphologies evolve and how they
relate to task environment and neural control. The fact that
we can evolve other kinds of morphologies, we can study
not only “life as it is’, but “life as it could be’, and

experience has taught that we can learn a lot by doing
things differently from nature.

Case studies such as the ones presented, and experiments
with artificial evolution and morphogenesis will hopefully
leed to a better understanding of how biological
intelligence evolved and to a better understanding of
intelligence in general. In this sense, we feel that “new
robotics’ can make a significant contribution.
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