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 Abstract 

New Robotics designates an approach to robotics 
that, in contrast to traditional robotics, employs 
ideas and principles from biology. While in the 
traditional approach there are generally accepted 
methods (e.g. from control theory), designing 
agents in the New Robotics approach is still largely 
considered an art. In recent years, we have been 
developing a set of heuristics or design principles, 
that on the one hand capture theoretical insights 
about intelligent – adaptive – behavior, and on the 
other provide guidance in actually designing and 
building systems. In this paper we provide an 
overview of all the principles but focus on the 
principles of “ecological balance” which concerns 
the relation between environment, morphology, 
materials, and control, and “sensory-motor 
coordination” which concerns self-generated 
sensory stimulation as the agent interacts with the 
environment and which is a key to the development 
of high-level intelligence. As we will argue, 
artificial evolution together with morphogenesis is 
not only “nice to have” but is in fact a necessary 
tool for designing embodied agents.  

1. Introduction 
In the past the focus in the field of robotics has been on 
precision, speed, and controllability; more recently there 
has been an increasing interest in adaptivity, learning, and 
autonomy. The reasons for this are manifold, but an 
important one is the growing concern in the research 
community for using robots to study intelligent systems. 
This has led to a new set of goals for this new kind of 
robotics. Of course, one of the important goals remains the 
development of useful artifacts, but it is no longer the 
major one. More important is an increased understanding 
of the principles underlying intelligent behavior. A typical 

starting point is the modeling of some aspects of 
biological systems, such as how ants find their way back 
to the nest after finding food, how dogs catch a Frisbee 
while running, how rats navigate in a maze, or how people 
recognize a face in a crowd. Experience has shown that 
building a robot (or a computer model) considerably 
enhances our understanding of the natural system. A third 
goal is the abstraction of general principles of intelligent 
behavior, which is the main topic of this paper.  
 
Recently, a host of terms have been invented to 
characterize this new approach to the design of intelligent 
systems, one that, in contrast to the traditional ones of 
artificial intelligence and robotics, draw inspiration from 
biology. The field of adaptive systems, as loosely 
characterized by conferences such as SAB (Simulation of 
Adaptive Behavior) or AMAM (Adaptive Motion in 
Animals and Machines), or the journals of Artificial Life 
and Adaptive Behaviour, is very heterogeneous and there 
is a definite lack of consensus on the theoretical 
foundations. As a consequence, agent design is – typically 
– performed in an ad hoc and intuitive way. Although 
there have been some attempts at elaborating principles 
(e.g. Brooks, 1991; Bryson, 2002; Maes, 1993), general 
agreement is still lacking. In addition, much of the work 
on designing adaptive systems is focused on software, i.e. 
the programming of the robots. However, what we are 
really interested in is not just the programming aspects, 
but rather designing entire systems. The research 
conducted in our laboratory, but also by many others, has 
demonstrated that often, better, cheaper, more robust and 
adaptive agents can be developed if the entire agent is the 
design target rather than only its controller. This implies 
taking embodiment into account and going beyond the 
programming level proper. Below, we will characterize in 
detail what we mean by embodiment; for now we take it to 
mean the physical setup of the agent which includes the 
body plan, sensors, actuators, etc. Because we are not only 
looking at programs, we prefer to use the term 
“engineering agents” rather than “programming agents”. 
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If this idea of engineering agents is the goal, the question 
arises as to what form the theory should have, i.e. how the 
experience gained so far can be captured in a concise 
scientific way. Philosophers have a preference for verbal 
and logic-based descriptions. However, verbal theories 
often gloss over important details and thus lack the 
required precision. Logic-based theories are typically very 
limited in their expressive power. Moreover, they suggest 
assumptions about the real world that simply do not hold. 
For example, there is an underlying assumption of discrete 
states that can be achieved by applying certain types of 
operators, an assumption that has misled many researchers 
in the past. Researchers from traditional artificial 
intelligence and cognitive science believe that the best 
way to make progress is to employ symbol processing 
concepts (e.g. Newell and Simon, 1976). This idea has 
lead to interesting applications from a computer science 
perspective but has contributed little to our understanding 
of the nature of natural forms of intelligence. 
 
Physicists and control engineers have a preference for 
differential equations, but they are better suited for 
analysis than for design. The mathematical theory of 
dynamical systems that capitalizes on this formalism is 
considered by many to ultimately be the best candidate. 
While this approach yields very interesting results for 
relatively simple robotic systems (e.g. Smithers, 1995; 
Steinhage and Schoener, 1997; Berthouze, 2000; 
Yamamoto and Kuniyoshi, 2001), it seems to be very 
difficult to apply it to complex systems beyond the 
metaphorical level. Moreover, applying this type of theory 
for design purposes does not seem to be straightforward.  
For the time being, it appears that progress over the last 
few years in the field has been slow (though there have 
been some interesting developments, e.g. Yamamoto and 
Kuniyoshi, 2002), and we may be well-advised to search 
for an “intermediate” solution, between no theory at all (or 
purely verbal ones), and a rigorous mathematical one. And 
in order to do this processing, morphology has to be 
exploited. We use the term “morphological computation” 
to designate the idea that part of the computational task is, 
so to speak, taken over by the morphology. 
"Morphological computation" is also exploited in the 
design of artificial retinas and has a long history, as well 
as generally in the field of space-variant sensing (e.g. 
Hutchinson et al., 1988; Ferrari et al., 1995). 
 
A set of design principles as a theoretical framework for 
understanding intelligence seems desirable for a number 
of reasons. First, at least at the moment, there do not seem 
to be any real alternatives. The information processing 
paradigm, another potential candidate, has proven ill-
suited to come to grips with natural, adaptive forms of 
intelligence. Second, because of the current unfinished 
status of the field, a set of principles is flexible and can be 
dynamically changed and extended. Third, design 
principles present heuristics for actually building systems. 
In this sense, they instantiate the synthetic methodology 
(see below). And fourth, evolution can also be viewed as a 
designer, albeit a “blind one”, but an extremely powerful 
one nevertheless. We hope to convince the reader that a 
framework founded on a set of design principles is a good 

way to make progress, and that researchers will take it up, 
modify the principles, add new ones, and try to make the 
entire set more comprehensive and coherent. The response 
so far has been highly encouraging and researchers as well 
as educated lay people are apparently able to relate to 
these principles very easily.  
 
Although most of the literature is still about programming, 
some of the research explicitly deals with complete agent 
design and includes aspects of morphology  (e.g. Sims, 
1994a, b; Pfeifer, 1996; Lipson and Pollack, 1999; Pfeifer 
and Scheier, 1999; Hara and Pfeifer, 2000a; Bongard and 
Pfeifer, 2001; Bongard, 2002, 2003; Pfeifer, 2003). Our 
own approach over the last six years or so has been to try 
and systematize the insights gained in the fields of 
adaptive behavior and intelligence in general by 
incorporating ideas from biology, psychology, 
neuroscience, engineering, and artificial intelligence into a 
set of design principles, as argued above; they form the 
main topic of this paper. 
 
A first version of the design principles was published at 
the 1996 conference on Simulation of Adaptive Behavior 
(Pfeifer, 1996). A more elaborate version has been 
published in the book “Understanding Intelligence” 
(Pfeifer and Scheier, 1999). More recently, some 
principles have been extended to incorporate ideas on the 
relation between morphology, materials, and control 
(Ishiguro et al., 2003; Hara and Pfeifer, 2000a; Pfeifer, 
2003). An updated detailed summary will be published in 
Pfeifer and Glatzeder (in preparation). 
 
We start by giving a very short overview of the principles. 
We then discuss the information theoretic implications of 
embodiment, i.e. the relation between physics and 
information processing, using a number of case studies. In 
particular we illustrate the concept of “ecological 
balance”. We then show how the principle of “sensory-
motor coordination” can be used to explain important 
aspects of the development of higher levels of intelligence. 
Subsequently it is demonstrated how artificial evolution 
together with morphogenesis can be employed to design 
ecologically balanced systems. We will speculate that, 
together with a sophisticated physics-based simulation, it 
might eventually lead to the design of systems with higher 
levels of intelligence. We will make clear that these 
considerations are only applicable to embodied systems. 
 
This is not a technical paper but a conceptual one. The 
goal is to provide a framework within which technical 
research can be conducted that takes into account the most 
recent insights in the field. In our argumentation we will 
resort mostly to research conducted in our own laboratory 
but also to research performed in the community at large. 
In this sense, the paper has somewhat of a tutorial and 
review flavor and should be considered as such. 
Moreover, it is intended for an interdisciplinary audience 
and thus largely avoids technical jargon. 

2. Design principles: Overview 
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There are, in essence, two different types of design 
principles: some are concerned with the general 
“philosophy” of the approach. We call them “design 
procedure principles”, as they do not directly pertain to 
the design of the agents themselves but rather to the way 
of proceeding, to the methodology. Another set of 
principles is concerned more with the actual design of the 
agent. We use the qualifier “more” to express the fact that 
we are often not designing the agent directly but rather the 
initial conditions and the learning and developmental 
processes or the evolutionary mechanisms as we will 
elaborate later. The current overview will, for reasons of 
space, be very brief; a more extended version is 
forthcoming (Pfeifer and Glatzeder, in preparation). 

Table 1: Overview of the design principles. 

 

Label Name Description 

  Design procedure principles 

P-Princ. 1 Synthetic 
methodology 

Understanding by building 

P-Princ 2 Emergence Systems should be designed 
for emergence (for increased 
adaptivity) 

P-Princ 3 Diversity-
compliance 

Tradeoff between exploiting 
the givens and generating 
diversity solved in 
interesting ways 

P-Princ 4 Time 
perspectives 

Three perspectives required: 
“Here and now”, 
ontogenetic, phylogenetic 

P-Princ 5 Frame-of-
reference 

Three aspects must be 
distinguished: perspective, 
behavior vs. mechanisms, 
complexity 

  Agent design principles 

A-Princ 1 Three 
constituents 

ecological niche 
(environment), tasks, and 
agent must always be taken 
into account 

A-Princ 2 Complete 
agent 

Embodied, autonomous, 
self-sufficient, situated 
agents are of interest 

A-Princ 3 Parallel, 
loosely 
coupled 
processes 

Parallel, asynchronous, 
partly autonomous 
processes, largely coupled 
through interaction with 
environment 

A-Princ 4 Sensory-
motor 
coordination 

Behavior sensory-motor 
coordinated with respect to 
target; self-generated 
sensory stimulation 

A-Princ 5 Cheap design Exploitation of niche and 
interaction; parsimony 

A-Princ 6 Redundancy Partial overlap of 
functionality based on 
different physical processes 

A-Princ 7 Ecological 
balance 

Balance in complexity of 
sensory, motor, and neural 
systems: task distribution 
between morphology, 
materials, and control 

A-Princ 8 Value  Driving forces; 
developmental mechanisms; 
self-organization 

 
P-Princ 1: The synthetic methodology principle. The 
synthetic methodology, “understanding by building”, 
implies on the one hand constructing a model – computer 
simulation or robot – of some phenomenon of interest 
(e.g. how an insect walks, how a monkey grasps a banana, 
how babies learn to make distinctions in the real world, or 
how we recognize a face in a crowd). On the other we 
want to abstract general principles from the constructed 
model (some examples are given below). The term 
“synthetic methodology” was adopted from Braitenberg’s 
seminal book “Vehicles: Experiments in synthetic 
psychology” (Braitenberg, 1984). 

P-Princ 2: The principle of emergence. If we are 
interested in designing adaptive systems we should aim for 
emergence. The term emergence is controversial, but we 
use it in a very pragmatic way, in the sense of not being 
preprogrammed. When designing for emergence, the final 
structure of the agent is the result of the history of its 
interaction with the – simulated or real world – 
environment. Strictly speaking, behavior is always 
emergent, as it cannot be reduced to internal mechanism 
only; it is always the result of a system-environment 
interaction. In this sense, emergence is not all-or-nothing 
phenomenon, but a matter of degree: the further removed 
from the actual behavior the designer commitments are 
made, the more we call the resulting behavior emergent. 
Systems designed for emergence tend to be more adaptive 
and robust. For example, a system specifying initial 
conditions and developmental mechanisms will 
automatically exploit the environment to shape the agent’s 
final structure. Another example from locomotion (see 
below) is the exploitation of the intrinsic material 
properties of an agent: if the spring-like properties of the 
muscles are exploited, the details of the trajectories of the 
joints are emergent and need not be controlled. 

P-Princ 3: The diversity-compliance principle. Intelligent 
agents are characterized by the fact that they are on the 
one hand exploiting the specifics of their ecological niche 
and on the other by behavioral diversity. In a conversation 
I have to comply with the rules of grammar of the 
particular language, and then I have to react to what the 
other individual says, and depending on that, I have to say 
something different. Always uttering one and the same 
sentence irrespective of what the other is saying would not 
demonstrate great behavioral diversity. This principle or 
trade-off comes in many variations in cognitive science, 
i.e. the plasticity-stability tradeoff in learning theory 
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(Grossberg 1995), assimilation-accommodation in 
perception (Piaget 1970), and exploration-exploitation in 
evolutionary theory (Eiben and Schippers 1998). 

P-Princ 4: The time perspectives principle. A 
comprehensive explanation of behavior of any system 
must incorporate at least three perspectives: (a) state-
oriented, or the “here and now”, (b) learning and 
development, the ontogenetic view, and (c) evolutionary, 
the phylogenetic perspective. The fact that these 
perspectives are adopted by no means implies that they are 
separate. On the contrary, they are interdependent, but it is 
useful to tease them apart for the purpose of scientific 
investigation. Note the connection to the principle of 
emergence: if a time perspective can be explained as being 
emergent from another, we have a deeper kind of 
explanation. For example, if the “here and now” can be 
explained as being emergent from the ontogenetic one, 
this constitutes scientific progress. 

P-Princ 5: The frame-of-reference principle. There are 
three aspects to distinguish between whenever designing 
an agent: (a) the perspective, i.e. are we talking about the 
world from the agent’s, observer’s, or designer’s 
perspective; (b) behavior is not reducible to internal 
mechanism; trying to do that would constitute a category 
error; and (c) apparently complex behavior of an agent 
does not imply complexity of the underlying mechanism. 
Although it seems obvious that the world “looks” very 
different to a robot than to a human because the robot has 
completely different sensory systems than a human, this 
fact is surprisingly often ignored. Second, behavior cannot 
be completely programmed, but is always the result of a 
system-environment interaction. Again, it is surprising 
how often this obvious fact is ignored even by roboticists. 
And third, the complexity of the environment plays an 
essential role in the behavior and thus in the ways in which 
this complexity is perceived by an observer. Thus, 
behavioral complexity cannot be attributed to the agent 
alone, but to the agent-environment interaction (see the 
discussion of “Simon’s Ant” in (Simon 1969); also (Seth 
2002)). 

A-Princ 1: The three-constituents principle. (a) The 
definition of the ecological niche (the environment), (b) 
the desired behaviors and tasks, and (c) the agent itself. 
The main point of this principle is that it would be a 
fundamental mistake to design the agent in isolation. This 
is particularly important because much can be gained by 
exploiting its physical and social environment. 

A-Princ 2: The complete agent principle. The agents of 
interest are autonomous (a relative notion relating to the 
degree of independence of other agents), self-sufficient  
(i.e. they can sustain themselves over extended periods of 
time), embodied (i.e. realized as physical systems), and 
situated (i.e. they can acquire information about the 
environment through their own sensory systems as a result 
of their interaction with the real world). This perspective, 
although extremely powerful and obvious, is not 
considered explicitly very often.  

A-Princ 3: The principle of parallel, loosely coupled 
processes.  Intelligence is emergent from an agent-

environment interaction based on a large number of 
parallel, loosely coupled processes that run 
asynchronously and are connected to the agent’s sensory-
motor apparatus. The term “loosely coupled” is used in 
contrast to hierarchically coupled processes in which there 
is a program calling a subroutine and the calling program 
has to wait for the subroutine to complete its task before it 
can continue. In that sense, this hierarchical control 
corresponds to very strong coupling. However, on a 
complete agent, there can be a very strong coupling of 
processes by the fact that the system is embodied: two 
joints coupled by a physical link (bones) are very strongly 
coupled as well. “Loosely coupled” also refers to the 
coupling through the interaction with the environment.1 

A-Princ 4: The principle of sensory-motor coordination. 
All intelligent behavior (e.g. perception, categorization, 
memory) is to be conceived as sensory-motor 
coordination. This sensory-motor coordination, in addition 
to enabling the agent to interact efficiently with the 
environment, serves the purpose of structuring its sensory 
input. One of the powerful implications is that the problem 
of categorization in the real world is greatly simplified 
through the interaction with the real world because the 
latter supports the generation of “good” patterns of 
sensory stimulation, “good” meaning correlated, and 
stationary (at least for a short period of time). This 
principle is essential in the development of higher-level 
cognition (see below). 

A-Princ 5: The principle of cheap design. Designs must 
be parsimonious, and exploit the physics and the 
constraints of the ecological niche. This principle is 
related to the diversity compliance principle in that it 
implies, for example, compliance with the laws of physics. 
An example are robots with wheels that exploit the fact 
that the ground is mostly flat (which is given, for example, 
in office environments). 

A-Princ 6: The redundancy principle. Agents should be 
designed such that there is an overlap of functionality in 
the different subsystems. Examples are sensory systems 
where, for example, the visual and the haptic systems both 
deliver spatial information, but they are based on different 
physical processes (electromagnetic waves vs. mechanical 
touch). Merely duplicating components does not lead to 
useful redundancy; the partial overlap of functionality and 
the different physical processes are essential. Note that 
redundancy is required for diversity of behavior and to 
make a system adaptive. If there is a haptic system in 
addition to the visual one, the agent can also function in 
complete darkness, whereas one with 10 cameras ceases to 
function if the light goes out. 

A-Princ 7: The principle of ecological balance. This 
principle consists of two parts: the first one concerns the 
relation between the sensory system, the motor system, 
and the neural control. The “complexity” of the agent has 

                                                 
1 In this case “indirectly coupled” might be the better term. For 
example, the legs in insect walking are partly coordinated 
through the interaction with the real world: if one leg is lifted, 
the force on all the other legs changes instantaneously, which 
can be exploited for coordination (Cruse et al. 2002). 
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to match the complexity of the task environment, in 
particular: given a certain task environment, there has to 
be a match in the complexity of the sensory, motor, and 
neural system. The second is about the relation between 
morphology, materials, and control: given a particular task 
environment, there is a certain balance or task distribution 
between morphology, materials, and control  (for 
references to both ideas, see, e.g. Hara and Pfeifer, 2000a; 
Pfeifer, 1996; Pfeifer, 1999, 2000; Pfeifer and Scheier, 
1999). Often, if the morphology and the materials are 
right, control will be much cheaper. Because we are 
dealing with embodied systems, there will be two 
dynamics, the physical one or body dynamics and the 
control or neural dynamics. There is the important 
question of how the two can be coupled in optimal ways. 
The research initiated by Ishiguro and his colleagues (e.g. 
Ishiguro et al., 2003) promises deep and important 
pertinent insights. We will be giving examples of this 
principle later in the paper.  

A-Princ 8: The value principle. This principle is, in 
essence, about motivation. It is about why the agent does 
anything in the first place. Moreover, a value system tells 
the agent whether an action was good or bad, and 
depending on the result, the probability of repetition of an 
action will be increased or decreased. Because of the 
unknowns in the real world, learning must be based on 
mechanisms of self-organization. There is a frame-of-
reference issue in that values can be implicit or explicit. If 
an agent is equipped, say, with neural networks for 
Hebbian learning, we can, as outside observers, say that 
this constitutes value to the agent because in this way it 
can learn correlations, certainly a useful thing. If as a 
result of a particular action, a particular internal signal – 
neural or hormonal – is generated that modulates learning, 
we talk about an explicit value system (we adopted the 
term from Edelman, 1987).  

The topic of value systems is central to agent design and 
must be somehow resolved. However, it seems that to date 
no generally accepted solutions have been developed. As 
this is not the central topic of this paper, we will not 
further elaborate on this issue. We anticipate that there 
will be a subset of principles devoted to precisely these 
issues. 

Although it does capture some of the essential 
characteristics of adaptive systems, the set of principles 
described above is by no means complete. A series of 
principles for designing evolutionary systems and 
collective systems is currently under development.  

As mentioned earlier, all these principles only hold for 
embodied systems; they could not possibly be applied in 
the context of traditional symbol processing systems. In 
this paper, we focus on the principles of ecological 
balance and sensory-motor coordination which lie at the 
heart of embodiment.  

3. Information theoretic 
implications of embodiment 

There is a trivial meaning of embodiment, namely that 
“intelligence requires a body”. In this sense, anyone using 
robots for his or her research is doing embodied artificial 
intelligence. It is also obvious that if we are dealing with a 
physical agent, we have to take into account gravity, 
friction, torques, inertia, energy dissipation, elasticity of 
materials, etc. However, there is a non-trivial meaning of 
embodiment, namely that there is a tight interplay between 
the physical and the information theoretic aspects of an 
agent. The design principles all directly or indirectly refer 
to this issue, but some focus specifically on this interplay, 
such as the principle of sensory-motor coordination 
(embodied interaction with the environment induces 
sensory-motor patterns); the principle of cheap design 
(proper embodiment leads to simpler and more robust 
control); the redundancy principle (proper choice and 
positioning of sensors leads to robust behavior); and the 
principle of ecological balance (capitalization of the 
relation between morphology, materials, and neural 
control). For the purpose of illustration we will focus on 
ecological balance and sensory-motor coordination in this 
paper. We proceed by presenting a number of case studies 
illustrating the application of these principles to designing 
adaptive behavior. 

A short note on terminology is required here. We 
mentioned information theoretic implications of 
embodiment. What we mean is the effect of morphology, 
materials, and environment on neural processing, or better, 
the interplay between all of these aspects. The important 
point is that the implications are not only of a purely 
physical nature. 

Whenever we have an embodied system, through the 
embodiment itself, all aspects of an agent – sensors, 
actuators, limbs, the neural system – are always highly 
connected: changes to one component will potentially 
affect every other component. From this perspective we 
should never treat, for example, sensory and motor 
systems separately. However, for the purpose of 
investigation and writing, we must isolate the components, 
but at the same time we must not forget to view everything 
in the context of the complete agent. Having said that, we 
now proceed with a few case studies, first focusing on the 
sensory side, then the motor side, and finally on their 
integration. 

Sensory systems 

In previous papers we have investigated in detail the effect 
of changing sensor morphology on neural processing (e.g. 
Lichtensteiger and Eggenberger, 1999; Maris and te 
Boekhorst, 1996; Pfeifer, 2000a, b; Pfeifer and Scheier, 
1999). Here we only summarize the main results; for 
details, the reader is referred to the literature. 

The morphology of sensory systems has a number of 
important implications. In many cases, when the 
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morphology of the sensory systems is suited for the 
particular task environment, more efficient solutions can 
be found. For example, it has been shown that for many 
tasks motion detection is all that is required. Motion 
detection can often be simplified even more if the light-
sensitive cells are not spaced evenly, but if there is a non-
homogeneous arrangement. For example, Franceschini 
and his co-workers found that in the house fly the spacing 
of the facets in the compound eye is more dense toward 
the front of the animal (Franceschini et al., 1992). 
Allowing for some idealization, this implies that under the 
condition of straight flight, the same motion detection 
circuitry – the elementary motion detectors, or EMDs – 
can be employed for motion detection for the entire eye. 
Based on these ideas, Franceschini et al. built fully analog 
robots exploiting this non-homogeneous morphological 
arrangement. It can be shown that this arrangement, in a 
sense, compensates for the phenomenon of motion 
parallax. It has been shown in experiments with artificial 
evolution on real robots that certain tasks, e.g. keeping a 
constant lateral distance to an obstacle, can be solved by 
proper morphological arrangement of the ommatidia, i.e. 
frontally more dense than laterally (Lichtensteiger and 
Eggenberger, 1999).  

There is an additional important implication of 
morphology. It can be shown, that – again for specific 
interactions – learning speed can be increased significantly 
by having the proper morphology (Lichtensteiger and 
Pfeifer, 2002). The reason this works is that through the 
particular arrangement of the facets and the specific 
interactions, sensory data with particular statistical 
distributions are generated that support learning. The 
interesting aspect of this experiment, in contrast to many 
other experiments on machine learning, is that no specific 
distributions of the input data are assumed, but that they 
are generated through the interaction with the 
environment, through a sensory-motor coupling.  

Note that the sensor morphology alone does not tell us 
very much; it is only if we take the specific interaction 
with the environment into account (which includes the 
actions of the motor system as well), that we are able to 
understand the role of morphology in behavior.  

Franceschini and Changeux also found that there is a 
vergence scanning mechanism that pulls the retina back 
and forth in the focal plane (Franceschini and Changeux, 
1994). The functional role of this retinal movement is still 
open to investigation, but one purpose is clearly that it 
enhances the sensor’s visual range. Shimoyama and his 
co-workers have designed and built a millimeter-scale 
model of a compound eye (Hoshino et al., 2000). Not only 
is there a non-homogeneous arrangement of the microlens 
array – ranging from 2 degrees between two “ommatidia” 
in the center, to 6 degrees at the periphery – but there is 
active scanning in that the retina can be moved back and 
forth.  

Note that in this case, there is generation of sensory data 
through a sensory-motor coordination: as the retina is 
moved back and forth, data are generated that enable the 

organism to cover the area directly in front of the fly that 
would be otherwise inaccessible (for motion detection) for 
geometric reasons. Once again, we see the importance of 
the motor system for the generation of sensory signals, or 
more generally for perception. It should also be noted that 
these motor actions are physical processes, not 
computational ones, but they are computationally relevant, 
or put differently, relevant for neural processing. This is 
another demonstration that not all physical actions can be 
replaced by computation.  

Not only do the retinas of insects have non-homogeneous 
morphology, but the retinas of mammals, including 
humans, are heterogeneous as well: the spacing in the 
center is more dense than on the periphery, which is unlike 
standard cameras in which the distribution of the light-
sensitive cells is homogeneous. One of the reasons why 
animals can process visual signals so rapidly is that the 
retina already does a lot of pre-processing before the 
signals are sent on for further processing. This massively 
parallel peripheral processing ability is crucial to achieve 
real-time behavior. And in order to do this processing, 
morphology has to be exploited. This idea is also 
exploited in the design of artificial retinas and has a long 
history, as well as generally in the field of space-variant 
sensing (e.g. Ferrari et al., 1995). 

We now turn to the motor system. 

Motor systems 

In this section we present three case studies, the “passive 
dynamic walker”, “Stumpy”, and the quadruped “Puppy” 
that can all be used to explain the concept of “ecological 
balance” as well as the principle of “cheap design”. While 
the passive dynamic walker has no actuation, “Stumpy” 
and the quadruped “Puppy” are equipped with simple 
artificial muscles. 

The passive dynamic walker 

The passive dynamic walker which goes back to McGeer 
(1990a, b), illustrated in figure 1a, is a robot (or, if you 
like, a mechanical device) capable of walking down an 
incline without any actuation and without control. In other 
words, there are no motors and there is no microprocessor 
on the robot; it is brainless, so to speak. In order to 
achieve this task the dynamics of the robot, its body and 
its limbs, must be exploited. This kind of walking is very 
energy efficient and there is an intrinsic naturalness to it. 
However, its “ecological niche” (i.e. the environment in 
which the robot is capable of operating) is extremely 
narrow: it consists only of inclines of certain angles. 
Energy-efficiency is achieved because the leg movements 
are entirely passive, driven only by gravity in a pendulum-
like manner. To make this work, a lot of attention was 
devoted to morphology and materials. For example, the 
robot is equipped with wide feet of a particular shape to 
constrain lateral motion, soft heels to reduce instability at 
heel strike, counter-swinging arms to negate yaw induced 
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by leg swinging, and lateral-swinging arms to stabilize 
side-to-side lean (Collins et al., 2001).  

 

Figure 1. Two approaches to robot building. (a) The passive 
dynamic walker by Steve Collins (Collins et al., 2001), (b) the 
Honda robot Asimo. 

 

A different approach has been taken by the Honda design 
team. There the goal was to have a robot that could 
perform a large number of different types of movements. 
The methodology was to record human movements and 
then to reproduce them on the robot which leads to a 
relatively natural behavior of the robot. On the other hand 
control – or the neural processing, if you like – is 
extremely complex and there is no exploitation of the 
intrinsic dynamics as in the case of the passive dynamic 
walker. The implication is also that the movement is not 
energy efficient. It should be noted that even if the agent is 
highly complex, like the Honda robot, there is nothing in 
principle that prevents the exploitation of its passive 
dynamics. In human walking for example – and humans 
are certainly highly complex systems –  the forward 
swing of the leg is largely passive as well. Of course, the 
Honda robot can do many things like walking up and 
down stairs, pushing a cart, opening a door, etc., implying 
that its ecological niche is considerably larger than that of 
the passive dynamic walker. 

In terms of the design principles, this case study illustrates 
the principles of cheap design and ecological balance. The 
passive dynamic walker fully exploits the fact that it is 
always put on inclines that provide its energy source and 
generates the proper dynamics for walking. Loosely 
speaking, we can also say that the control task, the neural 
processing, is taken over by having the proper morphology 
and the right materials. In fact, the neural processing 
reduces to zero. At the same time, energy efficiency is 
achieved. However, if anything is changed, e.g. the angle 
of the incline, the agent ceases to function. This is the 
trade-off of cheap design. In order to make it adaptive, we 
would have to add redundancy. There is no contradiction 
between cheap design and redundancy: even highly 
redundant systems such as humans exploit the givens of an 
ecological niche (e.g. gravity, friction, motion parallax). 

Even though the passive dynamic walker is an artificial 
system (and a very simple one), it has a very natural feel 
to it. The term “natural” not only applies to biological 
systems, but artificial systems also have their intrinsic 

natural dynamics. Perhaps the natural feel comes from the 
exploitation of the dynamics, e.g. the passive swing of the 
leg. 

In conclusion, as suggested by the principle of ecological 
balance, there is a kind of trade-off or balance: the better 
the exploitation of the dynamics, the simpler the control, 
and the less neural processing will be required.  

Muscles – control from materials 

The passive dynamic walker had no actuation. However, 
the energy efficiency of this approach can be preserved by 
incrementally adding actuation. This has been done by 
Martijn Wisse and his colleagues at Delft University in 
Holland (Wisse and Frankenhuyzen, 2003) in the 
construction of the almost passive dynamic walking robot 
“Mike”. Mike uses pneumatic actuators, which is a kind of 
artificial muscle: it consists of a rubber tube embedded in 
a fabric and contracts when air pressure is applied (more 
about artificial muscles below). We now present two case 
studies where very simple types of artificial “muscles” are 
used, which employ elastic materials (in “Stumpy” and in 
the springs of the quadruped “Puppy”). 

Cheap diverse locomotion – “Stumpy”: Recently, there 
has been an increased interest in applying and further 
investigating these ideas through the construction of 
robots. An illustrative example is the walking and hopping 
robot Stumpy (Iida et al., 2002; Paul et al., 2002) (figure 
2). Stumpy’s lower body is made of an inverted “T” 
mounted on wide springy feet. The upper body is an 
upright “T” connected to the lower body by a rotary joint, 
the “waist” joint, providing one degree of freedom in the 
frontal plane. The horizontal beam on the top is weighted 
on the ends to increase its moment of inertia. It is 
connected to the vertical beam by a second rotary joint, 
providing one rotational degree of freedom, in the plane 
normal to the vertical beam, the “shoulder” joint. 
Stumpy’s vertical axis is made of aluminum, while both its 
horizontal axes and feet are made of oak wood. 

Although Stumpy has no real legs or feet, it can locomote 
in many interesting ways: it can move forward in a straight 
or curved line, it has different gait patterns, it can move 
sideways, and it can turn on the spot. Interestingly, this 
can all be achieved by actuating only two joints with one 
degree of freedom each. In other words, control is 
extremely simple – the robot is virtually “brainless”. The 
reason this works is because the dynamics, given by its 
morphology and its materials (elastic, spring-like 
materials, surface properties of the feet), is exploited in 
clever ways. There is a delicate interplay of momentum 
exerted on the feet by moving the two joints in particular 
ways (for more detail, see Iida et al., 2002 and Paul et al., 
2002). 
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Figure 2. The dancing, walking, and hopping robot Stumpy. (a) 
Photograph of the robot. (b) Schematic drawing (details, see 
text). 

Let us briefly summarize the ideas concerning ecological 
balance, i.e. the interplay between morphology, materials, 
and control. First, given a particular task environment, the 
(physical) dynamics of the agent can be exploited which 
leads not only to a natural behavior of the agent, but also 
to higher energy-efficiency. Second, by exploiting the 
dynamics of the agent, control can often be significantly 
simplified while maintaining a certain level of behavioral 
diversity. Third, materials have intrinsic control 
properties. And fourth, because ecological balance is 
exploited, Stumpy displays a surprisingly diverse behavior 
(dancing, walking, and hopping in different ways). In this 
sense, Stumpy also illustrates the diversity-compliance 
principle: on the one hand, it exploits the physical 
dynamics in interesting ways and on the other it displays 
high diversity. 

Cheap, rapid locomotion – the quadruped “Puppy”: 
Another case study that nicely illustrates the principle of 
ecological balance, is the quadruped “puppy” developed 
by Iida (Iida and Pfeifer, 2004).  

One of the fundamental problems in rapid locomotion is 
that the feedback control loops, as they are normally used 
in walking robots, can no longer be used as the response 
times are too slow. One way to go about this problem is to 
try and eliminate as much as possible the need for sensory 
feedback. How this can be done is demonstrated in what 
follows. In addition, it is shown how rapid locomotion can 
be achieved through slow but powerful actuation. One of 
the fascinating aspects of the quadruped “Puppy” is that 
not only fast but also robust locomotion can be achieved 
with no sensory feedback.  

The design of “Puppy” was inspired by biomechanical 
studies. Each leg has two standard servomotors and one 
springy passive joint. It carries eight motors, batteries, and 
a micro-controller. To demonstrate a running gait using 
this robot, we applied a synchronized oscillation based 
control to four motors in the hip and shoulder (the motors 
in the elbows and knees are not used for this experiment), 
where each motor oscillates through sinusoidal position 
control. No sensory feedback is used for this controller 
except for the internal local feedback for the servomotors. 
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Figure 3. The quadruped “Puppy”. (a) Picture of entire 
“puppy”. (b) The spring system in the hind legs. (c) 
Diagram showing joints, servomotor actuated joints 
[circles with crosses], and flexible spine [dotted line]. 

 The legs exhibit simple oscillations, but in the interaction 
with the environment, through the interplay of the spring 
system, the flexible spine (note that the battery is attached 
to the elastic spine which provides precisely the proper 
weight distribution), and gravity, a natural quadrupedal 
gait occurs, which includes periods in which all four legs 
are off the ground: in other words, there is a clear 
distinction between a stance and a flight phase. The 
system has self-stabilizing characteristics: there are no 
sensors on the robot. 

We found that this successful demonstration of running 
behavior relies strongly on the underlying mechanism of 
self-stabilization. The control of the robot is extremely 
simple: the controller does not distinguish between the 
stance/flight phase, acceleration, or inclination. 
Nevertheless, the robot maintains a stable periodic gait by 
properly exploiting its intrinsic dynamics. It is interesting 
to note that the foot-ground contact must exhibit little 
friction in order for this self-stabilization to work. 

The self-stabilization property can now be used to control 
forward velocity by simply varying a single phase 
parameter of the oscillation, i.e. a temporal delay between 
the fore and hind leg motors (the speed can vary between 
20 and 50cm/sec). This is a nice illustration of the 
necessity of ecological balance in an adaptive agent. There 
are a number of other parameters which could control the 
forward velocity apart from the phase such as oscillation 
frequency, amplitude, and the spring constants (if 
possible). However, an important aspect here is that an 
indirect parameter, e.g. the phase, could be used for the 
control of the forward velocity.  

This case study demonstrates that complicated and 
sophisticated designs typically employed in mechatronics 
are not always required in order to achieve behavioral 
diversity. Rather, the interaction of body dynamics (as 
determined by materials and mass distribution), 
environment (friction, shape of the ground), and control 
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(amplitude, frequency) can be exploited for control 
purposes. There have been a number of locomotion 
studies in terms of use of material properties and self-
stabilization mechanisms in biomechanics (Kubow and 
Full, 1999, and for review, Blickhan et al., 2003), and in 
robotics (e.g. Raibert, 1986, Buehler, 2002). These studies 
are closely related to our own work. An additional idea 
that is nicely illustrated by "Stumpy" and "Puppy" is the 
one of "morphological computation", a term introduced 
earlier to designate computational properties of 
morphology and materials. Computation for control can be 
significantly reduced by exploiting morphological 
computation, but because systems with complex 
morphologies have their own intrinsic dynamics – in 
contrast to wheeled robots, for example – control is no 
longer arbitrary, but has to comply with these dynamics. 
For example, while a wheeled robot can continuously 
speed up this is no longer possible with a system that has 
complex intrinsic dynamics. Also, rather than explicitly 
controlling the speed as in wheeled robots, the dynamics 
of the agent-environment interaction has to be modified by 
changing appropriate parameters. In case of "Puppy", for 
example, the phase between the oscillations of the fore 
legs and hind legs can be varied to change the speed. 

Reaching and grasping – sensory-motor coordination: 
Let us pursue the idea of exploiting the dynamics a little 
further. Most robot arms available today work with rigid 
materials and electric motors. Natural arms, by contrast, 
are built of muscles, tendons, ligaments, and bones, 
materials that are non-rigid to varying degrees. All of 
these materials have their own intrinsic properties such as 
mass, stiffness, elasticity, viscosity, temporal 
characteristics, damping, and contraction ratio to mention 
but a few. These properties are all exploited in interesting 
ways in natural systems. For example, there is a natural 
position for a human arm which is determined by its 
anatomy and by these properties. Reaching for and 
grasping an object like a cup with the right hand is 
normally done with the palm facing left, but could also be 
done – with considerable additional effort – the other way 
around. Assume now that the palm of your right hand is 
facing right and you let go. Your arm will immediately 
turn back into its natural position. This is not achieved by 
neural control but by the properties of the muscle-tendon 
system: in a sense the system acts like a spring – the more 
you stretch it, the more force you have to apply and if you 
let go the spring returns to its resting position. Also, the 
human arm exhibits intrinsic damping. Normally reaching 
equilibrium position and damping is conceived of in terms 
of electronic (or neural) control, whereas in this case, this 
is achieved (mostly) through the material properties. Or 
put differently, the morphology (the anatomy), and the 
materials provide physical constraints that make the 
control problem much easier – at least for the standard 
kinds of movements. The main task of the brain, if you 
like, is to set the material properties of the muscles, the 
spring constants. Once these constraints are given, the 
control task is much simpler. 

These ideas can be transferred to robots. Many researchers 
have started building artificial muscles (for reviews of the 
various technologies see, e.g., Kornbluh et al., 1998 and 

Shahinpoor, 2000) and used them on robots, as illustrated 
in figure 2. ISAC, a “feeding robot”, and the artificial 
hand by Lee and Shimoyama use pneumatic actuators, 
Cog the series elastic actuators, and the Face Robot shape 
memory alloys.  

 

Figure 4. Robots with artificial muscles. (a) The service robot 
ISAC by Peters (Vanderbilt University) driven by McKibben 
pneumatic actuators. (b) The humanoid robot Cog by Rodney 
Brooks (MIT AI Laboratory), driven by series-elastic actuators.  
(c) The artificial hand by Lee and Shimoyama (University of 
Tokyo), driven by pneumatic actuators. (d) The “Face Robot” by 
Kobayashi, Hara, and Iida (Science University of Tokyo), driven 
by shape-memory alloys. 

Facial expressions also provide an interesting illustration 
for our point about material properties. If the facial tissue 
has the right sorts of material properties in terms of 
elasticity, deformability, stiffness, etc., the neural control 
for the facial expressions becomes much simpler. For 
example, for smiling, although it involves the entire face, 
the actuation is very simple: the “complexity” is added by 
the tissue properties. Another highly desirable property 
that one gets for free if using the right kinds of artificial 
muscles is passive compliance: if an arm, for example, 
encounters resistance it will yield elastically rather than 
pushing harder. In the case of the pneumatic actuators this 
is due to the elastic properties of the rubber tubes.  

The important point here is that we are not simply 
replacing one type of actuator – an electrical motor – by a 
different type. This would not be very interesting. The 
point is that the new type of actuator – e.g. a pneumatic 
one – has intrinsic physical properties such as elasticity 
and damping that can be exploited by the neural control. 

In section 2 we postulated a set of design principles for 
adaptive motion. The principle of ecological balance, for 
example, tells us that given a particular task environment, 
there is an optimal task distribution between morphology, 
materials, and control. The principle of emergence asks 
the question of how a particular “balance” has emerged: 
how it has come about. In the study of biological systems, 
we can speculate about this question. However, there is a 
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possibility of systematically investigating this balance, by 
using artificial evolution and morphogenesis. Pertinent 
experiments promise a deeper understanding of these 
relationships. We also postulated the principle of 
“sensory-motor coordination.” A fascinating question 
would be whether evolved agents would employ this 
principle. There is some evidence that this is indeed the 
case (e.g. Beer, 1996; Nolfi and Floreano, 2001; Pfeifer 
and Scheier, 1999). The remainder of this paper will be 
devoted to exploring the design principles in an 
evolutionary context.  

 

4. Designing embodied agents using 
artificial evolution and 
morphogenesis  

Using artificial evolution for design has a tradition in the 
field of evolutionary robotics (Nolfi and Floreano, 2001). 
The standard approach is to take a particular robot and use 
an evolutionary algorithm to evolve a controller for a 
particular task. However, if we want to explore ecological 
balance we must include morphology and materials into 
our evolutionary algorithms.  

The problem with including morphology and materials is 
that the search space which is already very large for 
control architectures increases exponentially. Moreover, if 
sophisticated shapes and sensors are to be evolved, the 
length of the genome which is required for encoding these 
shapes will grow very large and there is no hope that 
anything will ever converge on a good solution.  

This issue can be approached in various ways; here we 
just mention two. The first which we will not further 
discuss in this paper is to parameterize the shapes, thus 
introducing designer biases as to the types of shapes that 
are possible. An example that has stirred a lot of 
commotion in the media is provided by Lipson and 
Pollack’s robots that were automatically produced (Lipson 
and Pollack, 2000). They decided that the morphology 
would consist of rods to which different types of joints 
could be attached. Rods can, for example, be 
parameterized as length, diameter, and material constants 
etc., thus limiting the space of possible shapes, or in other 
words, the types of morphologies. An example of the 
morphologies producing using Lipson and Pollack’s 
approach is shown in Figure 5(a). Then the search space, 
even though it is still large, becomes manageable. In 
contrast, our method for evolving a complete agent relies 
on growth, and agents are composed of many spheres. It 
could be argued that spheres can also be parameterized, 
but our goal is to allow evolution to compose agents from 
a large enough number of spheres so that the resulting 
morphologies have arbitrary shapes, which are 
independent of the geometries of the underlying building 
blocks. Figure 5(b) shows one such evolved morphology 
(this robot was evolved for a grasping task), illustrating 
this point. While the work of Lipson and Pollack is 
impressive, it still implies a strong designer bias. If we 
want to explore different types of morphologies, we want 
to introduce as little designer bias as possible. This can be 

done using ideas from biology, such as working with large 
numbers of building blocks, and including genetic 
regulatory networks into the evolutionary process.  

  

a b 
Figure 5. Comparison between robot morphologies. (a) Lipson’s 
sample robot morphology. (b) Bongard’s sample robot 
morphology. 

The mechanics of artificial genetic regulatory networks  
Here we provide only a non-technical introduction to 
genetic regulatory networks (for details, see, e.g. (Bongard 
and Pfeifer 2001), or (Bongard 2002, 2003)). It should be 
stressed that although this computational system is 
biologically inspired, it does not constitute a biological 
model; rather, it is a system in its own right. Also, when 
we use biological terminology, e.g. when we say that 
“concentrations of transcription factors regulate gene 
expression”, this is meant metaphorically. 

The basic idea is the following. A genetic algorithm is 
extended to include ontogenetic development by growing 
agents from genetic regulatory networks. Delleart and 
Beer (1994) first used a developmental model to evolve 
controllers for robots acting in an abstract grid-type world, 
but the `robots’ were composed of rectangles, which had 
no effect on their behavior. Nolfi and Parisi (1995) also 
used a developmental model that grows neural network 
controllers, but again the robots were non-embodied, and 
lived in an abstract grid-world. In the algorithm presented 
here, robots are both grown and evaluated within a three-
dimensional, dynamic simulator. This ensures that not 
only the controller, but also the morphology of the robot 
affects its behavior: in this way, we ensure that all of the 
evolved robots are embodied, even though they are 
simulated. Secondly, unlike the work of Lipson and 
Pollack, the motors—and therefore the behavior—are 
incorporated into sensory-motor loop, also ensuring that 
the robots are situated.  

In the example presented here, agents are tested for how 
far they can push a large block (which is why they are 
called “block pushers”). Figure 4a shows the physically 
realistic virtual environment. The fitness determination is 
a two-stage process: the agent is first grown and then 
evaluated in its virtual environment. Figure 4b illustrates 
how an agent grows from a single cell into a multicellular 
organism.  
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Figure 6. Examples of Bongard’s “block pushers”. (a) An 
evolved agent in its physically realistic virtual environment. (b) 
growth phase starting from a single cell, showing various 
intermediate stages (last agent after 500 time steps). Spheres 
with different shading indicate differentiation. 

The algorithm starts with a string of randomly selected 
floating point numbers between 0 and 1. A scanning 
mechanism determines the location of the genes. Each 
gene consists of 6 floating point numbers which are the 
parameters that evolution can modify. They are explained 
in figure 7. There are transcription factors that only 
regulate the activity of other genes, there are transcription 
factors for morphology, and for neuronal growth. 
Whenever a gene is “expressed”, it will diffuse a 
transcription factor into the cell from a certain diffusion 
site. The activity of this genetic regulatory network leads 
to particular concentrations of the transcription factors to 
which the cell is sensitive: whenever a concentration 
threshold is exceeded, an action is taken. For example, the 
cell may increase or decrease in size, if it gets too large, it 
will split, the joint angles can be varied, neurons can be 
inserted, connections added or deleted, structures can be 
duplicated, etc. The growth process begins with a single 
unit into which “transcription factors” are injected (which 
determines the primary body axis). Then it is left to the 
dynamics of the genetic regulatory network. The resulting 
phenotype is subsequently tested in the virtual 
environment. Over time, agents evolve that are good at 
pushing the block.  

 

Figure 7. The mechanisms underlying the genetic regulatory 
networks. (a) Genes on the genome. Which regions are 
considered to be genes is determined by an initial scanning 
mechanism (values below 0.1 are taken as starting positions). (b) 
and (c) An example of a particular gene. Nc means “non-coding” 
region, Pr is a promoter site (start of gene), P1 through P6 are 
the parameters of the gene. P1: the transcription factor (TF) that 
regulates the expression of this gene  (there are 20 different 
regulatory TSs, so this value is rounded into the range [0,19]. 
P2: the TF the gene emits if expressed (there are 43 TFs [20 
regulatory and 23 that cause phenotypic change], so this value is 
rounded into the range [0,42]). P3: the diffusion site, i.e. the 
location in the cell from which the TF is diffused. P4: the 
quantity of TF emitted by this gene, if expressed. P5, P6: lower 
and upper bounds of the regulatory TF concentrations for which 
the gene is expressed. 

Emergence – the achievements of artificial evolution 
and morphogenesis 

Although simple in their basic form, these mechanism lead 
to an interesting dynamics and produce fascinating results. 
Here are some observations: (1) Organisms early on in 
evolution are typically smaller than those of later 
generations: evolution discovers that in order to push a 
block of large size, it is necessary to have a large body. In 
other words, evolution had to manipulate morphology in 
order to achieve the task. (2) Evolution comes up with 
means of locomotion. In small creatures, these are very 
local reflex-like mechanisms distributed through the entire 
organism. Larger creatures tend to have additional 
tentacles that can be used to push against the block, which 
requires a similar kind of control. This is in fact an 
instance of the equivalent of what is termed “exaptation” 
in biology: the exploitation of structures for a new 
function  (in this case pushing with a tentacle) that were 
originally evolved for a different purpose (in this case 
locomotion). Because they have been created by artificial 
evolution and morphogenesis, they are, in some sense, 
ecologically balanced (for this particular task 
environment). (3) There is no direct relation between 
genotype length and phenotypic fitness – the two are 
largely dissociated. But of course, very short genomes can 
not produce highly complex phenotypes. (4) There is 
functional specialization, i.e. cells differentiate into units 
containing both sensors and actuators (the white colored 
cells in figure 6), cells that only contain sensors but no 
actuators (gray coloring), or cells not containing anything, 
thus only providing passive structural support (black 
coloring). (5) There is repeated structure, i.e. some 
combination of cells occur in slightly modified form in 
various places on the agent. As can be seen in Figure 6, 
there is always a white sphere followed by a light gray one 
at the end of the tentacles. Inspection of the specific neural 
patterning in these pairs of spheres shows that they differ 
to some extent from one another. An example from 
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biology is fingers that are similar but exhibit graded 
differences. (6) Some genes specialize to become “master 
regulatory genes”, i.e. they regulate the activity of other 
genes. Thus, to an outside observer, it looks as if a 
hierarchical structure were evolving in the regulatory 
network. Note that this hierarchy is emergent and results 
from a “flat” dynamical system. Thus, it can change at a 
later point in time, unlike “structural” hierarchies. Again, 
metaphorically speaking, artificial evolution has 
discovered how to manage complexity, i.e. by evolving a 
hierarchical organization. It is important to mention that 
this has all been “discovered” by simulated evolution and 
has not been programmed into the system. Stated 
differently, it is emergent from the mechanisms of 
simulated evolution and genetic regulatory networks. 

The work of Eggenberger (1997, 1999) is among the first 
to employ genetic regulatory networks to model growth 
processes in computational systems. He succeeded in 
evolving three-dimensional shapes. As in the case of 
Bongard’s system, the resulting shape (or organism) is 
emergent from a complex dynamical system. Artificial 
evolution not only shapes the agent’s morphology and 
neural controller, but the interaction between its 
morphology, controller, and its environment, i.e. its 
ecological balance. 

4. Discussion and conclusions 
We have argued that there is still a lack of consensus in 
the field of adaptive behavior on its theoretical 
foundations. By employing design principles we have 
attempted to take a first step in the direction of providing a 
coherent framework for design. In the present form we 
have proposed the principles and have argued why they 
are plausible. The passive dynamic walker, the quadruped 
“Puppy”, and “Stumpy” provide illustrations of the 
principles of cheap design and ecological balance. 

While this is acceptable and interesting, the design 
principles would be much more compelling and powerful 
if they could be demonstrated to emerge from an 
evolutionary process (which is one of the messages of the 
principle of emergence). Using the principles of genetic 
regulatory networks, we have worked out methods by 
which entire agents can be evolved, including their 
morphology, their material properties, and their control 
systems.  

There are a number of limitations of this approach that we 
will put on the research agenda for the coming years. One 
is the incorporation of interaction with the environment 
during ontogenetic development. Moreover, the “rewrite 
rules” borrowed from Gruau’s cellular encoding algorithm 
(Gruau, 1994) for neuronal growth will be replaced by 
more biological mechanisms. Third, instead of defining a 
fitness function, we will turn to “open-ended evolution” 
where the survival of the individual is the sole criterion. 
This requires the definition of pertinent resources such as 
energy supply, blood sugar level, operating temperature, 
etc. that need to be maintained. Fourth, we need to 
incorporate the variation of material properties into the 

evolutionary algorithm, so that this aspect can be studied 
as well. As we have seen earlier, material properties are 
essential as they can be exploited and often lead to more 
simple and robust control (see, for example, the case study 
on the quadruped “Puppy”). And last but not least, we 
need to be able to increase the complexity of our task 
environments which requires much more computational 
power. The incorporation of realistic and sophisticated 
physics will be an essential criterion: only if the 
environment is sufficiently “responsive” to an agent’s 
interaction will there be a need for evolution to increase an 
agent’s complexity. 

Finally, we believe our present model illustrates how 
continual progress in the construction of increasingly 
sophisticated evolutionary design tools for complete 
agents can be achieved: since the work of Karl Sims 
(1994), progress in this particular domain has been rather 
ad hoc. Although our own models do have a principled 
aspect in that they are trying to extract the essential 
mechanisms from genetic regulatory networks, there is a 
certain ad hoc character because the inclusion of features 
into the model is somewhat arbitrary. 

The appearance of a particular evolutionary dynamic—in 
this case, exaptation—without explicitly programming it 
into our model indicates that we have to some degree 
captured the “right” aspects of biological evolution. In 
other words, we have added some complexity to our 
model of evolution (genetic regulatory networks), but this 
addition has been worthwhile because it has increased the 
design power of artificial evolution by allowing exaptation 
to occur. We propose using such a metric to judge the 
merit of future evolutionary models that are sure to follow. 
If an evolutionary model for artifact design incorporates 
some new biological detail, and that detail enhances the 
design potential of that model, then the inclusion of that 
biological detail is warranted; otherwise, it should be 
removed from the model, and some other biological detail 
should be included. We believe that only by such 
principled advance will the design of increasingly 
sophisticated artificial evolutionary systems become 
possible. 

At the moment we are confined to simulation; the 
experiments with artificial systems that can grow 
physically in the real world are only in their very initial 
stages (for example in the field of nano-technology, 
growth mechanisms are investigated). One way to get 
around this problem, at least to some extent, is on the one 
hand to have a good simulator that models the physics of 
the environment, of the evolved individual and its 
interactions with the real world  (e.g. gravity, impact, 
friction), and on the other to have rapid robot building kits 
that enable the researchers to quickly build a robot to test 
some individuals in the real world, using the evolved 
creatures as blueprint. But even if done in simulation, 
evolving an organism from scratch is a big challenge as 
well.  

One of the problems with the examples and ideas 
presented in this paper is that they are mostly qualitative. 
Clearly, more quantitative statements will be required to 
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make the story more compelling. But we do hope that 
researchers will take up the challenges posed by 
embodiment. 

Let us conclude by raising an issue that is always in the air 
when working with relatively simple systems (such as 
block pushers), the one of scalability. By scalability we 
mean in this context whether the methods proposed 
(simulated genetic regulatory networks) will be 
sufficiently powerful to evolve much more complex 
creatures capable of many behaviors in very different 
types of environments. We believe this question is still 
open as it is not clear to what extent the real world plays 
an essential role in evolution, or whether simulated 
environments can be made sufficiently complex. 

One hope is, for example, that as the environments and 
agents become more complex, performing not only one or 
a few tasks, but perhaps hundreds or thousands, we will 
begin to see a certain centralization of the neural substrate 
which in the very simple creatures is largely distributed 
through the entire agent.  

Earlier, we pointed out the importance of sensory-motor 
coordination for the development of higher levels of 
intelligence. This idea is inspired by developmental 
studies on humans in which the ability for sensory-motor 
coordination is considered essential: through sensory-
motor coordination correlations within and between 
different sensory modalities are induced, thus facilitating 
the learning process. Because of its obvious advantages 
we would expect our fittest agents to engage in sensory-
motor coordination. To display its real power, the task 
environment would have to be more demanding than mere 
locomotion. We started with a series of experiments where 
agents have to grasp a large object, a task that obviously 
requires sensory-motor coordination skills (Bongard, 
2003). However, these experiments are too preliminary to 
be conclusive, except that it seems possible, in principle to 
evolve grasping in complex agents. 

Related to the issue of scalability is the fact that we are 
building and evolving agents for relatively simple or “low-
level” sensory-motor tasks like locomotion and pushing. 
What is the relevance of these studies for higher forms of 
cognition? We speculate that by looking at motion, 
locomotion, and orientation, we can approach the 
grounding problem, i.e. how categorization – the ability to 
make distinctions in the real world – and abstract concepts 
emerge within the growing organism. Metaphorically 
speaking, a “body image” provides the foundation even 
for abstract mathematical concepts, as, for example, 
argued by Lakoff and Nunez (2000). And, we suspect, that 
in the development of the body image, basic sensory-
motor skills play an essential role. While we can expect 
significant contributions from developmental robotics, in 
which the system to be modeled is human babies that grow 
into  adults, these studies will always start from the 
assumption of a given, human-like morphology. What we 
propose here is more fundamental because we want to 
explore what sorts of morphologies evolve and how they 
relate to task environment and neural control. The fact that 
we can evolve other kinds of morphologies, we can study 
not only “life as it is”, but “life as it could be”, and 

experience has taught that we can learn a lot by doing 
things differently from nature. 

Case studies such as the ones presented, and experiments 
with artificial evolution and morphogenesis will hopefully 
lead to a better understanding of how biological 
intelligence evolved and to a better understanding of 
intelligence in general. In this sense, we feel that “new 
robotics” can make a significant contribution. 
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