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Abstract

An important question in neuroevolution is how to gain an advantage from evolving neural network
topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT)
that outperforms the best fixed-topology method on a challenging benchmark reinforcement learning task.
We claim that the increased efficiency is due to (1) employing a principled method of crossover of different
topologies, (2) protecting structural innovation using speciation, and (3) incrementally growing from mini-
mal structure. We test this claim through a series of ablation studies that demonstrate that each component
is necessary to the system as a whole and to each other. What results is significantly faster learning. NEAT
is also an important contribution to GAs because it shows how it is possible for evolution to both optimize
and complexify solutions simultaneously, offering the possibility of evolving increasingly complex solutions
over generations, and strengthening the analogy with biological evolution.

1 Introduction

Neuroevolution (NE), the artificial evolution of neural networks using genetic algorithms, has shown great
promise in complex reinforcement learning tasks (Gomez and Miikkulainen 1999; Gruau et al. 1996; Mo-
riarty and Miikkulainen 1997; Potter et al. 1995; Whitley et al. 1993). Neuroevolution searches through
the space of behaviors for a network that performs well at a given task. This approach to solving com-
plex control problems represents an alternative to statistical techniques that attempt to estimate the utility
of particular actions in particular states of the world (Kaelbling et al. 1996). NE is a promising approach
to solving reinforcement learning problems for several reasons. Past studies have shown NE to be faster
and more efficient than reinforcement learning methods such as Adaptive Heuristic Critic and Q-Learning
on single pole balancing and robot arm control (Moriarty 1997; Moriarty and Miikkulainen 1996). Because
NE searches for a behavior, it is effective in problems with large state spaces. In addition, memory is eas-
ily represented through recurrent connections in neural networks, making the method a natural choice for
learning non-Markovian tasks (Gomez and Miikkulainen 1999).

In traditional NE approaches, a topology is chosen for the evolving networks before the experiment be-
gins. Usually, the network topology is a single hidden layer of neurons, with each hidden neuron connected
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to every network input and every network output. Evolution searches the space of connection weights of
this fully-connected topology by allowing high-performing networks to reproduce. The weight space is
explored through the crossover of network weight vectors and through the mutation of single networks’
weights. Thus, the goal of fixed-topology NE is to optimize the connection weights that determine the
functionality of a network.

However, connection weights are not the only aspect of neural networks that contribute to their behavior.
The topology, or structure, of neural networks also affects their functionality. There has been a great deal
of interest in the evolution of both topologies and connection weights over the last decade (Angeline et al.
1993; Branke 1995; Gruau et al. 1996; Yao 1999). The basic question, however, remains: Can evolving
topologies along with weights provide an advantage over evolving weights on a fixed-topology? A fully
connected network can in principle approximate any continuous function (Cybenko 1989). So why waste
valuable effort permuting over different topologies?

The answers provided thus far are inconclusive. Some have argued that network complexity can af-
fect the speed and accuracy of learning (Zhang and Muhlenbein 1993). Although this assertion is true for
backpropagation, backpropagation does not matter when weights are being optimized by evolution and not
backpropagation. On sparse reinforcement problems, backpropagation does not even apply, since target
outputs are not known.

A persuasive argument for the evolution of both topology and weights was put forward by Gruau et
al. (1996), who claimed that evolving structure saves the time wasted by humans trying to decide on the
topology of networks for a particular NE problem. Although almost all fixed-topology NE systems use a
fully connected hidden layer, deciding how many hidden nodes are needed is a trial-and-error process. Gruau
et al. supported their argument by evolving the topology and weights of an artificial neural network that
solved the hardest pole-balancing benchmark problem to date. However, later results suggested that structure
was not necessary to solve the difficult problem. A fixed-topology method called Enforced Subpopulations
was able to solve the same problem 5 times faster simply by restarting with a random number of hidden
neurons whenever it became stuck (Gomez and Miikkulainen 1999).

This article aims to demonstrate the opposite conclusion: if done right, evolving structure along with
connection weights can significantly enhance the performance of NE. We present a novel NE method called
NeuroEvolution of Augmenting Topologies (NEAT) that is designed to take advantage of structure as a way
of minimizing the dimensionality of the search space of connection weights. If structure is evolved such
that topologies are minimized and grown incrementally, significant gains in learning speed result. Improved
efficiency results from topologies being minimized throughout evolution, rather than only at the very end.

Evolving structure incrementally presents several technical challenges: (1) Is there a genetic representa-
tion that allows disparate topologies to cross over in a meaningful way? (2) How can topological innovation
that needs a few generations to be optimized be protected so that it does not disappear from the population
prematurely? (3) How can topologies be minimized throughout evolution without the need for a specially
contrived fitness function that measures complexity?

The NEAT method consists of solutions to each of these problems as will be described below. The
method is validated on pole balancing tasks, where NEAT performs 25 times faster than Cellular Encoding
and 5 times faster than ESP. The results show that structure is a powerful resource in NE when appropriately
utilized. NEAT is unique because structures become increasingly more complex as they become more
optimal, strengthening the analogy between GAs and natural evolution.



2 Background

Many systems have been developed over the last decade that evolve both neural network topologies and
weights (Angeline et al. 1993; Braun and Weisbrod 1993; Dasgupta and McGregor 1992; Fullmer and
Miikkulainen 1992; Gruau et al. 1996; Krishnan and Ciesielski 1994; Lee and Kim 1996; Mandischer 1993;
Maniezzo 1994; Opitz and Shavlik 1997; Pujol and Poli 1998; Yao and Liu 1996; Zhang and Muhlenbein
1993). These methods encompass a range of ideas about how Topology and Weight Evolving Atrtificial
Neural Networks (TWEANNS) should be implemented. In this section, we address some of the ideas and
assumptions about the design of TWEANNS, and offer solutions to some unsolved problems. Our goal is to
find how a neuroevolution method can use the evolution of topology to increase its efficiency.

2.1 TWEANN Encoding

The question of how to encode networks using an efficient genetic representation must be addressed by all
TWEANNSs. We will discuss several prototypical representational schemes.

TWEANNS can be divided between those that use a direct encoding, and those that use an indirect one.
Direct encoding schemes, employed by most TWEANNS, specify in the genome every connection and node
that will appear in the phenotype (Angeline et al. 1993; Braun and Weisbrod 1993; Dasgupta and McGregor
1992; Fullmer and Miikkulainen 1992; Krishnan and Ciesielski 1994; Lee and Kim 1996; Maniezzo 1994;
Opitz and Shavlik 1997; Pujol and Poli 1998; Yao and Liu 1996; Zhang and Muhlenbein 1993). In contrast,
indirect encodings usually only specify rules for constructing a phenotype (Gruau 1993; Mandischer 1993).
These rules can be layer specifications or growth rules through cell division. Indirect encoding allows a
more compact representation than direct encoding, because every connection and node are not specified in
the genome, although they can be derived from it.

2.1.1 Binary Encoding

Direct encodings usually require simpler implementations than indirect encodings. The simplest imple-
mentation is based on the traditional bit string representation used by GAs. For example, Dasgupta and
McGregor (1992) use such an encoding in their method, called sGA (Structured Genetic Algorithm) where
a bit string represents the connection matrix of a network. sSGA is notable for its simplicity, allowing it
to operate almost like a standard GA. However, there are several limitations as well. First, the size of the
connectivity matrix is the square of the number of nodes. Thus, the representation blows up for a large num-
ber of nodes. Second, because the size of the bit string must be the same for all organisms, the maximum
number of nodes (and hence connections as well) must be chosen by a human running the system, and if the
maximum is not sufficient, the experiment must be repeated. Third, using a linear string of bits to represent
a graph structure makes it difficult to ensure that crossover will yield useful combinations.

2.1.2 Graph Encoding

Because bit strings are not the most natural representation for networks, most TWEANNSs use encodings that
represent graph structures more explicitly. Pujol and Poli (1997) use a dual representation scheme to allow
different kinds of crossover in their Parallel Distributed Genetic Programming (PDGP) system. The first
representation is a graph structure. The second is a linear genome of node definitions specifying incoming
and outgoing connections. The idea is that different representations are appropriate for different kinds of



operators. Subgraph-swapping crossovers and topological mutations use the grid, while point crossovers
and connection parameter mutations use the linear representation.

As in sGA, PDGP has a finite limit on the number of nodes in the network, corresponding to the number
of nodes in the two-dimensional grid that represents the graph version of the genome. PDGP uses graph
encoding so that subgraphs can be swapped in crossover. Subgraph swapping is representative of a pre-
vailing philosophy in TWEANNS that subgraphs are functional units and therefore swapping them makes
sense because it preserves the structure of functional components. However, we cannot be sure whether the
particular subgraphs being combined in PDGP are the right ones to create a functional offspring.

2.1.3 Non-mating

Because crossover of networks with different topologies can frequently lead to a loss of functionality, some
researchers have given up on crossover altogether in what is called Evolutionary Programming (Yao and Liu
1996). Angeline et al. (1993) implemented a system called GNARL (GeNeralized Acquisition of Recurrent
Links), commenting that “the prospect of evolving connectionist networks with crossover appears limited
in general.” Although GNARL uses a graph encoding, it is fundamentally different from PDGP in that it
sidesteps the issue of crossover entirely. GNARL demonstrates that a TWEANN does not need crossover to
work, leaving the problem of demonstrating the advantages of crossover to other methods.

2.1.4 Indirect Encoding

Gruau’s Cellular Encoding method (CE; Gruau 1993) is an example of a system that utilizes indirect en-
coding of network structures. In CE, genomes are programs written in a specialized graph transformation
language. The transformations are motivated by nature in that they specify cell divisions. Different kinds
of connectivities can result from a division, so there are several kinds of cell divisions possible. A major
advantage of CE is that its genetic representations are compact. Genes in CE can be reused multiple times
during the development of a network, each time requesting a cell division at a different location. CE shows
that cell divisions can encode the development of networks from a single cell, much as organisms in nature
begin as a single cell that differentiates as it splits into more cells.

Although CE demonstrates that it is possible to evolve developmental systems, we chose direct encoding
for NEAT because, as Braun and Weisbrod (1993) argue, indirect encoding requires “more detailed knowl-
edge of genetic and neural mechanisms.” In other words, because indirect encodings do not map directly to
their phenotypes, they implicitly restrict the search to the class of topologies to which they can be expanded.
For the sake of efficiency, we need to be sure that indirect encodings do not restrict phenotype networks to
some suboptimal class of topologies. Further, experimental results suggest that CE is not necessarily more
efficient than direct encoding methods. (Section 4.3.3).

We now turn to several specific problems with TWEANNS and address each in turn.

2.2 Competing Conventions

One of the main problems for NE is the Competing Conventions Problem, also known as the Permutations
Problem (Radcliffe 1993). Competing conventions means having more than one way to express a solution
to a weight optimization problem with a neural network. When genomes representing the same solution do
not have the same encoding, crossover is likely to produce damaged offspring.

Figure 1 depicts the problem for a simple 3-hidden-unit network. The three hidden neurons A, B, and C,
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Crossovers: [A,B,A]  [CB,C]
(both are missing information)

Figure 1: The competing conventions problem .  The two networks compute the same exact function even
though their hidden units appear in a different order and are represented by different chromosomes, making them
incompatible for crossover. The figure shows that the two single-point recombinations are both missing one of the 3
main components of each solution. The depicted networks are only 2 of the 6 possible permutations of hidden unit
orderings.

can represent the same general solution in 3! = 6 different permutations. When one of these permutations
crosses over with another, critical information is likely to be lost. For example, crossing [A4, B, C] and
[C, B, A] can result in [C, B, C], a representation that has lost one third of the information that both of the
parents had. In general, for n hidden units, there are n! functionally equivalent solutions. The problem
can be further complicated with differing conventions, i.e. [A, B, C] and [D, B, E], which share functional
interdependence on B.

An even more difficult form of competing conventions is present in TWEANNS, because TWEANN
networks can represent similar solutions using entirely different topologies, or even genomes of different
sizes. Because TWEANNSs do not satisfy strict constraints on the kinds of topologies they produce, pro-
posed solutions to the competing conventions problem for fixed or constrained topology networks such
as non-redundant genetic encoding (Thierens 1996) do not apply. Radcliffe (1993) goes as far as calling
an integrated scheme combining connectivity and weights the “Holy Grail in this area.” Although some
TWEANNS such as PDGP (Pujol and Poli 1998) have attempted to address the problem by assuming that
subnetworks represent functional units that can be recombined, different topologies may not be based on the
same subnetworks at all, in which case no meaningful combination of substructures exists.

The main intuition behind NEAT originates from the fundamental problem with representing different
structures: their representations will not necessarily match up. Sometimes, the genomes can have different
sizes. Other times, genes in the exact same position on different chromosomes may be expressing completely
different traits. In addition, genes expressing the same trait may appear at different positions on different
chromosomes. How can these complications be resolved?

Nature faces a similar problem with gene alignment in sexual reproduction. Genomes in nature are
not of fixed-length either. Somewhere along the evolution from single cells to more complex organisms,
new genes were added to the genomes in a process called gene amplification (Darnell and Doolittle 1986;
Watson et al. 1987). If new genes could just randomly insert themselves in positions on the genome without
any indication of which gene is which, life would never have succeeded, because the competing conventions
problem would decimate a huge chunk of offspring. There needed to be some way to keep crossover orderly,



so that the right genes could be crossed with the right genes.

Nature’s solution is based on homology: two genes are homologous if they are alleles of the same trait.
In a process called synapsis, a special protein called RecA goes through and lines up homologous genes
between two genomes before crossover occurs (Radding 1982; Sigal and Alberts 1972). Actual homology
between neural networks cannot be easily ascertained by direct analysis (hence, the competing conventions
problem). The main insight in NEAT is that the historical origin of two genes is direct evidence of homology
if the genes share the same origin. Thus, NEAT performs artificial synapsis based on historical markings,
allowing it to add new structure without losing track of which gene is which over the course of a simulation.

2.3 Protecting Innovation with Speciation

In TWEANNS, innovation takes place by adding new structure to networks through mutation. Frequently,
adding new structure initially causes the fitness of a network to decrease. For example, adding a new node
introduces a nonlinearity where there was none before; adding a new connection can reduce fitness before its
weight has a chance to optimize. It is unlikely that a new node or connection just happens to express a useful
function as soon as it is introduced. Some generations are required to optimize the new structure and make
use of it. Unfortunately, because of the initial loss of fitness caused by the new structure, the innovation is
unlikely to survive in the population long enough to be optimized. Thus, it is necessary to somehow protect
networks with structural innovations so they have a chance to make use of their new structure.

The GNARL system (Angeline et al. 1993) addresses the problem of protecting innovation by adding
nonfunctional structure. A node is added to a genome without any connections, in the hopes that in the future
some useful connections will develop. However, nonfunctional structures may never end up connecting to
the functional network, adding extraneous parameters to the search.

In nature, different structures tend to be in different species that compete in different niches. Thus,
innovation is implicitly protected within a niche. Similarly, if networks with innovative structures could
be isolated into their own species, they would have a chance to optimize their structures before having to
compete with the population at large.

Speciation, also known as niching, has been studied in GAs, but is not usually applied to neuroevolu-
tion. Speciation is most commonly applied to multimodal function optimization (Mahfoud 1995), where a
function has multiple optima, and a GA with several species is used to find those optima. Speciation has
also been applied in the cooperative coevolution of modular systems of multiple solutions (Darwen and Yao
1996; Potter and De Jong 1995).

Speciation requires a compatibility function to tell whether two genomes should be in the same species
or not. It is difficult to formulate such a compatibility function between networks of different topologies,
which may be the reason why speciation has not been brought into TWEANNS. The competing conventions
problem makes measuring compatibility particularly problematic because networks that compute the same
function can appear very different.

However, because NEAT has a solution to the competing conventions problem using historical informa-
tion about genes, the population in NEAT can easily be speciated. We use explicit fitness sharing, which
forces individuals with similar genomes to share their fitness payoff (Goldberg and Richardson 1987). The
original implicit version of fitness sharing introduced by Holland (1975) grouped individuals by perfor-
mance similarity rather than genetic similarity. The explicit version is appropriate for TWEANNSs because
it allows grouping networks based to topology and weight configurations. The result of sharing fitness is
that the number of networks that can exist in the population on a single fitness peak is limited by the size of
the peak. Therefore, the population divides into a number of species, each on a different peak, without the



threat of any one species taking over. Explicit fitness sharing is well-suited for NEAT, because similarity
can easily be measured based on the historical information in the genes. Thus, innovations in NEAT are
protected in their own species.

2.4 Initial Populations and Topological Innovation

In many TWEANN systems the initial population is a collection of random topologies. Such a population
ensures topological diversity from the start. However, random initial populations turn out to produce many
problems for TWEANNS. For example, under many of the direct encoding schemes, there is a chance that a
network will have no path from each of its inputs to is outputs. Such infeasible networks take time to weed
out of the population.

However, there is a more subtle and more serious problem with starting randomly. As our experiments
will confirm (Section 5.4), it is desirable to evolve minimal solutions; that way, the number of parameters
that have to be searched is reduced. Starting out with random topologies does not lead to finding minimal
solutions, since the population starts out with many unnecessary nodes and connections already present.
None of these nodes or connections have had to withstand a single evaluation, meaning there is no justifica-
tion for their configuration. Any minimization of networks would have to be spent getting rid of apparatus
that should not have been there in the first place, and nothing in the process of recombining different topolo-
gies pushes towards such minimization. Since there is no fitness cost in creating larger networks, they will
dominate as long as they have high fitness.

One way to force minimal topologies is to incorporate network size into the fitness function, and some
TWEANNS actually do this (Zhang and Muhlenbein 1993). In such methods, larger networks have their
fitnesses penalized. Although altering the fitness function in this way can encourage smaller networks, it
is difficult to know how large the penalty should be for any particular network size, particularly because
different problems may have significantly different topological requirements. Altering the fitness function is
ad hoc, and may cause evolution to perform differently than the designer of the original unmodified fitness
function intended.

An alternative solution is for the neuroevolution method itself to tend towards minimality. If the popu-
lation begins with no hidden nodes and grows structure only as it benefits the solution, there is no need for
ad hoc fitness modification to minimize networks. Therefore, starting out with a minimal population and
growing structure from there is a design principle in NEAT.

By starting out minimally, NEAT ensures that the system searches for the solution in the lowest-
dimensional weight space possible over the course of all generations. Thus, the goal is not to minimize
only the final product, but all intermediate networks along the way as well. This idea is they key to gaining
an advantage from the evolution of topology: it allows us to minimize the search space, resulting in dramatic
performance gains. One reason current TWEANNS do not start out minimally is that without topological
diversity present in the initial population, topological innovations would not survive. The problem of pro-
tecting innovation is not addressed by these methods, so networks with major structural additions are likely
not to reproduce. Thus, speciating the population enables starting minimally in NEAT.

Starting out minimally is naturally appealing because complexity in nature develops over generations,
rather than being introduced at the beginning of evolution. A system that starts out minimally and complex-
ifies its solutions over generations also strengthens the analogy of evolutionary computation with natural
evolution.



Genome (Genotype)
Node [node1 |Node2 [Node3 |Nodea [Nodes
Genes|sensor | Sensor |Sensor |Hidden Output
Connect. | In1 In 2 In2 In3 In4 In5
Gen% Out 4 Out 4 Out 5 Out 5 Out 5 Out 4
Weight 0.7 Weight-0.5 Weight 0.5 Weight 0.2 Weight 0.4 Weight 0.6
Enabled Enabled DI SABLED Enabled Enabled Enabled
Innov 1 Innov 3 Innov 4 Innov 5 Innov 6 Innov 10
Network (Phenotype)
4
1 2 3

Figure 2: A genotypeto phenotype mapping example. A genotype is depicted that produces the shown phenotype.
There are 3 input nodes, one hidden, and one output node, and six connection definitions, one of which is recurrent.
The third gene is disabled, so the connection that it specifies (between nodes 2 and 5) is not expressed in the phenotype.

2.5 An Integrated Scheme

The NEAT method, as described in detail in the next section, consists of putting together the ideas above
into one system. The system employs a solution to the problem of competing conventions based on his-
torical markings, speciates the population in order to protect innovation, and starts with a population of
minimal topologies in order to minimize the dimensionality of the search space over every generation. Be-
cause topology is used to minimize the search space, NEAT gains efficiency from evolving neural network
structure.

3 NeuroEvolution of Augmenting Topologies (NEAT)

We begin the description of the NEAT neuroevolution system by explaining the genetic encoding used in
NEAT, and continue by describing the components that specifically address each of the three problems of
TWEANN:S.

3.1 Genetic Encoding

NEAT’s genetic encoding scheme is designed to allow corresponding genes to be easily lined up when two
genomes cross over during mating. Genomes are linear representations of network connectivity (figure 2).
Each genome includes a list of connection genes, each of which refers to two node genes being connected.
Node genes provide a list of inputs, hidden node, and outputs that can be connected. Each connection gene
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Figure 3: Thetwo typesof structural mutation in NEAT. Both types, adding a connection and adding a node, are
illustrated with the connection genes of a network shown above their phenotypes. The top number in each genome is
the innovation number of that gene. The innovation numbers are historical markers that identify the original historical
ancestor of each gene. New genes are assigned new increasingly higher numbers. In adding a connection, a single new
connection gene is added to the end of the genome, and given the next available innovation number. In adding a new
node, the connection gene being split is disabled, and two new connection genes are added to the end the genome. The
new node is between the two new connections. A new node gene (not depicted) representing this new node is added
to the genome as well.

specifies the in-node, the out-node, the weight of the connection, whether or not the connection gene is
expressed (an enable bit), and an innovation number, which allows finding corresponding genes (as will be
explained below).

Mutation in NEAT can change both connection weights and network structures. Connection weights
mutate as in any NE system, with each connection either perturbed or not at each generation. Structural
mutations occur in two ways (figure 3). Each mutation expands the size of the genome by adding gene(s). In
the add connection mutation, a single new connection gene is added connecting two previously unconnected
nodes. In the add node mutation an existing connection is split and the new node placed where the old
connection used to be. The old connection is disabled and two new connections are added to the genome.
The new connection leading into the new node receives a weight of 1, and the new connection leading
out receives the same weight as the old connection. This method of adding nodes was chosen in order to
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minimize the initial effect of the mutation. The new nonlinearity in the connection changes the function
slightly, but new nodes can be immediately integrated into the network, as opposed to adding extraneous
structure that would have to be evolved into the network later. This way, because of speciation, the network
will have time to optimize and make use of its new structure.

Through mutation, the genomes in NEAT will gradually get larger. Genomes of varying sizes will result,
sometimes with different connections at the same positions. The most complex form of the competing
conventions problem, with numerous differing topologies and weight combinations, is an inevitable result
of allowing genomes to grow unbounded. How can NE cross over differently-sized genomes in a sensible
way? The next section explains how NEAT addresses this problem.

3.2 Tracking Genes through Historical Markings

There is unexploited information in evolution that tells us exactly which genes match up with which genes
between any individuals in a topologically diverse population. That information is the historical origin of
each gene. Two genes with the same historical origin must represent the same structure (although possibly
with different weights), since they are both derived from the same ancestral gene of some point in the past.
Thus, all a system needs to do to know which genes line up with which is to keep track of the historical
origin of every gene in the system.

Tracking the historical origins requires very little computation. Whenever a new gene appears (through
structural mutation), a global innovation number is incremented and assigned to that gene. The innovation
numbers thus represent a chronology of the appearance of every gene in the system. As an example, let us
say the two mutations in figure 3 occurred one after another in the system. The new connection gene created
in the first mutation is assigned the number 7, and the two new connection genes added during the new
node mutation are assigned the numbers 8 and 9. In the future, whenever these genomes mate, the offspring
will inherit the same innovation numbers on each gene; innovation numbers are never changed. Thus, the
historical origin of every gene in the system is known throughout evolution.

A possible problem is that the same structural innovation will receive different innovation numbers in
the same generation if it occurs by chance more than once. However, by keeping a list of the innovations
that occurred in the current generation, it is possible to ensure that when the same structure arises more than
once through independent mutations in the same generation, each identical mutation is assigned the same
innovation number. Thus, there is no resultant explosion of innovation numbers.

The historical markings give NEAT a powerful new capability, effectively solving the problem of com-
peting conventions. The system now knows exactly which genes match up with which (figure 4). When
crossing over, the genes in both genomes with the same innovation numbers are lined up. These genes are
called matching genes. Genes that do not match are either disjoint or excess, depending on whether they
occur within or outside the range of the other parent’s innovation numbers. They represent structure that
is not present in the other genome. In composing the offspring, genes are randomly chosen from either
parent at matching genes, whereas all excess or disjoint genes are always included from the more fit parent.
This way, historical markings allow NEAT to perform crossover using linear genomes without the need for
expensive topological analysis.

By adding new genes to the population and sensibly mating genomes representing different structures,
the system can form a population of diverse topologies. However, it turns out that such a population on
its own cannot maintain topological innovations. Because smaller structures optimize faster than larger
structures, and adding nodes and connections usually initially decreases the fitness of the network, recently
augmented structures have little hope of surviving more than one generation even though the innovations
they represent might be crucial towards solving the task in the long run. The solution is to protect innovation
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Figure 4: Matching up genomes for different network topologies using innovation numbers. Although Parent
1 and Parent 2 look different, their innovation numbers (shown at the top of each gene) tell us which genes match up
with which. Even without any topological analysis, a new structure that combines the overlapping parts of the two
parents as well as their different parts can be created. Matching genes are inherited randomly, whereas disjoint genes
(those that do not match in the middle) and excess genes (those that do not match in the end) are inherited from the
more fit parent. In this case, equal fitnesses are assumed, so the disjoint and excess genes are also inherited randomly.

by speciating the population, as explained in the next section.

3.3 Protecting Innovation through Speciation

Speciating the population allows organisms to compete primarily within their own niches instead of with
the population at large. This way, topological innovations are protected in a new niche where they have time
to optimize their structure through competition within the niche. The idea is to divide the population into
species such that similar topologies are in the same species. This task appears to be a topology matching
problem. However, it again turns out that historical markings offer an efficient solution.

The number of excess and disjoint genes between a pair of genomes is a natural measure of their com-
patibility distance. The more disjoint two genomes are, the less evolutionary history they share, and thus
the less compatible they are. Therefore, we can measure the compatibility distance § of different structures
in NEAT as a simple linear combination of the number of excess (£) and disjoint (D) genes, as well as the
average weight differences of matching genes (1), including disabled genes:

§=22 422 1 W 1)



The coefficients, c1, co, and c3, allow us to adjust the importance of the three factors, and the factor IV, the
number of genes in the larger genome, normalizes for genome size.

The distance measure & allows us to speciate using a compatibility threshold é;. An ordered list of
species is maintained. In each generation, genomes are sequentially placed into species. Each existing
species is represented by a random genome inside the species from the previous generation. A given genome
g in the current generation is placed in the first species in which g is compatible with the representative
genome of that species. This way, species do not overlap.® If g is not compatible with any existing species,
a new species is created with g as its representative.

As the reproduction mechanism for NEAT, we use explicit fitness sharing (Goldberg and Richardson
1987), where organisms in the same species must share the fitness of their niche. Thus, a species cannot
afford to become too big even if many of its organisms perform well. Therefore, any one species is unlikely
to take over the entire population, which is crucial for speciated evolution to work. The adjusted fitness f/
for organism 1 is calculated according to its distance é from every other organism j in the population:

fi

= S h(3, ) @

fi

The sharing function sh is set to 0 when distance 4(z, j) is above the threshold &,; otherwise, sh(4(, j))
is set to 1 (Spears 1995). Thus, 3% _; sh(d(4, j)) reduces to the number of organisms in the same species as
organism 4. This reduction is natural since species are already clustered by compatibility using the threshold
d¢. Every species is assigned a potentially different number of offspring in proportion to the sum of adjusted
fitnesses f; of its member organisms. Species then reproduce by first eliminating the lowest performing
members from the population. The entire population is then replaced by the offspring of the remaining
organisms in each species.?

The net effect of speciating the population is that topological innovation is protected. The final goal
of the system, then, is to perform the search for a solution as efficiently as possible. This goal is achieved
through minimizing the dimensionality of the search space.

3.4 Minimizing Dimensionality through Incremental Growth from Minimal Structure

As discussed in section 2.4, TWEANNS typically start with an initial population of random topologies
in order to introduce diversity from the outset. In contrast, NEAT biases the search towards minimal-
dimensional spaces by starting out with a uniform population of networks with zero hidden nodes (i.e.
all inputs connect directly to outputs). New structure is introduced incrementally as structural mutations
occur, and only those structures survive that are found to be useful through fitness evaluations. In other
words, the structural elaborations that occur in NEAT are always justified. Since the population starts
minimally, the dimensionality of the search space is minimized, and NEAT is always searching through
fewer dimensions than other TWEANNS and fixed-topology NE systems. Minimizing dimensionality gives
NEAT a performance advantage compared to other approaches, as will be discussed next.

L1t is also possible to determine the compatibility of a genome g with a species s by using the average compatibility of g with
every genome in a species s, but in practice only comparing to the first genome in s is sufficient, and takes constant time.

2n rare cases when the fitness of the entire population does not improve for more than 20 generations, only the top two species
are allowed to reproduce, refocusing the search into the most promising spaces.
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4 Performance Evaluations

We evaluate the system’s performance in order to answer two questions: (1) Can NEAT evolve the necessary
structures? (2) Can NEAT find solutions more efficiently than other neuroevolution systems? The first
question establishes that topology building indeed happens in NEAT in a reliable way, meaning that NEAT
will grow new structure to cope with problems that require it. For this reason, NEAT is applied to the
problem of building an XOR network. Although this task is simple, it requires growing hidden units, and
therefore serves as a simple test for the method.

The second question is answered in the course of successively more difficult pole balancing tasks, where
the objective is to balance two poles attached to a cart by moving the cart in appropriate directions to
keep the pole from falling. Pole balancing is a good benchmark task because there are many different
systems available for comparison. The most difficult problem of balancing two poles without velocity
information, a non-Markovian task, provides very strong evidence that evolving augmenting topologies is
not only interesting for its capacity to find structures, but is also efficient in difficult control tasks.

4.1 Parameter Settings

The same experimental settings are used in all experiments; they were not tuned specifically for any par-
ticular problem. The one exception is the hardest pole balancing problem (Double pole, no velocities, or
DPNV) where a larger population size was used to match those of other systems in this task. Because some
of NEAT’s system parameters are sensitive to population size, we altered them accordingly.

All experiments except DPNV which had a population of 1,000 used a population of 150 NEAT net-
works. The coefficients for measuring compatibility were ¢; = 1.0, ca = 1.0, and ¢35 = 0.4. With DPNV, c3
was increased to 3.0 in order to allow for finer distinctions between species based on weight differences (the
larger population has room for more species). In all experiments, é; = 3.0, except in DPNV where it was 4.0,
to make room for the larger weight significance coefficient c3. If the maximum fitness of a species did not
improve in 15 generations, the networks in the stagnant species were not allowed to reproduce. There was
an 80% chance of a genome having its connection weights mutated, in which case each weight had a 90%
chance of being uniformly perturbed and a 10% chance of being assigned a new random value. (The system
is tolerant to frequent mutations because of the protection speciation provides.) In each generation, 25%
of offspring resulted from mutation without crossover. The interspecies mating rate was 0.001. In smaller
populations, the probability of adding a new node was 0.03 and the probability of a new link mutation was
0.05. In the larger population, the probability of adding a new link was 0.3, because a larger population
can tolerate a larger number of prospective species and greater topological diversity. We used a modified
sigmoidal transfer function, p(z) = 1+el -z, at all nodes. The steepened sigmoid allows more fine tuning
at extreme activations. It is optimized to be close to linear during its steepest ascent between activations
—0.5 and 0.5. Small variations in parameter values produce roughly equivalent experiment results.

4.2 \Verification: Evolving XORs

Because XOR is not linearly separable, a neural network requires hidden units to solve it. The two inputs
must be combined at some hidden unit, as opposed to only at the output node, because there is no function
over a linear combination of the inputs that can separate the inputs into the proper classes. These structural
requirements make XOR suitable for testing NEAT’s ability to evolve structure. For example, NEAT’s
method for adding new nodes might be too destructive to allow new nodes to get into the population. Or,
it could find a local champion with a wrong kind of connectivity that dominates the population so much
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Figure 5: Initial Phenotypeand Optimal XOR. Figure (a) shows the phenotype given to the entire initial population.
Notice that there are no hidden nodes. In NEAT, a bias is a node that can connect to any node other than inputs. Figure
(b) shows an optimal solution with only 1 hidden node. (A network without hidden nodes cannot compute XOR.) The
bias connections are not always needed depending on the solution; All other connections are necessary. The optimal
(1 hidden node) solution was found in 22 of 100 runs. The average solution had 2.35 hidden nodes with a standard
deviation of 1.11 nodes.

that the systems fails to evolve the proper connectivity. Third, maybe the changing structure renders past
connection weight values obsolete. If so, the algorithm would have trouble enlarging topologies that are
already largely specialized. This experiment is meant to show that NEAT is not impeded by such potential
obstacles, but can grow structure efficiently and consistently when needed.

To compute fitness, the distance of the output from the correct answer was summed for all four input
patterns. The result of this error was subtracted from 4 so that higher fitness would reflect better network
structure. The resulting number was squared to give proportionally more fitness the closer a network was to
a solution.

The initial generation consisted of networks with no hidden units (Figure 5a). The networks had 2 inputs,
1 bias unit, and 1 output. The bias unit is an input that is always set to 1.0. There were three connection
genes in each genome in the initial population. Two genes connected the inputs to the output, and one
connected the bias to the output. Each connection gene received a random connection weight.

On 100 runs, the first experiment shows that the NEAT system finds a structure for XOR in an average
of 32 generations (4,755 networks evaluated, std 2,553). On average a solution network had 2.35 hidden
nodes and 7.48 non-disabled connection genes. The number of nodes and connections is close to optimal
considering that the smallest possible network has a single hidden unit (Figure 5b). NEAT is very consistent
in finding a solution. It did not fail once in 100 simulations. The worst performance took 13,459 evaluations,
or about 90 generations (compared to 32 generations on average). The standard deviation for number of
nodes used in a solution was 1.11, meaning NEAT very consistently used 1 or 2 hidden nodes to build an
XOR network.

The XOR problem has been used to demonstrate performance of several prior TWEANN algorithms.
Unfortunately, quantitative performance comparisons are difficult in this domain because the methodologies
vary widely across experiments. For example, several methods evolve network topologies using a separate
hill climbing algorithm for weight optimization.(Yao and Shi 1995; Zhang and Muhlenbein 1993), Although
the PDGP method evolves weights in addition to topologies, it includes a post-processing module that spends
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additional generations pruning networks after a solution has already been found (Pujol and Poli 1998). sGA,
like NEAT, evolves both topologies and weights and does not post-prune; however, the reported results do
not include the average number of generations necessary for a solution (Dasgupta and McGregor 1992).
Above all, to the best of our knowledge, all previous methods applied to XOR evolution limit the size of a
genome. In contrast, NEAT puts no limit on the size or complexity of networks evolved for this problem.

It is clear that NEAT solves the XOR problem without trouble and in doing so keeps the topology small.
However, XOR is not a good benchmark for performance comparisons because it is such a simple task.
Therefore, having established NEAT’s ability to consistently evolve structure, let us turn to how it compares
with other methods at more interesting and difficult problems.

4.3 Pole Balancing as a Benchmark Task

There are many control learning tasks where the techniques employed in NEAT can make a difference. Many
of these potential applications, like robot navigation or game playing, present problems without known
solutions. We use the pole balancing domain for comparison because it is a known benchmark in the
literature, which makes it possible to demonstrate the effectiveness of NEAT compared to others. It is
also a good surrogate for real problems, in part because pole balancing in fact is a real task, and also
because the difficulty can be adjusted. Earlier comparisons were done with a single pole (Moriarty and
Miikkulainen 1996), but this version of the task has become too easy for modern methods. Balancing two
poles simultaneously is on the other hand challenging enough for all current methods.

Therefore, we demonstrate the advantage of evolving structure through double pole balancing experi-
ments. Two poles are connected to a moving cart by a hinge and the neural network must apply force to
the cart to keep the poles balanced for as long as possible without going beyond the boundaries of the track.
The system state is defined by the cart position (z) and velocity (), the first pole’s position (6) and angular
velocity (91) and the second pole’s position (62) and angular velocity (92) Control is possible because the
poles have different lengths and therefore respond differently to control inputs.

Standard reinforcement learning methods have also been applied to this task (Anderson 1989; Pendrith
1994). However, we limit the comparisons in this paper to NE methods for two reasons: (1) The focus is on
developing and demonstrating better performance on evolving neural networks and (2) NE methods in this
comparison have been shown superior to reinforcement learning methods elsewhere (Moriarty and Miikku-
lainen 1996). Thus, the question here is whether evolving structure can lead to greater NE performance.

4.3.1 Pole Balancing Comparisons

We set up the pole balancing experiments as described by Wieland (1991) and Gomez and Miikkulainen
(1999). The Runge-Kutta fourth-order method was used to implement the dynamics of the system, with a
step size of 0.01s. All state variables were scaled to [—1.0, 1.0] before being fed to the network. Networks
output a force every 0.02 seconds between [—10,10]N. The poles were 0.1m and 1.0m long. The initial
position of the long pole was 1° and the short pole was upright; the track was 4.8 meters long.

Two versions of the double pole balancing task are used: one with velocity inputs included and an-
other without velocity information. The first task is Markovian and allows comparing to many different
systems. Taking away velocity information makes the task more difficult because the network must estimate
an internal state in lieu of velocity, which requires recurrent connections.

On the double pole balancing with velocity (DPV) problem, NEAT is compared to published results
from four other NE systems. The first two represent standard population-based approaches . Saravanan
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| Method | Evaluations | Generations| No. Nets]

Ev. Programming 307,200 150 2048
Conventional NE 80,000 800 100
SANE 12,600 63 200
ESP 3,800 19 200
NEAT 3,600 24 150

Table 1: Double Pole Balancing with Velocity Information. Evolutionary programming results were obtained
by Saravanan and Fogel (1995). Conventional neuroevolution data was reported by Wieland (1991). SANE and ESP
results were reported by Gomez and Miikkulainen (1999). NEAT results are averaged over 120 experiments. All other
results are averages over 50 runs. The standard deviation for the NEAT evaluations is 2,704 evaluations. Although
standard deviations for other methods were not reported, if we assume similar variances, all differences are statistically
significant (p < 0.001), except that between NEAT and ESP.

and Fogel (1995) used Evolutionary Programming, which relies entirely on mutation of connection weights,
while Wieland (1991) used both mating and mutation. The second two systems, SANE (Moriarty and Miik-
kulainen 1996) and ESP (Gomez and Miikkulainen 1999), evolved populations of neurons and a population
of network blueprints that specifies how to build networks from the neurons that are assembled into fixed-
topology networks for evaluation. The topologies are fixed because the individual neurons are always placed
into predesignated slots in the neural networks they compose. SANE maintains a single population of neu-
rons. ESP improves over SANE by maintaining a separate population for each hidden neuron position in
the complete network. To our knowledge, the results of ESP are the best achieved so far in this task.

On the double pole balancing without velocity problem (DPNV), NEAT is compared to the only two
systems that have been demonstrated able to solve the task: Cellular Encoding [CE; Gruau et al., 1996], and
ESP. The success of CE was first attributed to its ability to evolve structures. However, ESP, a fixed-topology
NE system, was able to complete the task five times faster simply by restarting with a random number of
hidden nodes whenever it got stuck. Our experiments will attempt to show that evolution of structure can
lead to better performance if done right.

4.3.2 Double Pole Balancing with Velacities

The criteria for success on this task was keeping both poles balanced for 100,000 time steps (30 minutes of
simulated time). A pole was considered balanced between -36 and 36 degrees from vertical. Fitness on this
task was measured as the number of time steps that both poles remained balanced.

Table 1 shows that NEAT takes the fewest evaluations to complete this task, although the difference
between NEAT and ESP is not statistically significant. The fixed-topology NE systems evolved networks
with 10 hidden nodes, while NEAT’s solutions always used between 0 and 4 hidden nodes. Thus, it is clear
that NEAT’s minimization of dimensionality is working on this problem. The result is important because it
shows that NEAT performs as well as ESP while finding more minimal solutions.

4.3.3 Double Pole Balancing Without Velacities

Gruau et al. (1996) introduced a special fitness function for this problem to prevent the system from solving
the task simply by moving the cart back and forth quickly to keep the poles wiggling in the air. (Such a
solution would not require computing the missing velocities.) Because both CE and ESP were evaluated
using this special fitness function, NEAT uses it on this task as well. The fitness penalizes oscillations. It is
the sum of two fitness component functions, f; and f», such that F = 0.1f; + 0.9f,. The two functions are
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| Method | Evaluations | Generalization | No. Nets |

CE 840,000 300 16,384
ESP 169,466 289 1,000
NEAT 33,184 286 1,000

Table 2: Double Pole Balancing without Velocity Information (DPNV). CE is Cellular Encoding of Gruau et
al. (1996). ESP is Enforced Subpopulations of Gomez and Miikkulainen (1999). All results are averages over 20
simulations. The standard deviation for NEAT is 21,790 evaluations. Assuming similar variances for CE and ESP, all
differences in number of evaluations are significant (p < 0.001). The generalization results are out of 625 cases in
each simulation, and are not significantly different.

defined over 1000 time steps:
f = t/1000, (3)

5 0 if t < 100, @
2= 075 otherwise.
> imo 100 (|2 |+ & |+ 6 +16% )

where t is the number of time steps the poles remain balanced during the 1,000 total time steps. The
denominator in (4) represents the sum of offsets from center rest of the cart and the long pole. It is computed
by summing the absolute value of the state variables representing the cart and long pole positions and
velocities. Thus, by minimizing these offsets (damping oscillations), the system can maximize fitness.
Because of this fitness function, swinging the poles is penalized, forcing the system to internally compute
the hidden state variables.

Under Gruau et al.’s criteria for a solution, the champion of each generation is tested on generalization
to make sure it is robust. This test takes a lot more time than the fitness test, which is why it is applied only
to the champion. In addition to balancing both poles for 100,000 time steps, the winning controller must
balance both poles from 625 different initial states, each for 1,000 times steps. The number of successes is
called the generalization performance of the solution. In order to count as a solution, a network needs to
generalize to at least 200 of the 625 initial states. Each start state is chosen by giving each state variable
(ie. z, &, 61, and él) each of the values 0.05, 0.25, 0.5, 0.75, 0.95 scaled to the range of the input variable
(5% = 625). At each generation, NEAT performs the generalization test on the champion of the highest-
performing species that improved since the last generation.

Table 2 shows that NEAT is the fastest system on this challenging task. NEAT takes 25 times fewer eval-
uations than Gruau’s original benchmark, showing that the way in which structure is evolved has significant
impact on performance. NEAT is also 5 times faster than ESP, showing that structure evolution can indeed
perform better than evolution of fixed topologies. There was no significant difference in the ability of any
of the 3 methods to generalize.

Why is NEAT so much faster than ESP on the more difficult task when there was not much difference
in the easier task? The reason is that in the task without velocities, ESP needed to restart an average of 4.06
times per solution while NEAT never needed to restart. If restarts are factored out, the systems perform at
similar rates. The best characterization of the difference is that NEAT is more reliable at avoiding deception.
NEAT evolves many different structures simultaneously in different species, each representing a space of
different dimensionality. Thus, NEAT is always trying many different ways to solve the problem at once, so
itis less likely to get stuck.

The experimental results demonstrate both that NEAT can evolve structure when necessary, and that
NEAT gains a significant performance advantage from doing so. We now turn to understanding how the
system works, and whether it indeed solves the three problems with evolving a population of diverse topolo-
gies raised in the introduction.
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5 Analysisof NEAT

We have argued that NEAT’s performance is due to historical markings, speciation, and incremental growth
from minimal structure. In order to verify the contribution of each component, we performed a series of
ablations. In addition, we introduce a new species visualization technique in order to better understand the
dynamics of the system.

Ablations are meant to establish that each component of NEAT is necessary for its performance. For
example, it is possible that growth from minimal structure is not really important; maybe the rest of the
system, speciation and historical markings, is sufficient for NEAT’s optimal performance. This hypothesis
will be checked by ablating both growth and starting from minimal structure from the system. On the
other hand, perhaps the situation is the opposite, and speciation buys nothing: protecting innovation might
not be as important as we have argued. This hypothesis will be checked by ablating speciation from the
system. Finally, we claimed that NEAT is able to make use of crossover even though genomes in NEAT
have different sizes. This point is more controversial than it might seem. For example, Angeline et al. (1993)
claimed that crossover in TWEANNSs does more harm than good. We will check this hypothesis by ablating
crossover from the system.

The reason why we do not ablate historical markings directly is that without historical markings the
system would be a conventional NE system. Historical markings are the basis of every function in NEAT:
Speciation uses a compatibility operator that is based on historical markings, and crossover would not be
possible without them. All other system components can be ablated systematically.

5.1 Ablations Setup

Ablations can have a significant detrimental effect on performance, potentially to the point where the system
cannot solve the task at all. Therefore, we used double pole balancing with velocities as the task for ablation
studies. The task is complex enough to be interesting, yet still not too hard, so that ablated systems work as
well. Thus, it is possible to compare the ablated versions of the system to the unablated system.

All settings were the same as in the double pole balancing with velocities experiment. Results are
averages over 20 runs, except nonmating and full NEAT, which are averages over 120 runs (nonmating
NEAT was fast enough to allow many runs).

5.2 Ablations Results

Method Evaluations | Failure Rate
No-Growth NEAT (Fixed-Topologies) 30,239 80%
Non-speciated NEAT 25,600 25%
Initial Random NEAT 23,033 5%
Nonmating NEAT 5,557 0
Full NEAT 3,600 0

Table 3: NEAT Ablations Summary. The table compares the average number of evaluations for a solution in the
double pole balancing with velocities task. Each ablation leads to a weaker algorithm, showing that each component
is necessary.

Table 3 shows the results of all the ablations, in terms of average evaluations required to find a solution.
Averages exclude trials that failed to find a solution in 1,000 generations. A failure rate denotes how often
such failures occurred for each ablation. The main result is that the system performs significantly worse
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(p < 0.001) for every ablation. We will explain how each ablation was performed and then interpret the
results.

5.3 No-Growth Ablation

Since populations in NEAT start out with no hidden nodes, simply removing growth from the system would
disable NEAT by barring hidden nodes from all networks. NE systems where structures are fixed start with
a fully-connected hidden layer of neurons (Wieland 1991). Therefore, to make the experiment fair, the
no-growth ablation was also allowed to start with a fully-connected hidden layer. Every genome specified
10 hidden units like the fixed topology methods in this task (Saravanan and Fogel 1995; Wieland 1991).
Without growth, the system was only able to use weight differences to speciate the population. Given 1,000
generations to find a solution, the ablated system could only find a solution 20% of the time! When it did find
a solution, it took 8.5 times more evaluations than full NEAT. Clearly, speciation and historical markings
alone do not account for full NEAT’s performance.

5.4 Initial Random Ablation

TWEANNSs other than NEAT typically start with a random population (Angeline et al. 1993; Gruau et al.
1996; Yao 1999). The structures in these systems can still grow (in most cases up to some bound). It is still
possible that although growth is necessary, starting minimally is not.

We examined this question by starting evolution with random topologies as in other TWEANNS. Each
network in the initial population received between 1 and 10 hidden neurons with random connectivity (as
implemented by Pujol and Poli (1997)). The result is that random-starting NEAT was 7 times slower than
full NEAT on average. The random-starting system also failed to find a solution within 1000 generations
5% of the time. The result suggests that starting randomly forces NE to search higher-dimensional spaces
than necessary, thereby wasting time. If topologies are to grow, they should start out as small as possible.

5.5 Non-Speciated Ablation

We have argued that speciation is important because it protects innovation and allows search to proceed
in many different spaces simultaneously. To test this claim, speciation should be ablated from the system.
However, if this is done and nothing else is changed in the system, no structural innovations can survive,
causing all networks to be stuck in minimal form.

To make the speciation ablation more meaningful, the non-speciated NEAT must be started with an
initial random population. This way, a variety of structures exist in the population from the beginning, and
speciation is not necessary to attain structural diversity. The resulting non-speciated NEAT was able to find
solutions, although it failed in 25% of the attempts. When it found a solution, it was 7 times slower on
average than full NEAT.

The reason for the dramatic slowdown is that without speciation, the population quickly converges on
whatever topology happens to initially perform best. Thus, a lot of diversity is drained immediately (within
10 generations). On average, this initially best-performing topology has about 5 hidden nodes. Thus, the
population tends to converge to a relatively high-dimensional search space, even though the smaller networks
in the initial population would have optimized faster. The smaller networks just do not get a chance because
being small offers no immediate advantage in the initially random weight space. Of course, once in a while
small networks are found that perform well, allowing a solution to be found more quickly. Whether or not
such networks are found early on accounts for the large standard deviation of 41,704 evaluations.
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Figure 6: Dependenciesamong NEAT components. Strong interdependencies can be identified among the different
components of NEAT.

The result shows that growth without speciation is not sufficient to account for NEAT’s performance. For
growth to succeed, it requires speciation, because speciation gives different structures a chance to optimize
in their own niches.

5.6 Nonmating NEAT

For the last ablation, we removed mating from NEAT. This ablation tests the claim that crossover is a useful
technique in TWEANNS. If NEAT’s method of crossover works, then NEAT should perform significantly
better with mating and mutation than with mutation alone.

A total of 120 simulations were run with crossover disabled but all other settings the same as before. It
took on average 5,557 evaluations to find a solution without mating, compared to 3,600 with mating enabled.
The difference is statistically significant (p = 0.001). Thus, it is clear that mating does contribute when it is
done right. However, the nonmating version of NEAT is still significantly faster than the other ablations.

5.7 Ablation Conclusions

An important conclusion is that all of the parts of NEAT work together (figure 6). None of the system can
work without historical markings because all of NEAT’s functions utilize historical markings. If growth from
minimal structure is removed, speciation can no longer help NEAT find spaces with minimal dimensionality.
If speciation is removed, growth from minimal structures cannot proceed because structural innovations do
not survive. When the system starts with a population of random topologies without speciation, the system
quickly converges onto a non-minimal topology that just happens to be one of the best networks in the initial
population. Thus, each component is necessary to make NEAT work.

5.8 Visualizing Speciation

The ablation studies demonstrate that speciation is a necessary part of the overall system. To understand
how innovation takes place in NEAT, it is important to understand the dynamics of speciation. How many
species form over the course of a run? How often do new species arise? How often do species die? How
large do the species get? We answer these questions by depicting speciation visually over time.

Figure 7 depicts a typical run of the double pole balancing with velocities task. In this run, the task took
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Figure 7: Visualizing speciation during arun of the double pole balancing with velocity infor mation task.. Two
species begin to close in on a solution soon after the 20th generation. Around the same time, some of the oldest species
become extinct.

29 generations to complete, which is slightly above average. In the visualization, successive generations are
shown from top to bottom. Species are depicted horizontally for each generation, with the width of each
species proportional to its size during the corresponding generation. Species are divided from each other
by white lines, and new species always arrive on the right hand side. A species becomes bright when the
fitness of its most fit member is one standard deviation above the mean fitness of the run, indicating that the
species is a highly promising one. A species becomes very bright when it is two standard deviations above
the mean, suggesting that the species is very close to a solution. Thus, it is possible to follow any species
from its inception to the end of the run.

Figure 7 shows that the initial minimal topology species was the only species in the population until the
5th generation. Recall that species are computed by the system according to a compatibility distance metric,
indicating that before generation 7, all organisms were sufficiently compatible to be grouped into a single
species. The visualization shows how the initial species shrinks dramatically in order to make room for the
new Species.

A few species can be observed becoming extinct during this run. When a species becomes extinct, we
see a white triangle between the generation it expired and the next generation. Thus, in this run, the initial
species finally became extinct at the 19th generation after shrinking for a long time. It was unable to compete
with newer, more innovative species. The second species to appear in the population met a similar fate in
the 19th generation.

In the 21st generation a structural mutation in the second-oldest surviving species connected the long
pole angle sensor to a hidden node that had previously only been connected to the cart position sensor.
This gave networks in the species the new capability to combine these observations, leading to a significant
boost in fitness (and brightening of the species in figure 7). The innovative species subsequently expanded,
but did not take over the population. Nearly simultaneously, in the 22nd generation, a younger species
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also made its own useful connection, this time between the short pole velocity sensor and long pole angle
sensor, leading to its own subsequent expansion. In the 28th generation, this same species made a pivotal
connection between the cart position and its already established method for comparing short pole velocity
to long pole angle. This innovation was enough to solve the problem within one generation of additional
weight mutations. In the final generation, the winning species was 11 generations old and included 38 neural
networks out of the population of 150.

Most of the species that did not come close to a solution survived the run even though they fell signif-
icantly behind around the 21st generation. This observation is important, because it visually demonstrates
that innovation is indeed being protected. The winning species does not take over the entire population.

Ablation studies confirm the interdependence of all of NEAT’s components, and the speciation visualiza-
tion offer a means of visualizing the dynamics of the system. We now turn to a discussion of the advantages
and shortcomings of the method and its future potential.

6 Discussion and Future Work

NEAT presents several advances in the evolution of neural networks. Through historical markings, NEAT
offers a solution to the problem of competing conventions in a population of diverse topologies. NEAT also
demonstrates that a meaningful metric for comparing and clustering similar networks easily derives from the
availability of historical information in the population, such that costly topological analysis is not necessary
to speciate or mate networks. Our ablation studies confirm the hypothesis that starting with a population
of minimal topologies is advantageous. Finally, performance comparisons suggest that the evolution of
structure can be used to gain efficiency over the evolution of fixed topologies.

A parallel can be drawn between structure evolution in NEAT and incremental evolution (Gomez and
Miikkulainen 1997; Wieland 1991). Incremental evolution is a method used to train a system to solve
harder tasks than it normally could by training it on incrementally more challenging tasks. NE is likely
to get stuck on a local optimum when attempting to solve the harder task directly. However, after solving
the easier version of the task first, the population is likely to be in a part of fitness space closer to the
solution to the harder task, allowing it to avoid local optima. Adding structure to a solution is analogous
to taking a solution to an easy task as the starting point for evolving the solution to a harder task. The
network structure before the addition is optimized in a lower-dimensional space. When structure is added,
the network increments into a more complex space where it is already close to the solution. The difference
between the incrementality of adding structure and general incremental evolution is that adding structure is
automatic in NEAT whereas a sequence of progressively harder tasks requires human design.

A key insight behind NEAT is that it is not the ultimate structure of the solution that really matters, but
rather the structure of all the intermediate solutions along the way to finding the solution. The connectivity
of every intermediate solution represents a parameter space that evolution must optimize, and the more
connections there are, the more parameters need to be optimized. Therefore, if the amount of structure
can be minimized throughout evolution, so can the dimensionality of the spaces being explored, leading
to significant performance gains. Figure 8 illustrates the advantage of evolving minimal structures with a
picture of an elegant solution to the DPNV task.

In order to minimize structure throughout evolution, NEAT incrementally elaborates structure in a
stochastic manner from a minimal starting point. Because of speciation, useful elaborations survive even
if they are initially detrimental. Thus, NEAT strengthens the analogy between GAs and natural evolution
by not only performing the optimizing function of evolution, but also a complexifying function, allowing
solutions to become incrementally more complex at the same time as they become more optimal.
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Figure 8: A NEAT solution to the DPNV problem. This clever solution works by taking the derivative of the
difference in pole angles. Using the recurrent connection to itself, the single hidden node determines whether the poles
are falling away or towards each other. This solution allows controlling the system without computing the velocities of
each pole separately. Without evolving structure, it would be difficult to discover such subtle and compact solutions.
Starting minimally makes discovering such compact solutions more likely.

It is this complexifying function that makes NEAT unique among GAs. Although GAs have been pro-
posed where bit string chromosomes can increase in length indefinitely (Harvey 1993), NEAT goes beyond
a gradual uniform growth in genome size. While Harvey’s method increases the size of a chromosome
incrementally across the entire population, NEAT simultaneously searches over different landscapes, all
complexifying in different ways.

Such speciated search of incrementally increasing complexity offers a possibly powerful new approach
to the problem of competitive coevolution. In competitive coevolution increasingly sophisticated strategies
are evolved by allowing networks in a population to compete against each other. The hope is that an “arms
race” will force the opponents to continuously evolve strategies better than the strategies of other networks
in the population. This method is useful because it can produce high-level strategies and tactics without
the need for an expert player to teach the system. Ideally, strategies should becomes more sophisticated as
evolution progresses. However, evolution tends to find the simplest solutions that can win, meaning that
strategies oscillate between different idiosyncratic yet uninteresting variations (Darwen 1996; Rosin and
Belew 1997).

We hypothesize that once competitive coevolution converges onto a dominant strategy, it cannot be im-
proved upon, because it takes the entire set of connection weight values to represent the strategy. Altering
the weights means altering the strategy, rather than building upon and complexifying the strategy. Thus,
if a new strategy is to take hold, it must win by being different than the previous dominant strategy, rather
than by being more sophisticated. In contrast, NEAT can evolve increasingly more sophisticated strategies
continuously, because as soon as the population converges on a new dominant strategy, new connections
and new nodes can be added to the current strategy. New structure means new expressive space for elabo-
rating on the existing strategy, rather than replacing it. Thus, this approach allows continuous coevolution,
i.e. nonconvergent innovation on dominant strategies. In addition, because different strategies in different
species are protected, there will be multiple dominant and continually more complex strategies.
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In addition to continuous coevolution, the evolution of structure should allow the integration of separate
expert neural networks. For example, suppose one neural network can “kick” a ball towards the goal from
any position on a field, and another network that can dribble the ball around the field without losing control.
Neither of these two networks alone can play soccer. However, if we could somehow combine their expertise
into one, perhaps we could get a soccer player out. Combining these controllers is not a simple matter of
processing both their outputs. Just because a robot can dribble and shoot does not mean it knows where to
dribble or when to shoot. Both shooting and dribbling affect each other as well. Where you dribble affects
how easy your shot is, and shooting forces a robot to stop dribbling. In order to optimally combine the
two skills, the hidden nodes of the two networks must share information so that the new combined expert
can make intelligent decisions and combine the two skills effectively. We hypothesize that NEAT has the
capability of searching for the right interconnections between two distinct networks to create an integrated
supernetwork that takes advantage of the expertise of both its component networks.

Finally, we would like to establish a characterization of what NEAT is best suited for. The experimental
results show the difference between ESP and NEAT is significantly higher on the hardest pole balancing
task. This result implies that evolving diverse topologies is particularly suited for problems where other
methods are likely to get stuck. Such problems may be deceptive, meaning local optima have large basins of
attraction compared to global optima, and the global optima are significantly different from the local optima
(Goldberg 1989). Because NEAT can always add more structure, it is not necessarily trapped even if the
current weights of a networks represent a local optimum in fitness space. By adding additional structure,
NEAT adds new dimensions to weight space, thereby opening up potential new avenues for escape. We plan
to test NEAT on problems with varying fitness landscapes to get a better idea of the kinds of problems the
method tackles best.

7 Conclusion

The main conclusion is that NEAT is a powerful method for artificially evolving neural networks. NEAT
demonstrates that evolving topology along with weights can be made a major advantage. Experimental
comparisons verify that such evolution is several times more efficient than the neuroevolution methods
so far. Ablation studies show that historical markings, protection of innovation through speciation, and
incremental growth from minimal structure all work together to produce a system that is capable of evolving
solutions of minimal complexity. NEAT strengthens the analogy between GAs and natural evolution by both
optimizing and complexifying solutions simultaneously. We believe that the capacity to complexify solutions
over the course of evolution offers the possibility of continuous competitive coevolution and evolution of
combinations of experts in the future.
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