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Abstract— Traditionally, in Reinforcement Learning, the spec-
ification of the task is contained in the reinforcement function
(RF), and ach new task requires the definition of a new RF.
But in the nature, explicit reward signals are limited, and the
characteristics of the environment affects not only how animals
perform particular tasks, but also what skills an animal will
develop during its life. In this work, we propose a novel use of
Reinforcement Learning that consist in the learning of different
abilities or skills, based on the characteristics of the environment,
using a fixed and universal reinforcement function. We also show
a method to build a RF for a skill using information from the
optimal policy learned in a particular environment and we prove
that this method is correct, i.e., the RF constructed in this way
produces the same optimal policy.

I. INTRODUCTION

In Reinforcement Learning (RL), an agent finds the optimal
strategy for solving a particular task by interacting with the
environment and receiving rewards and punishments based
on the executed actions. This type of learning has been
studied in humans and animals since the beginning of the
the 20th century [1], modeled mathematically using dynamic
programming tools and adopted as an Artificial Intelligence
method for machine learning [2].

Traditionally, the specification of the task is contained ex-
clusively in the function that models rewards and punishments,
called the reinforcement function (RF). Hence, each new
learning task requires the specification of a new RF and most
of the times this RF is built from scratch, based on the intuition
and experience of the developer and tested by trial and error
on realistic environments.

But in the nature, we can observe that explicit reward signals
are limited, and external stimuli influence the behaviors of
animals and humans [3] to the extent that it can affects not only
how animals perform particular tasks, but also what skills an
animal will develop during its life. For example, in laboratory
experiments, a rat can learn how to pull a knob if this action
opens a box with food. But the same rat can learn how to
escape from a maze if it is put inside the maze and the food
is put on the outside. In both cases, the reward (the positive
reinforcement), expressed as a satisfaction felling, is obtained
when the rat eat the food and not when the rat succeed to pull
the knob or succeed to find the way out of the maze. In this
example, it is the environment and not the RF which induces
the skills that are going to be learned.

Another fact observation related to RL as seen in the
nature is the use of information from past experience as a
replacement for an explicit RF. This fact may be observed
on humans and animals, who, after the successful learning of
a particular task, can construct new reinforcement functions
and use it later in another task. The learning of these new
tasks can then be produced without explicit external feedback.
For example, humans associate reinforcements with approval
or disapproval of other persons, with love and hate, or sim-
ple with a “Right!” or “Wrong!” yell [4]. This new type
of reinforcements, often called secondary reinforcements or
conditioned reinforcements, has been first identified by Ivan
Pavlov in his experiments with animals.

Although these ideas have been studied by psychologists
and biologists, as far as we know they have never been used
for machine learning. Our aim is to incorporate them in an
RL framework in a systematic and formal manner in order to
develop a robust learning method less dependent to external
specifications.

In this work, we propose a novel use of RL that consist
in the learning of different abilities or skills, based on the
characteristics of the environment, using the same fixed and
universal RF for all the skills. We also show a method
to construct a RF for a skill based on the optimal policy
learned in a particular environment with our method. We
illustrate our idea in a robot simulator, showing how the robot
learns different skills when the learning process takes place in
different environments.

II. HYPOTHESES AND PROOF OF CONCEPT

In this section, we propose two hypotheses and we describe
a series of simple experiments as a proof of concept. The
hypotheses express the ideas of learning skills influenced by
the environment and building RFs internally:

Hypothesis 1: Using a fixed reinforcement function that
specifies a general task, RL can be used to learn different
skills by modifying the characteristics of the environment.

Hypothesis 2: Using a fixed reinforcement function that
specifies a general task and a policy that solves the task on a
particular environment, it is possible to construct a RF for a
skill that is part of the optimal policy for the general task.
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These hypotheses are related to problems of interest for
the RL field, such as: environment generalization and opti-
mal environment construction (if two environments allow the
learning of a given task, which one is better? Could we obtain
the optimal environment?) and mappings between behaviors
and environments (which characteristics should be present in
the environment to allow an agent to learn the desired skill?).

A. Learning from the environment

As a proof of concept for our first hypothesis, we designed
a series of experiments and we carried out several simulation
tests. On these experiments, a light represent a food source,
and the general task consist in reaching the light from any
initial position. The task is considered episodic, and an episode
ends either when the light source or a boundary of the
environment is reached. The robot has a light sensor that
consists in a pair of values that indicate the distance and
angle from the front of the robot to the light source and
nine proximity sensors distributed around the robot body. This
task is expressed with a simple RF that assigns a positive
reinforcement if the robot reaches the light and a negative
reinforcement if it is too far. This RF can be expressed with
the following formula:

rf(s) =

 100.0 if light dist ≤ Kmin

−1.0 if light dist ≥ Kmax

0 otherwise
(1)

where Kmin and Kmax are thresholds for distance to the
light.

Using the same RL algorithm and the same parameters, we
execute the learning process in three different environments:
an environment with rounded obstacles, an environment with a
wall and a hole on it and an environment with a corridor (see
Figure 1). For all the experiments, we used the Q-Learning
algorithm [5]. Figure 2 shows trajectories of the obtained
behavior for each environment.

If we would have seen the results before reading the
explanation of the experiment, we would have concluded that
the robot on Figure 2.a knows how to avoid obstacles, the robot
on Figure 2.b can find a whole in a wall and pass through it
and the robot in Figure 2.c can traverse corridors. But there is
nothing in the RF that determine these skills. A first question
arises: Where does the information needed to learn the skill
come from? Since the three experiments were set up exactly in
the same way except for the definition of the environment, we
can conclude that the characteristics of the environment and
the relationship between the RF and the environment implicitly
contain the information needed to learn the skills. If we give
credit to the previous sentence, then it should be possible to
extract this information, and make it explicit in the form of a
specific RF for the learned skill.

B. Extracting a RF from past experience

In this section we will show a method to extract a RF for a
skill from a policy already learned in a particular environment.

Fig. 1. Environments used for the learning process. The big circle represents
the light source, small circles are rounded obstacles, and straight lines are
walls. The triangles around the robot represent the proximity sensors.

Let M =< S,A, T, R > be a Markov Decision Process that
represent the global task (reach the light source in this case) for
a particular environment, where S is the state set, A the action
set, T a transition function and R the reinforcement function.
Consider Sskill, the subset of S where the skill is expressed
(notice that the skill does not cover the entire state space; for
example, some parts of the environment are common to all the
experiments and, conceptually, are not part of the skill) such
that R(s, a, s′) = 0 for all s ∈ Sskill. We define a new MDP
for the skill M ′ =< S′, A′, T ′, R′ > where S′ = Sskill ∪
{τ}, A′ = A and T ′(s, a, s′) = T (f(s), a, f(s′)), where f is
defined as follows:

f : S → S′, f(s) =
{

s if s ∈ Sskill

τ if s /∈ Sskill
(2)

A RF for a skill can be extracted from a learned policy if
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a)

b)

c)

Fig. 2. Trajectories of the policies obtained on each environment: a) the
robot avoids rounded obstacles, b) the robot finds a hole in a wall, and c) the
robot walks through a corridor.

we can build R′ such that π∗
M ′(s), the optimal policy for M ′

is equal to π∗
M (s), the optimal policy for M , for all states

s ∈ Sskill. If R′ is defined as follows, we will show that then
the previous property holds:

R′(s, a, s′) =
{

Q∗
M (s, a) if s ∈ Sskill and s′ /∈ Sskill

0 otherwise
(3)

where s is the previous state, a the executed action, s′

the current state and Q∗
M (s, a) the Q-value function for the

optimal policy of M .
We will prove now that, for any policy π, Qπ(s, a) in M

(using R as the reinforcement function) is equal to Qπ(s, a)
in M ′ (using R′) for all states s ∈ Sskill, for all actions a.
From this, it follows immediately that the optimal policy for
M is also the optimal policy for M ′ for states in Sskill.

Let Φπ
M†(s, a) be the set of trajectories {s0, a0, s1, a1, ...}

induced by a policy π on an MDP M† where s0 = s and
a0 = a. We can map each trajectory in the MDP M to a
trajectory in the MDP M ′ with the function g : Φπ

M (s, a) →
Φπ

M ′(s, a), g({s0, a0, s1, a1, ...}) = {f(s0), a0, f(s1), a1, ...}.
Notice that g is a surjection and, hence, induces a partition
in the domain. We will call [φ′]g the set of all φ ∈ Φπ

M (s, a)
such that g(φ) = φ′.

Given a trajectory φ′ = {s0, a0, s1, a1, ...} ∈ Φπ
M ′(s, a),

consider now the expected return for the trajectories φ ∈ [φ′]g ,
or Eφ∈[φ′]g{Ret(φ)}. We will prove that this quantity is equal
to Ret(φ′).

If si ∈ Sskill∀i, there is only one trajectory φ ∈ [φ′]g , both
Ret(φ′) and Ret(φ) are equal to zero and the property holds.
Otherwise, there exist a state sk+1 such that sk+1+j = τ
for all j ≥ 0. By definition of R′, Ret(φ′) = γkQ(sk, ak).
On the other hand, since the first k returns of any trajectory
φ ∈ [φ′]g are zero, we can rewrite Eφ∈[φ′]g{Ret(φ)} as
γkEφ†∈Φπ

M
(sk,ak){Ret(φ†)}, which is equal to γkQ(sk, ak)

by definition of Q. Then, the property holds for any φ′.
Finally, observe that Qπ

M ′(s0, a0) is equal to
Eφ′∈Φπ

M′ (s0,a0){Ret(φ′)}, which is indeed equal to
Eφ′∈Φπ

M′ (s0,a0){Eφ∈[φ′]g{Ret(φ)}} and, since g induces
a partition on trajectories in M , and the transition
probabilities of both M and M ′ are equal for Sskill,
the probability of a trajectory φ′ ∈ Φπ

M ′(s0, a0) is equal
to the sum of the probabilities of all the trajectories
of [φ′]g . Hence, Eφ′∈Φπ

M′ (s0,a0){Eφ∈[φ′]g{Ret(φ)}} =
Eφ∈Φπ

M
(s0,a0){Ret(φ)} = Qπ

M (s0, a0). We can conclude then
that Qπ

M ′(s0, a0) = Qπ
M (s0, a0) for all s0 ∈ Sskill.

The figure 3 shows, as an example, the definition of the RF
for our experiments, considering Sskill as the set of states with
nearby obstacles. The dots represent final states, and the color
of the dots their reinforcement value (lighter colors represent
higer values).

III. MOTIVATIONS AND DISCUSSION

When RL is used in robot learning, some human interven-
tion is needed in order to specify what tasks are to be learned
and, for each task, what will it be considered a success and
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Fig. 3. RF for the skills constructed from the learned policy. All dots are
final states and the color represent the reinforcement value (lighter colors for
higher values).

what will it be considered a failure. In other words, a human
RF designer has to figure out which situations and actions
should be reinforced and the magnitude of each reinforcement
for each different task. But animals and humans can learn
some skills completely alone. Understand how RL can be
used on scenarios with no human presence can be promising
and very useful for some robotic applications. Apart from this
theoretical aspect, this method has technical advantages, since
the definition of a proper RF for a nontrivial task can be very
difficult. RFs are specified by hand and often fine tuned by
trial and error. There is no general, direct method to deduce
a RF from a high level definition of a task, although research
is being made in this direction (for example, see [6]). But
even if such a method exists, the description of the task in a
high-level language may be ambiguous and lead to unexpected
behaviors.

One of the most common behaviors used for testing learning
algorithms in robotics is obstacle avoidance. At first sight, it
is not difficult to define a reinforcement function for this task:
a negative reinforcement should be given when a collision is
produced. But guided with this function only, the best (opti-
mal) behavior can be don’t move, don’t matter what happens,
rotate in place or move a small step forward and a small step
backwards (why would the robot take the risk of exploring

new and challenging regions?). Definitely, this behavior is not
what anybody expects from obstacle avoidance. We think that
the problem here is caused by an incomplete definition of the
task: the correct definition should be avoid obstacles while
exploring the terrain, or avoid obstacles while moving from
one point to another. But even if we make some effort to
specify the task with more detail, there are a lot of optimal
strategies for obstacle avoidance. For example, when the robot
approaches an obstacle, it can circumvent the obstacle, or it
can turn around and go away from the obstacle. Both are
optimal policies, according to the RF we have defined above.
Which is the behavior the designer is trying to achieve? As
this example shows, even the description of a reinforcement
function in natural language can be ambiguous and may lead
to unexpected behavior.

A second problem arises when we try to formalize the
function. On real robots, the information gathered from the
sensors is noisy, uncertain, incomplete and sometimes too
low-level, and it is not easy to map this information to
the high-level concepts used to express the RF in natural
language. Some approaches to solve this problem includes
the parameterization of the RF, the automatic tuning of the
parameters during learning ([7] and [8]) and the formalization
of the RF in terms of the configuration space ([6]).

Another potential problem produced by the translation of
the RF from a high-level definition to a definition based on
the agent’s sensors is that the mapping may be one-to-many.
Since a complete observability of the environment is often not
possible, different situations can be indistinguishable by the
agent. This phenomenon is called perceptual aliasing [9] and
can cause that the same action executed on the same (sensed)
situation can produce different results.

Finally, on some occasions the information available for a
robot is local. Since tasks are more easily expressed in terms
of global information, sometimes it is not easy to define an
RF in terms of local data. See for example the Figure 2.b. In
this environment, a robot with infrared sensors has to cross
the wall by walking through a whole. How can the task been
expressed with a RF in terms of local sensors?

As a conclusion, we can say that the definition of a proper
RF for a task can be difficult. If the robot could learn
different skills with a general RF and a careful design of the
environment, and it could generate new RFs from past expe-
rience, we would have a powerful tool for the development of
autonomous robots with more complex capabilities.

On the other hand, the influence of the environment in
the learning process and the obtained behaviors has been
studied by other authors. Jette Randlov has demonstrated
the convergence of RL algorithms to the optimal policy if
the transition function (i.e., a formal representation of the
agent/environment interaction) is modified in a continuous
manner and converges to the final function [10]. Andreas
Matt proposes a modification to RL algorithms that allows
the simultaneous learning of a task in different environments,
obtaining the policy that work better considering all the envi-
ronments [11]. Sebastian Thrun shows a method for continual
learning, in which the dynamics of the environment is learned
while the agent is learning to solve a particular task [12]. When
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the agent needs to learn another task, this information is used
to speed up the learning. Despite the mentioned works and
according to our knowledge, there are no antecedents in the
study of our hypotheses and their consequences.

IV. CONCLUSIONS

In this work, we described the influence of the environment
in the acquisition of new skills and abilities in humans and
animals. This influence affects what skills are learned, apart
from how they are carried out. On the other hand, both humans
and animals can associate rewards with new stimulus, based
on previous experience and on the chaining of previous causes
and effects.

We propose a novel use of Reinforcement Learning where
different tasks or skills are not defined by a Reinforcement
Function, but are induced by the characteristics of the envi-
ronment. We carried out a series of simple experiments with a
robot simulator as a proof of concept. On these experiments,
a robot learned different skills (avoid round obstacles, find a
whole in the wall and pass over it and traverse a corridor) using
the same learning algorithm and the same reinforcement func-
tion, but changing the characteristics of the environment. After
this experiment, we propose a method for the construction of
a reinforcement function for these skills based on information
gathered from the value function of the learned policy, and
we prove that the optimal policy according to this new RF,
restricted to a subset of states, is the same as the original
learned policy.

These preliminary results show the relevance and the practi-
cal utility of our learning method for the synthesis of behaviors
in Autonomous Robots, specially in environments with no
human presence. Currently our ongoing research is focused
on some problems that are tightly related to the hypothesis
that we propose in this work, such as: mappings between
behaviors and environments, generalization and definition of
partial orders over environments and construction of optimal
environments for learning a particular task. We are also trying
to scale up this method, including some type of hierarchical
learning framework in order to solve more difficult tasks and
interact with more complex environments.
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