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Abstract: Recent advances in “neurobiology” allowed 
highlighting some of key mechanisms of animal intelligence. 
Among them one can emphasizes brain’s “modular” 
structure and its “self-organizing” capabilities. The main 
goal of this paper is to show how these primary supplies 
could be exploited and combined in the frame of “soft-
computing” issued techniques in order to design intelligent 
artificial systems emerging higher level intelligent behavior 
than conventional Artificial Neural Networks (ANN) based 
structures.. 
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I. INTRODUCTION 
Much is still unknown about how the brain trains and self-
organizes itself to process so complex information. 
However, the recent advances in “neurobiology” allowed 
highlighting some of key mechanisms of animal (and 
human) intelligence. In fact, our simple and inappropriate 
binary technology remains too primitive to reproduce the 
biological complexity of these marvels mechanisms, but a 
number of those highlighted points could already be 
sources of inspiration for higher level intelligent artificial 
systems. Among interesting features of animal’s and 
human’s brain, one can emphasize its “modular” structure 
and it’s “self-organizing” capabilities. If it is still early to 
state on “concurrent” or “cooperative” nature of ways that 
these complex features interact, they could already be 
considered as basic features in emergence of higher level 
artificial intelligent behavior. 
On the other hand, overcoming limitations of 
conventional approaches thank to their learning and 
generalization capabilities, Artificial Neural Networks 
(ANN) made appear a number of expectations to design 
“intelligent” information processing systems. If learning 
and generalization capabilities of these bio-inspired 
connectionist models appear as central requirements in 
intelligent systems’ design, nowadays, it is well admitted 
that intelligent behavior requires more sophisticated 
mechanisms than those performed by these “simple” 
models. 
The main goal of this paper is to show how these primary 
supplies could be exploited and combined in the frame of 
“soft-computing” issued techniques in order to design 
intelligent artificial systems emerging higher level 
intelligent behavior than conventional Artificial Neural 
Networks (ANN) based structures. These foremost 
features have inspired a set of implementations dealing 
with real-world applications and covering several 

different areas as: robotics, image processing and pattern 
recognition, classification and dynamic nonlinear 
behavior modeling (identification and prediction).  
The present paper is organized in following way: the next 
section will briefly introduce the general frame of 
modular modeling. Section III will describe a first 
applicative implementation dealing with “biometric face 
recognition” dilemma in the challenging frame of “mass 
biometry”. In section IV, a different self-organizing tree-
like modular system, taking advantage from a 
“complexity estimation” loop, will be described. Section 
V will present a modular Fuzzy-CMAC architecture 
dealing with fully autonomous biped robot’s walking 
dilemma. Section VI will give an additional applicative 
example of modular connectionist system dealing with 
nonlinear dynamic systems’ behaviour identification. 
Finally, the last section will conclude the present article 
and discuss a number of perspectives. 

 
II. GENERAL FRAME OF MODULAR 

MODELING 
Recently, a number of works dealing with multi-modeling 
concept have been proposed for nonlinear systems 
modeling ([1] to [7]) in order to avoid difficulties 
(modeling complexity). In fact, taking advantage from 
“modularity”, multi-modeling concept reduces 
considerably modeling or processing complexity by 
dividing the initial complex problem (or task) into a set of 
local models (or local processing modules). Adding self-
organizing skill to a multi-model (or to a modular 
processing architecture) could lead to powerful structure, 
especially if local models (or local modules) are ANN 
based units.  
From a general point of view; a multi-model is composed 
of several models each of which is valid in a well defined 
interval which corresponds to a part of the operation 
range of the system or covers a part of the whole feature 
space of the problem to be solved. The local validity of a 
model in a well defined interval is specified by using 
functions with limited supports which tend to 
significantly increase the contribution of the local models 
in that zone and tend to decrease it elsewhere. The 
combination of all local models allows description of the 
whole system’s behavior. The local models participations 
in the multi-model’s output are determined by “activation 
degree” associated to each local model. The action of 
“activation degrees” on multi-model’s response could be 
seen as some kind of local models responses weighting 
fashioning its response in order to approximate the 
modeled behavior. 
Consider a system described by the general equation (or 



transfer function), expressed by relation (1), where ( )⋅F  
represents a global unknown model (complex task to be 
performed, complex system to be identified, complex 
behavior to be described, etc…) and ( )tϕ  is a feature 
vector (characteristic vector composed by a number of 
features related to data to be processed, regression vector 
composed by a number of delayed system’s inputs and 
outputs, etc…). The associated multi-model, composed by 
M local models (or processing units) is defined by relation 
(1) where ( )( )tfi ϕ  represents the i-th local model (or 
local processing unit) and iβ  is a parameter vector. S (.) 
represents a fusion operator or a selection function. 
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Fig.1 - General bloc diagram of a multi-model concept in the 

frame of the relation (2). 
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Fig.2 - General bloc diagram of a multi-model concept in the 

frame of the relation (3). 
 

One of the most popular fusion operators is the weighted 
sum function. In this case, the associated multi-model, 
composed by M local models (or processing units) and 
their weights ( )( )ii t βϕρ , , with ( )( ) 0≥ii t βϕρ  (for all 

i) and ( )( ) 0,
1

>∑
=

M

j

ii t βϕρ  (for all ( )tϕ ), is defined by the 

weighted average expressed in the relation (2). In this 
relation ( )( )tfi ϕ  represents the i-th local model and iβ  
is a parameter related to the validity function iρ . 
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Among popular selection functions is the relation 
expressed by (3), which depends on ( )tϕ , and some 
parameters p and/or conditions ξ. pk represents some 
particular values of parameter p and ξk denotes some 
particular value of condition ξ, respectively. 
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Figure 1 shows the bloc diagram of a multi-model 
described by relation (2) and figure 2 gives the bloc 
diagram corresponding to a modular structure described 
by relation (3). 

 
III. MODULAR FACIAL RECOGNITION 
SYSTEM USING KERNEL FUNCTIONS 
ANN AS LOCAL PROCESSING UNITS 

Contrary to “individual biometry” where both 
authentication and identification operations assume a 
precise biometrical characterization of concerned 
individuals, the main goal in “mass biometry” is to 
authenticate or identify an unusual (suspect) behavior 
within a flow of mass customary behaviors. That’s why, 
in “mass biometry” the chief requirements concern on the 
one hand, the ability of handling patterns containing 
relatively poor information and on the other hand, the 
skill of high speed processing in order to treat a mass 
number of patterns in a reasonably acceptable delay (real-
time). The solution we propose [8] includes three main 
stages. The two firsts are a video (image flow) acquisition 
device, which could be a standard digital video camera 
and an image processing stage performing a set of image 
pre-processing operations and extracting a number of 
facial biometric features. The last stage is a modular stage 
composed by a set of kernel functions based ANN ([9] to 
[12]) units carrying out classification and decision 
operations. 
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Fig.3 – Bloc diagram of the implemented modular face 

recognition system. 
 

A prototype of such modular facial recognition system 
has been realized using three ANNs (figures 3 and 5). 



Each ANN is specialized in processing of a specific kind 
of biometric feature extracted from the input image. Then 
a decision logic based procedure performs (on the basis of 
classification results relative to each biometric feature) 
the identification of the concerned individual. The 
implementation has been done on the basis of ZISC-036 
neuro-processor based board composed by 16 chips, each 
one including 36 neurons ([13] to [16]).   
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Fig.4 - Example of “localized biometric features” processed 
by each module composing the classification-decision stage. 

 

 
 

                 
Fig.5 – Photographs, showing the implemented system 

(upper picture), the ZISC-036 neuro-processor based board 
(lower-left), and the screen of the implemented modular face 
recognition system (lower-middle and lower-right pictures). 

 
The proposed solution takes advantage at the same time 
from kernel functions based ANN’s image processing 
ability implemented by ZISC-036 and from the massively 
parallel architecture of this neuro-processor allowing very 
high processing speed. The obtained  promising results 
show feasibility and effectiveness of the proposed 
solution reaching 85% correct identification involving a 
relatively weak number of learned samples (5 samples per 
face). 

 
IV. TREE-LIKE MULTIPLE NEURAL 
NETWORK MODELS GENERATOR 

WITH A COMPLEXITY ESTIMATION 
BASED DECOMPOSER 

In a very large number of cases dealing with real world 
dilemmas and applications (system identification, 
industrial processes, manufacturing regulation, 
optimization, decision, pattern recognition, systems, 
plants safety, etc), information is available as data stored 
in files (databases etc.). So, the efficient data processing 
becomes a chief condition to solve problems related to 
above-mentioned areas. In the most of those cases, 
processing efficiency is closely related to several issues 
among which are: 
- Data nature: including data complexity, data quality 

and data representative features. 

- Processing technique related issues: including model 
choice, processing complexity and intrinsic processing 
delay. 

One of the key points on which one can act is the 
complexity reduction. It concerns not only the problem 
solution level but also appears at processing procedure 
level. An issue could be model complexity reduction by 
splitting a complex problem into a set of simpler 
problems: multi-modelling where a set of simple models 
is used to sculpt a complex behaviour ([4] & [5]). Another 
promising approach to reduce complexity takes advantage 
from hybridization [17].  
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Fig. 6. General bloc diagram of DTS, presenting main 

operation levels. 
 

The T-DTS includes two main operation modes. The first 
is the learning phase, when T-DTS system decomposes 
the input data and provides processing sub-structures and 
tools for decomposed sets of data. The second phase is the 
operation phase (usage the system to process unlearned 
data). There could be also a pre-processing phase at the 
beginning, which arranges (prepare) data to be processed. 
Pre-processing phase could include several steps 
(conventional or neural stages). Figure 6 gives the general 
bloc diagram of T-DTS operational steps. As shows this 
figure, T-DTS could be characterized by three main 
operations: “data pre-processing”, “learning process” and 
“generalization process” (or “working process”). 
We designed and implemented an ANN based data driven 
treelike Multiple Model generator, that we called T-DTS 
(Treelike Divide To Simplify), able to reduce complexity 
on both data and processing chain levels ([19], [4], [5]). 
T-DTS and associated algorithm construct a tree-like 
evolutionary neural architecture automatically where 
nodes, called also “Splitting Units” (SU), are decision 
units, and leafs, called also “Neural Network based 
Models” (NNM), correspond to neural based processing 
units. 
The learning phase is an important phase during which T-
DTS performs several key operations: splitting the 
learning database into several sub-databases, constructing 
(dynamically) a treelike Supervision/Scheduling Unit 
(SSU) and building a set of sub-models (NNM) 
corresponding to each sub-database. Figure 7 represents 
the division and NNM construction process bloc 



diagrams.  As this figure shows, after the learning phase, 
a set of neural network based models (trained from sub-
databases) are available and cover (model) the behaviour 
region-by-region in the problem’s feature space. In this 
way, a complex problem is decomposed recursively into a 
set of simpler sub-problems: the initial feature space is 
divided into M sub-spaces. For each subspace k, T-DTS 
constructs a neural based model describing the relations 
between inputs and outputs. If a neural based model 
cannot be built for an obtained sub-database, then, a new 
decomposition will be performed on the concerned sub-
space, dividing it into several other sub-spaces. 
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Very promising results, obtained for different areas: 
classification problems, industrial process identification 
and prediction, pattern (biomedical signal) recognition, 
etc… show efficiency of such self-organizing multiple 
model structure.  
 

V. BIPED ROBOT’S ADAPTIVE WALK 
USING INTUITIVE HYBRID MODULAR 

CONTROLLER 
One of the most challenging topics, over the recent 
decades, in the field of robotics concerned the design and 
the control of biped robots. Several potentialities make 
this foremost research area particularly appealing in the 
frame of middle and long term projection. On the 
fundamental side, advances in this research area can lead 
to a better comprehension of the human locomotion 
mechanisms. From, the applicative point of view, it could 
concern a wide spectrum of applications among which: 
the design of more efficient prosthesis and the 
construction of more sophisticated humanoid robots for 
interventions in hostile environments.  
Two main control strategies are generally used in the field 
of biped robots’ locomotion: one is based on a kinematics 
and dynamic modeling of the whole robot’s mechanical 
structure, and another takes advantage from soft-
computing techniques (fuzzy logic, neural networks, 
genetic algorithm, etc…) and heuristically established 
rules resulting from the expertise of the walking human. 

Additionally to requirements related to high precision 
measurement and to a fine interaction forces’ evaluation, 
the first strategy needs the modeling of whole biped 
robot’s real environment remaining a very complex task. 
That is why the computing of the on-line trajectories are 
generally performed using simplified models ([20] to 
[23]), making this first strategy not always well adapted 
when biped robot moves in real environment. Taking 
advantages from soft-computing skills, the second 
solution doesn’t need the aforementioned requirements: 
firstly, it is not necessary to know perfectly the 
mechanical structure and secondly, this category of 
techniques takes advantage from learning capabilities 
([20] to [24]).  
Investigating soft-computing based fully autonomous 
biped robot’s walking, we proposed a new approach 
taking advantage simultaneously from local and global 
generalization. Our approach [25] is based on a modular 
Fuzzy-CMAC architecture: a set of CMAC ANN (see 
[26] to [28])) based modules and a fusion stage. The 
fusion is carried out by using Takagi-Sugeno FIS (Fuzzy 
Inference System). The main task of Fuzzy-CMAC based 
modular part of the system is to compute the swing leg’s 
trajectory (using a Fuzzy Inference System fusion of 
several CMAC neural networks’ outputs). The second one 
allows regulating the average velocity from a 
modification of the desired pitch angle at each new step. 
Figure 8 gives the bloc diagram of the proposed hybrid 
architecture.  

 
Fig.8 – Bloc- diagram of the Fuzzy-CMAC based hybrid 

control strategy.  

 

 
Fig. 9 – Learning strategy principle’s bloc diagram. 

 
Figure 9 shows the bloc diagram of the training strategy. 
The trajectories of the swing leg (in terms of joint 
positions and velocities) are learned by four "single-



input/single-output" CMACk with k=1,..,4 neural 
networks (four trajectories to learn). The learned 
trajectories are joint angles 1iq  and 2iq , and the two 

corresponding angular velocities 1iq  and 2iq . 1iq  and 

2iq  are respectively the measured angles at the hip and 

the knee of the leg i. In the same way, 1iq  and 2iq  are 
respectively the measured angular velocities at the hip and 
the knee of the leg i (see figure 8). During the training 
stage, five trajectories corresponding to five different 
average velocity values ( MV  measured in m/s) included 
in [0.4 , 0.8] interval are learned by five CMAC based 
modules. Each module (labelled lCMAC , with 

{ }5,4,3,2,1∈l ) includes four CMACk neural networks 
(corresponding to the four above-mentioned robot’s 
trajectories). MV  is computed by using relation (6) where 

stepL  is the distance between the two feet at the moment 

of double impact and stept  is the duration of the step 
(from takeoff to landing of the same leg). 

 

step
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The Fuzzy Inference System is obtained from the five 
following rules, where lY corresponds to the output of 

lCMAC with { }5,4,3,2,1∈l : 

• IF MV  IS VerySmall THEN 1YY =  

• IF MV  IS  Small THEN 2YY =  

• IF MV  IS Medium THEN 3YY =  

• IF MV  IS Big THEN 4YY =  

• IF MV  IS VeryBig THEN 5YY =  
 

 
Fig. 10 – Membership functions used by Fuzzy Inference 

stage of Fuzzy-CMAC. 
 

Figure 10 gives the membership functions corresponding 
to the upper-indicated FIS rules. The average velocity is 
modelled by five fuzzy sets (“VerySmall”, “Small”, 
“Medium”, “Big”, “VeryBig”). 
The validation of proposed approach has been done on an 
under-actuated robot: RABBIT [29], [30]. This robot 
constitutes the central point of a project, within the 
framework of CNRS (Centre Nationale de la Recherche 
Scientifique) ROBEA (ROBotique et Entité Artificielle) 

program [31], concerning the control of walking and 
running biped robots, involving several French 
laboratories. This robot is composed of two legs and a 
trunk and has no foot as shown on figure 11. The 
characteristics (masses and lengths of the limbs) of this 
biped robot are summarized in table 1. 
 

 
Fig.11 – RABBIT prototype’s photograph. 

 

Table 1. Masses and lengths of the robot’s limbs 

Limb Weight (kg) Length (m) 
Trunk 12 0.2 

Thigh 6.8 0.4 

Shin 3.2 0.4 

 
Fig. 12 – Stick diagram showing a walking sequence of the 

biped robot with increasing average velocity increases. 
 

If it is true, from design point of view, that RABBIT is 
simpler compared to a robot with feet, from the control 
theory point of view, the control of this robot is a more 
challenging task, particularly because, in phase of single 
support, the robot is under-actuated. A numerical model 
of the previously described robot has been implemented 
within the ADAMS software. This software is able to 
simulate RABBIT’s dynamic behavior and namely to 
calculate the absolute motions of the platform and the 
relative motions of the limbs when torques are applied on 
the joints by the virtual actuators. The model used to 
simulate the interaction between feet and ground is 
exposed in [32]. Figure 12 gives the stick diagram of the 
biped robot’s walking sequence when the desired average 



velocity increases. It must be noticed that the control 
strategy allows adapting automatically the pitch angle and 
the step length as the human being. 
The main interest of this approach is to proffer to the 
walking robot autonomy and robustness. The obtained 
results show the adaptability of the walking step length. 
Furthermore, the Fuzzy-CMAC approach allows 
decreasing the memory size in comparison to the 
traditional multi-input CMAC ANN. Future works will 
focus firstly on the extension of the Fuzzy-CMAC 
approach in order to increase the autonomy of the walking 
robot according to the nature of the environment (get up 
and down stairs for instance), avoidance and dynamic 
crossing obstacles and secondly on the experimental 
validation of our approach. 

 
VI. SELF-ORGANIZING 

IDENTIFICATION OF NONLINEAR 
DYNAMIC SYSTEMS’ BEHAVIOR 

Identification of nonlinear systems behavior is an 
important task in a large number of areas dealing with real 
world requirements and issued applications. Among 
numerous areas concerned by this task, one can mention 
model based control and regulation, systems design, 
complex systems simulation, complex systems’ behavior 
prediction, fault diagnosis, etc... The identification task 
involves two essential steps: structure selection and 
parameter estimation. These two steps are linked and 
generally have to be performed in order to achieve the 
best compromise between the identification (or 
prediction) error minimization and the number of 
parameters increase in the issued model. In real world 
applications (real world situations), strong nonlinearity 
and large number of related parameters make the 
realization of those steps challenging, and so, the 
identification task difficult. 
To overcome the above-mentioned difficulties, we 
propose to take advantage simultaneously from multi-
modeling concept’s modularity (described in section 2) 
and self-organizing clusters construction, making the 
proposed solution self-adaptive regarding the system’s 
(nonlinear system to be identified) nonlinearity. 
Concerning the self-organization, the proposed identifier 
benefits from a self-organizing clusters construction, 
based on concurrent minimization of both identification 
error and number of local models. Regarding partitioning 
strategy, two promising partitioning strategies have been 
investigated: “decision tree construction” (DTC - a 
deterministic partitioning approach) and “fuzzy 
clustering” (FC – a fuzzy based partitioning approach 
[33]). 
The identification is performed by an “Equation Error” 
(EE) multi-model, known also as NARX (Nonlinear 
Autoregressive with eXogenous Inputs) multi-model, 
using “decision tree construction” or “fuzzy clustering” 
partitioning to split the system’s feature space in a 
number of operating ranges [34]. Figure 13 shows the 
bloc diagram of an EE multi-model based identifier. As 
one could remark from this figure, the EE multi-model 
based identifier identifies the system by using both 
system’s inputs and outputs.  
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Fig. 13 – Learning bloc diagrams of EE multi-model. 
 

In the case of a deterministic partitioning strategy, the 
“activation degree” of the i-th local model is defined 
conformably to the relation (7), where ( ).iρ , called the 
“validity function” of the the i-th local model, is defined 
by the relation (8). In relation (8), ( ).kµ  represents the 
“membership function” defined for the k-th variable of 
the regression vector ( )tϕ  and Q  is the number of 
variables in the regression vector. In our approach, we use 
Gaussian membership functions expressed in (9), 
where: ( )tz ik  is the value of the k-th variable of the 

regression vector ( )tϕ  involved in the i-th local model, 

ikc  is the center of the partition corresponding to the 

( )tz ik  and kσ  is the dispersion of the Gaussians for all 
partitions of the k-th variable. It is interesting to note that 
the parameters vector iβ  contains all the dispersion of 
the Gaussians. 
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The FC partitioning strategy uses the “fuzzy-c-mean” 
clustering algorithm. Conformably to the fuzzy nature of 
the clustering, the issued intervals (operating ranges) 
could share some overlapping region (with different 
membership degree). Feature space decomposition is 
performed in each dimension (for each input variable) 
according to concurrent minimization of both 
identification error and “intra-clusters” error defined by 
relation (10), where dij expressed by relation (11) denotes 
the distance between the j-th value of the variable z 
(which could take Q different values) and the center ci of 
the i-th cluster (among M possible clusters). µij in relation 
(10) represents the membership degree relative to the 
variable z regarding the i-th cluster (among M possible 
clusters), defined by relation (12). The “activation 



degree” is the given by the values of ijµ . The center ci of 
the i-th cluster is defined conformably to the relation (13). 
Finally, the parameter m, known as “fuzzy exponent”, is a 
parameter representing overlapping shapes between 
clusters. Generally, this parameter is set to m=2. But in 
our solution the value of this parameter will be optimized 
during the multi-model’s self-organization process 
(learning process). 
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VII. CONCLUSIONS  
If learning and generalization capabilities of ANN models 
appear as central requirements in intelligent systems’ 
design, nowadays, it is well admitted that intelligent 
behavior requires more sophisticated mechanisms than 
those performed by these “simple” models.  
On the other hand, a number of appealing features of 
animal’s and human’s brain, as its “modular” structure 
and it’s “self-organizing” capabilities, could be sources of 
inspiration in emergence of higher level artificial 
intelligent behavior. The main goal of this paper was to 
show how these primary supplies could be exploited or 
combined in the frame of “soft-computing” in order to 
design intelligent artificial systems emerging higher level 
intelligent behavior than conventional ANN. These 
foremost features have inspired a set of implementations 
dealing with real-world applications and covering several 
different areas as: robotics, image processing and pattern 
recognition, classification and dynamic nonlinear 
behavior modeling (identification and prediction).  The 
presented examples and issued results show the 
significant potentiality of modular connectionist 
architectures for designing higher level intelligent 
functions.  
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