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Abstract: To solve the task of recognizing features of
objects used in expert systems the Boolean function ap-
proach can be attracted. In particular, the relation be-
tween the features can be given as a disjunctive normal
form (DNF) of the Boolean function whose arguments
correspond to the features, and the rise of compactness
of the information of that relation reduces to minimiza-
tion of a Boolean function in DNF class. The ternary
matrix cover technique is suggested to apply for solving
this problem. It is shown how to obtain a minimal set of
prime implicants using this technique.
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1. INTRODUCTION

One of the functions of an expert system is recogniz-
ing the object by its known features. Any feature is as-
signed with a Boolean variable that takes value 1 if the
object has this feature, and value O if it has not [1].
Usually, there is a relation between features that is given
by the prohibition domain. This domain is convenient to
be given as a disjunctive normal form (DNF) of a Boo-
lean function [1]. The problem of rising compactness of
the prohibition domain is reduced to the minimization of
a Boolean function in DNF class.

The concept of ternary matrix cover was introduced
first while the problem of decomposition of Boolean
functions was being studied [2]. It is similar to the con-
cept “blanket” that was used in [3]. The ternary matrix
is a form of representation of a completely specified
Boolean function. Any ternary matrix can represent
some arbitrary DNF of a Boolean function [4]. The rows
of ternary matrix U represent the elementary conjunc-
tions that are the terms of DNFs of given functions.

The approach connected with the concept of ternary
matrix cover was successfully applied in solving such
tasks as decomposition of Boolean functions, revelation
of essential arguments and orthogonalization of Boolean
functions. We show how one can apply this approach to
obtain a minimal family of prime implicants of a Boo-
lean function in solving the problem of its minimization.
The problem of selecting the prime implicants that con-
stitute a minimum DNF of the given Boolean function is
reduced to the covering problem [4]. We suggest a new
way of this reducing based on the operation of product
ternary matrix covers. When the input Boolean function
is given in arbitrary DNF, this way makes easier the
procedure of constructing Quine’s table [4] necessary
for solving the covering problem.

2. TERNARY MATRIX COVER

Let U be a ternary (/ x n)-matrix (its elements are 0,
1 and “-) [4], that gives DNF of Boolean function f{x).
The columns of matrix U correspond to variables
X, X2, ..., X, that are arguments of flx). Let
x* = (x*, 0%, ..., x,*) be a value of vector variable x.

A ternary vector a is said to absorb a binary (Boo-
lean) vector b if b can be obtained from a by replacing
symbols “— by 0 or 1.

A family 7 of subsets (blocks) of the set of row
numbers of ternary (/ x n)-matrix U is called cover of U
if for any Boolean vector x* of length n there exists a
block in 7 containing those and only those rows of U
that absorb x*. Other sets of rows of U are not in &. Let
us denote by #(x*, U) the set of rows of U that absorb
x*. Then the blocks of cover m are all different sets
t(x*, U) taken for all x* € {0, 1}". If no row of U ab-
sorb a Boolean vector x* € {0, 1}", then one of the
blocks of cover 7 is empty set .

For every block =; of cover m, the Boolean function
ni(x) is defined such that w(x*) = 1 for any x* € {0, 1}"
if and only if t(x*, U) = m,.

For any ternary matrix there exists the single cover.

The methods for calculating the cover of a given ter-
nary matrix are described in [5]. The simplest one of
them is based on the operation of product of covers that
is determined as follows.

Let covers ' and 7* be constructed for ternary ma-
trices U' and U? relatively whose numbers of rows are
the same and sets of columns correspond to nonempty
subsets of the set of variables x;, x,, ..., x,. Let us form
the set

A= {nlimnzj/nlfen', nzjenzf, nlf(x)/\rczj(x) #0}

and define the Boolean function A;(x) = mi(x) A Tczj(x)
for every element A;=n';n 7’ of A. Let us construct
cover 7 taking all different element of A as elements of
n. For every block w;, of © we define Boolean function
mi(x) as disjunction of all functions assigned to elements
of A equal to ;. We call cover nt the product of covers
n! and n* (n = n' x ©). The product of covers is shown
in [6] to be commutative, associative and idempotent.
Let a given ternary matrix U be divided into two ma-
trices U' and U? where U consists of some column of
U and U? of the rest of the columns of U. If n' and =’
are the covers of matrices U' and U? relatively, then
n=n'x 7’ is the cover of matrix U. The cover of an
one-column matrix is trivial. It has two blocks, one of
which consists of rows containing 0 and “-”, the other
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of rows containing and 1. The functions assigned to
them are x and x relatively where x is the variable cor-
responding to the considered column. So, cover m of
matrix U can be obtained as © = ' x 7° x ... x 7" where
n', %, ..., " are the covers of one-column matrices
equal to the columns of U connected with variables
X1, Xa, ..., X, relatively.

3. OBTAINING A MINIMAL FAMILY OF
PRIME IMPLICANTS OF A BOOLEAN
FUNCTION

Let a ternary matrix U represent a reduced DNF of a
Boolean function f{x), i. e. its rows represent the prime
implicants of f{x). The minimal DNF of function f{x) is
the disjunction of a minimum number of prime impli-
cants such that for every value x* of vector variable x at
which fix) =1, there is at least one among them that is
equal to 1 at x = x*.

A minimal DNF of Boolean function f{x) is repre-
sented by a ternary matrix that consists of a minimal
family of rows of matrix U covering all values of vector
variable x that turn f{x) into 1. So, the problem is re-
duced to the classical problem of covering: to find a
minimal subset of the set of matrix U such that for every
nonempty block =; of its cover m there is a row in this
subset that belong to block m;. In the terminology of [7]
every block of such a cover is a Quine’s set.

Indeed, as it was said, every block 7; of cover « of
ternary matrix U is equal to a set #(x*, U) of rows of
matrix U that absorb a certain vector x*, and for every
vector x* there is a block in 7 containing the row of U
that absorb x*. So, every value x* such that fix*)=1 is
absorbed at least by one row from the set satisfying the
condition above.

The complexity of the problem of covering can be
reduced if there are obligatory prime implicants, i. e.
those being in any minimal and even irredundant DNF.
The set of such implicants is called kernel [4]. The
whole kernel is included in the obtained DNF, and all
values x* of vector variable x covered by the kernel are
excluded from the consideration. The prime implicants
absorbed by the kernel form so called anti-kernel [4].
They must be excluded from the consideration as well.

It is clear that if block 7; of cover © of matrix U con-
sists only of one row, then this row represents a prime
implicant belonging to the kernel. It is easy to extract
the kernel from matrix U if its cover is obtained.

The prime implicants corresponding to the rows of
U each of which is only in the blocks of ® where there is
at least one element of the kernel form the anti-kernel.

In minimizing a Boolean function, any block of
cover  containing another block as a subset may be
excluded from the consideration. This and above acts of
reducing agree with reduction rules [4] that are used in
solving the problem of covering.

Example
Let us consider the matrix of prime implicants taken
from [7]:

Xy Xy Xy Xy Xy
1 0 - 1 1 %
-0 0 0 - 1
U= o - 1 0 - 3
-0 0 1 1 4
0 0 - 0 1 5
I - 1 11 6
- - 1 0 0 7
1 1 - 0 - 8
- 1 I 0 - 9
- 1 I - 1 10

For one-column matrices obtained from U we have
two-block covers ©' = {(1, 4, 6, 7, 8, 9, 10), (2, 3, 4, 5,
7,9, 100}, ©°={(1,2,3,4,5,6,7), (3, 6,7, 8,9, 10)},
©=1{(1,2,4,5,8),(1,3,56,7,8,9,10)}, n* = {(1, 2,
4,6,10),(2,3,5,7,8,9,100}, = {(1,2,3,4,5,6,8,
9,10),(3,7,8,9)}.

The product of them is
n=n'xm’x’ xntx 7’ ={(1, 4), (1, 6), (7), (8), (6,
10), (7, 8,9), (8,9, 10), (2, 4), (2,5),(3,5), (3, 7), (3, 7,
9), (3,9, 10), (10)} that is the cover of matrix U.

Rows 7, 8 and 10 form one-element blocks that are
elements of the kernel. The anti-kernel consists of only
one row 9, as it is the only row that is only in those
blocks that contain the elements of the kernel. Having
kept in the obtained cover m only those blocks that do
not contain other blocks as subsets, we obtain {(1, 4),
(1, 6), (7), (8), (2,4), (2, 5), (3, 5), (10)}. Remove one-
element sets from the obtained family, and as a result of
it we have {(1, 4), (1, 6), (2, 4), (2, 5), (3, 5)}. Then, we
should choose a minimal set of rows of U such that any
of remaining blocks contains at least one row of this set.

One of the solutions of our task is the matrix consist-
ing of rows 1, 2, 5, 7, 8, 10 of matrix U:

X X X X X
1 0 - 1 1 1
o0 0 - 1| 2°
0O 0 - 0 1| 5
- — 1 0 0 7
1 1 - 0 —| 8
-1 1 - 1| 10

Note, that the field of the search can be considerably
reduced, if in successive taking products of covers, the
rows forming one-element blocks are removed.

4. CONCLUSION

The described approach is intended to apply it in
solving the problems of the Boolean function theory that
is connected with the specification of functions in the
form of a ternary matrix representing DNF. It should be
noted that efficiency of this approach depends very
largely on the number of blocks of the cover of the ini-
tial ternary matrix. The suggested approach can have the
advantage compared with the method of simple sets
described in [4, 7] for ternary matrices with the rela-
tively large number of rows and small number of col-
umns.
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