
On Application of the Ternary Matrix Cover Technique for 
Minimization of Boolean Functions 

 

Yu.V. Pottosin, E.A. Shestakov 
United Institute of Problems of Informatics, NAS of Belarus, Minsk, 

(pott,she)@newman.bas-net.by 

 
Abstract: To solve the task of recognizing features of 
objects used in expert systems the Boolean function ap-
proach can be attracted. In particular, the relation be-
tween the features can be given as a disjunctive normal 
form (DNF) of the Boolean function whose arguments 
correspond to the features, and the rise of compactness 
of the information of that relation reduces to minimiza-
tion of a Boolean function in DNF class. The ternary 
matrix cover technique is suggested to apply for solving 
this problem. It is shown how to obtain a minimal set of 
prime implicants using this technique. 
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1. INTRODUCTION 

One of the functions of an expert system is recogniz-
ing the object by its known features. Any feature is as-
signed with a Boolean variable that takes value 1 if the 
object has this feature, and value 0 if it has not  [1]. 
Usually, there is a relation between features that is given 
by the prohibition domain. This domain is convenient to 
be given as a disjunctive normal form (DNF) of a Boo-
lean function [1]. The problem of rising compactness of 
the prohibition domain is reduced to the minimization of 
a Boolean function in DNF class. 

The concept of ternary matrix cover was introduced 
first while the problem of decomposition of Boolean 
functions was being studied [2]. It is similar to the con-
cept “blanket” that was used in [3]. The ternary matrix 
is a form of representation of a completely specified 
Boolean function. Any ternary matrix can represent 
some arbitrary DNF of a Boolean function [4]. The rows 
of ternary matrix U represent the elementary conjunc-
tions that are the terms of DNFs of given functions. 

The approach connected with the concept of ternary 
matrix cover was successfully applied in solving such 
tasks as decomposition of Boolean functions, revelation 
of essential arguments and orthogonalization of Boolean 
functions. We show how one can apply this approach to 
obtain a minimal family of prime implicants of a Boo-
lean function in solving the problem of its minimization. 
The problem of selecting the prime implicants that con-
stitute a minimum DNF of the given Boolean function is 
reduced to the covering problem [4]. We suggest a new 
way of this reducing based on the operation of product 
ternary matrix covers. When the input Boolean function 
is given in arbitrary DNF, this way makes easier the 
procedure of constructing Quine’s table [4] necessary 
for solving the covering problem. 

 
2. TERNARY MATRIX COVER 

Let U be a ternary (l × n)-matrix (its elements are 0, 
1 and “−”) [4], that gives DNF of Boolean function f(x). 
The columns of matrix U correspond to variables 
x1, x2, …, xn that are arguments of f(x). Let 
x* = (x1*, x2*, ..., xn*) be a value of vector variable x. 

A ternary vector a is said to absorb a binary (Boo-
lean) vector b if b can be obtained from a by replacing 
symbols “−” by 0 or 1. 

A family π of subsets (blocks) of the set of row 
numbers of ternary (l × n)-matrix U is called cover of U 
if for any Boolean vector x* of length n there exists a 
block in π containing those and only those rows of U 
that absorb x*. Other sets of rows of U are not in π. Let 
us denote by t(x*, U) the set of rows of U that absorb 
x*. Then the blocks of cover π are all different sets 
t(x*, U) taken for all x* ∈ {0, 1}n. If no row of U ab-
sorb a Boolean vector x* ∈ {0, 1}n, then one of the 
blocks of cover π is empty set ∅. 

For every block πi of cover π, the Boolean function 
πi(x) is defined such that πi(x*) = 1 for any x* ∈ {0, 1}n 
if and only if t(x*, U) = πi. 

For any ternary matrix there exists the single cover. 
The methods for calculating the cover of a given ter-

nary matrix are described in [5]. The simplest one of 
them is based on the operation of product of covers that 
is determined as follows. 

Let covers π1 and π2 be constructed for ternary ma-
trices U 1 and U 2 relatively whose numbers of rows are 
the same and sets of columns correspond to nonempty 
subsets of the set of variables x1, x2, …, xn. Let us form 
the set 

λ = {π1
i∩π2

j/π1
i∈π1, π2

j∈π2
i, π1

i(x)∧π2
j(x) ≠ 0} 

and define the Boolean function λij(x) = π1
i(x) ∧ π2

j(x) 
for every element λij = π1

i
 ∩ π2

j of λ. Let us construct 
cover π taking all different element of λ as elements of 
π. For every block πk of π we define Boolean function 
πk(x) as disjunction of all functions assigned to elements 
of λ equal to πk. We call cover π the product of covers 
π1 and π2 (π = π1 × π2). The product of covers is shown 
in [6] to be commutative, associative and idempotent. 

Let a given ternary matrix U be divided into two ma-
trices U 1 and U 2 where U 1 consists of some column of 
U and U 2 of the rest of the columns of U. If π1 and π2 
are the covers of matrices U 1 and U 2 relatively, then 
π = π1 × π2 is the cover of matrix U. The cover of an 
one-column matrix is trivial. It has two blocks, one of 
which consists of rows containing 0 and “−”, the other 



of rows containing “−” and 1. The functions assigned to 
them arex and x relatively where x is the variable cor-
responding to the considered column. So, cover π of 
matrix U can be obtained as π = π1 × π2 × … × πn where 
π1, π2, …, πn are the covers of one-column matrices 
equal to the columns of U connected with variables 
x1, x2, …, xn relatively. 

 
3. OBTAINING A MINIMAL FAMILY OF 
PRIME IMPLICANTS OF A BOOLEAN 
FUNCTION 

Let a ternary matrix U represent a reduced DNF of a 
Boolean function f(x), i. e. its rows represent the prime 
implicants of f(x). The minimal DNF of function f(x) is 
the disjunction of a minimum number of prime impli-
cants such that for every value x* of vector variable x at 
which f(x) = 1, there is at least one among them that is 
equal to 1 at x = x*. 

A minimal DNF of Boolean function f(x) is repre-
sented by a ternary matrix that consists of a minimal 
family of rows of matrix U covering all values of vector 
variable x that turn f(x) into 1. So, the problem is re-
duced to the classical problem of covering: to find a 
minimal subset of the set of matrix U such that for every 
nonempty block πi of its cover π there is a row in this 
subset that belong to block πi. In the terminology of [7] 
every block of such a cover is a Quine’s set. 

Indeed, as it was said, every block πi of cover π of 
ternary matrix U is equal to a set t(x*, U) of rows of 
matrix U that absorb a certain vector x*, and for every 
vector x* there is a block in π containing the row of U 
that absorb x*. So, every value x* such that f(x*) = 1 is 
absorbed at least by one row from the set satisfying the 
condition above. 

The complexity of the problem of covering can be 
reduced if there are obligatory prime implicants, i. e. 
those being in any minimal and even irredundant DNF. 
The set of such implicants is called kernel [4]. The 
whole kernel is included in the obtained DNF, and all 
values x* of vector variable x covered by the kernel are 
excluded from the consideration. The prime implicants 
absorbed by the kernel form so called anti-kernel [4]. 
They must be excluded from the consideration as well. 

It is clear that if block πi of cover π of matrix U con-
sists only of one row, then this row represents a prime 
implicant belonging to the kernel. It is easy to extract 
the kernel from matrix U if its cover is obtained. 

The prime implicants corresponding to the rows of 
U each of which is only in the blocks of π where there is 
at least one element of the kernel form the anti-kernel. 

In minimizing a Boolean function, any block of 
cover π containing another block as a subset may be 
excluded from the consideration. This and above acts of 
reducing agree with reduction rules [4] that are used in 
solving the problem of covering. 

 
Example 

Let us consider the matrix of prime implicants taken 
from [7]: 

U =

10
9
8
7
6
5
4
3
2
1

1

0
1
1
1

1
1

0
0
0
1
0
1
0

1

1
1

1
1

0
1
0

1
1
1

0
0

0
0

1

1
0

0
0
1

54321














−
−

−

−

−

−

−

−

−
−

−














−
−

−

−

xxxxx

. 

For one-column matrices obtained from U we have 
two-block covers π1 = {(1, 4, 6, 7, 8, 9, 10), (2, 3, 4, 5, 
7, 9, 10)}, π2 = {(1, 2, 3, 4, 5, 6, 7), (3, 6, 7, 8, 9, 10)}, 
π3 = {(1, 2, 4, 5, 8), (1, 3, 5, 6, 7, 8, 9, 10)}, π4 = {(1, 2, 
4, 6, 10), (2, 3, 5, 7, 8, 9, 10)}, π5 = {(1, 2, 3, 4, 5, 6, 8, 
9, 10), (3, 7, 8, 9)}. 

The product of them is 
π = π1 × π2 × π3 × π4 × π5 = {(1, 4), (1, 6), (7), (8), (6, 
10), (7, 8, 9), (8, 9, 10), (2, 4), (2, 5), (3, 5), (3, 7), (3, 7, 
9), (3, 9, 10), (10)} that is the cover of matrix U. 

Rows 7, 8  and 10 form one-element blocks that are 
elements of the kernel. The anti-kernel consists of only 
one row 9, as it is the only row that is only in those 
blocks that contain the elements of the kernel. Having 
kept in the obtained cover π only those blocks that do 
not contain other blocks as subsets, we obtain {(1, 4), 
(1, 6), (7), (8), (2, 4), (2, 5), (3, 5), (10)}. Remove one-
element sets from the obtained family, and as a result of 
it we have {(1, 4), (1, 6), (2, 4), (2, 5), (3, 5)}. Then, we 
should choose a minimal set of rows of U such that any 
of remaining blocks contains at least one row of this set. 

One of the solutions of our task is the matrix consist-
ing of rows 1, 2, 5, 7, 8, 10 of matrix U: 
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Note, that the field of the search can be considerably 
reduced, if in successive taking products of covers, the 
rows forming one-element blocks are removed. 

 
4. CONCLUSION 

The described approach is intended to apply it in 
solving the problems of the Boolean function theory that 
is connected with the specification of functions in the 
form of a ternary matrix representing DNF. It should be 
noted that efficiency of this approach depends very 
largely on the number of blocks of the cover of the ini-
tial ternary matrix. The suggested approach can have the 
advantage compared with the method of simple sets 
described in [4, 7] for ternary matrices with the rela-
tively large number of rows and small number of col-
umns. 

The work is partly supported by ISTC, Project B-
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