Soft Computing as a solution
to Time/ Cost Distributor

Nabil M. Hewahi

Computer Science Department
Islamic University of Gaza
Gaza, Palestine
nhewahi@iugaza.edu

Abstract— In this paper we present a theoretical model based
on soft computing to distribute the time/cost among the
industry/machine sensors or effectors based on the type of the
application. One of the most unstudied significant work is to
recognize which sensor in an industry for example has higher
priority than others. This is important to know which sensor to be
checked first and within time limits of the system response. The
problem of such systems is their variant environmental situations.
Based on these varied situations, the priority of the importance of
each sensor might change from time to another. Due to this
uncertainty and lack of some information, soft computing is
considered to be one of the plausible solutions. The presented idea
is based on initially training of the system and continuously
exploiting the system experience of the degree of importance of
the sensors. The proposed system has three main stages, the first
stage is concerned with training the system to obtain the necessary
system time to respond, the necessary time allocated to recognize
which sensors to check (or which has higher priority), and the
initial importance value for each sensor, which indicates the initial
judgment about the sensor importance. The second stage is to use
the system experience about the importance of the sensor using
fuzzy logic to decide the final values of each sensor 's importance.
Based on the output of the second stage and the output of the first
stage, the system distributes the time/cost among the sensors (some
sensors with lower priority might be neglected). The main idea of
the proposed work is based on neurofuzzy

Keywords— soft computing, neural networks, fuzzy logic

[. INTRODUCTION

We introduce in this section the soft computing and its
applications. On the other hand we define the system which
we present in this paper. It is time/cost distributor system.

A. Soft Computing

Soft computing (SC) is a term originally expressed by Lotfi
Zadeh [1][2] to denote systems "exploit the tolerance for
imprecision, uncertainty, and partial truth to achieve
tractability, robustness, low solution cost, and better rapport
with reality" [2]. Soft computing differs from conventional
(hard) computing, unlike hard computing, it is tolerant of
impression, uncertainty, partial truth and approximation. The
human mind is the way in which soft computing work. SC
techniques are a natural way of handling the inherent

flexibility with which humans communicate, request
information, describe events or perform actions. Soft
computing has been divided into two groups namely
knowledge driven reasoning such as fuzzy logic and
probabilistic reasoning, and data driven search and
optimization approaches such as neuro computing and
evolutionary computing[1][2]. Soft computing is a partnership
in which each of the partners contributes a distinct
methodology for addressing problems in its domain. Based on
this vision, the main constituent methodologies in SC are
complementary rather than competitive. At present, the
research activities of SC applications are focused in the areas
of structural engineering, environmental engineering, geo-
technical engineering, intelligent interfaces, information
retrieval and intelligent assistants. One of the good examples
of a particularly effective combination is what has come to be
known as "neurofuzzy systems". Such systems are becoming
increasingly visible as consumer products ranging from air
conditioners and washing machines to photocopiers and
camcorders[3][4][5]. Other combinations could be a neural
networks and genetic algorithms which is termed by
"neuroevolution". Neuroevolution has proven very high
capabilities in various applications and in reinforcement
learning tasks [6-19]. In difficult real-world learning tasks
such as controlling robots, playing games, or pursuing or
evading an enemy, there are no direct targets that would
specify correct actions for each situation. In such problems,
optimal behavior must be learned by exploring different
actions, and assigning credit for good decisions based on
sparse reinforcement feedback. Comparing neuroevolution to
the standard reinforcement learning, neuroevolution is often
more robust against noisy and incomplete input, and allows
continuous states and action naturally. Much of the research in
neuroevolution is on control tasks such as pole balancing and
mobile robot control. Some other applications are related to
industry controllers. Other existing combinations is the
combination of neural networks, genetic algorithms and fuzzy
logic. Such systems area used in industry, medicine,
prediction and game playing [7][11][14][16][17][19].

B. Time/Cost Distributor System

Some of the very common systems for applications is
applying Neural networks, genetic algorithms, fuzzy systems,
evolutionary computing or combination of them in the real
time industry system. In all the applications, the used
technology works to simulate, control or improve the

performance of the industry. None of these trials considered
the system response time. Due to some factors, the industry
should take a certain action. The problem is to know which
sensors should take more /less time to be checked to allow the
system to take the proper action within the time limit. Based
on the industry situation, the needed sensors to be checked
differ from time to time. We shall define the Time/Cost
Distributor System (T/CDS) as a system that is responsible for
distributing the given time to the sensors based on their
importance to give the system the opportunity to respond
within the time limit. This means, in certain cases all the
sensors might be checked, whereas in some other cases some
of them are checked. Figure 1 depicts T/CDS. As shown in
Figure 1, the surrounding environment is the input of the
T/CDS. T/CDS distributes the time to be obtained by one of
its stages among the sensors to be checked based on their
importance according to the current situation. The output of
T/CDS is the time slot allocated to each sensor to be checked.
TS; in the figure means the slot of time allocated to the ith

sensor.
Some of the applications that might use T/CDS are:

1. Robots that play soccer. At certain position(mostly), the
robot has to know where to pass the ball very quickly
(might not check all his surroundings), otherwise, one of
his opponents might come and get the ball.

2. Automatic pilot in cases of emergency. A very fast
response is required based on the situation or the plane
might get crashed.

3. Games where players should do some action or otherwise
destroyed by other player.

4. Industries and controllers

Another version of the same time distribution for controllers is
the cost distributors. Cost distributors can be used in economic
and commercial applications. It can also be used in
information retrieval based on speed, memory and the size of
the databases.

II. RESEARCH OBJECTIVES

Designing T/CDS which is able to decide which sensor should
be given more /less priority in a given environmental situation,
or even which is to be neglected is the main objective of this
research. This increases the ability to take the appropriate
action within time limits. The T/CDS should be able to decide
the necessary time limit for the whole system to respond, and
the time limit necessary to check the sensors with higher
priority. To simplify this process, we consider T1

TSI

—> T/CDS TS,
Environment

TS3

TS,

Figure 1. Time/cost distributor system

as the time limit for the system to respond. T2 is the time to be
lost to check the selected sensors. T3 is T1-T2 which is the
remaining time for the system response. The proposed T/CDS
is based on soft computing and more specifically on
neurofuzzy system. Soft computing is used here to overcome
the problem of uncertainty, partial truth and approximation. In
[15], T/CDS system based on neuroevolution for real time
system controllers is proposed. The proposed system has four
main stages, the first one is to decide the time constraints
based on the given environment surroundings, the second
stage is to distribute the time/cost to determine the importance
of each behavior based on the decided time by stage one.
Stage three is to take the output of stage two to place
appropriate controller action which finally applied to the
fourth stage to recognize the final action of the system. It is
shown how the proposed system can be applied on a soccer
robot example. The main difference between this approach
and the approach which we propose is that the system in [15]
is based on neuroevolution and fitness function to decide the
degree of the importance of the sensor, whereas in our
proposed system as we shall see, the degree of the importance
of a sensor is based on the system experience which finally
uses the neurofuzzy to decide it. In general, neuroevolution
technique is good when no enough examples can be provided,
its performance depends highly on the fitness function which
is in common not easy to have an optimum one. On the other
hand, neurofuzzy is basically based on uncertainties and lack
of information, moreover, it is in general faster than
neuroevolution in such kind of problems.

Deciding the necessary time (changeable) to perform the
action which is changeable in real time applications, is one of
the very challenging and not yet widely tackled problems.
This problem is difficult to solve using neural networks alone
because in many different situations the time needed and the
action to be taken is changeable. This research is a continuous
research started in [15]. It is to explore and investigate a
solution to the posed problem of T/CDS using neurofuzzy
technique. The purpose of this research is to help other
researchers to tackle the problem of T/CDS in a near future.

III. THE PROPOSED SYSTEM
The proposed system is based on three stages :

1. Time/ sensor decider : This stage is concerned with
deciding the time limit of the system and the time needed
for the sensors to be checked. In addition, this stage is
concerned with specifying an initial value for each sensor.
This value is to indicate an initial impression about the
importance of the system. This stage is based on
Backpropagation algorithm since several examples can be
provided. The input for this neural network is the
environment inputs and the output is the T1, T2 and the
initial importance value for each sensor based on the given
environment inputs. This stage is firstly used alone to train
the system, then used as apart of the T/CDS system to get
the values of the sensors, and T1 and T2.

2. Sensor priority decider : Deciding the final value of the
importance of each sensor is the main goal of this stage. In
this stage, soft computing is used. We take each sensor's

importance value obtained from stage 1 as input to a fuzzy
membership function (fuzzy set) and the old experience
about the importance of this sensor in various environment
situations. The experience importance value is obtained by
getting always the average value of the importance value
of the sensor. The experience value is passed to a fuzzy
set. The initial value for the experience sensor value is 0.
The stage uses these two inputs to produce the final value
of importance for the sensor in the current situation. This
is done by a constructed fuzzy rules and defuzzifying by
using center of gravity or Sugeno-style inference. Using
the system previous experience of the importance of the
sensor is very significant. This will help the system to
always scale up the importance of the sensor and how
often it is used.

3. Selecting the sensor: One of the important inputs for the
T/CDS is the time needed by each sensor which is known.
Knowing the importance of each sensor, the sensors are
ordered based on their importance. The sensors to be
checked are selected based on their priority order and T2.

Figure 2 shows the stages of TC/DS. A detailed explanation
about the proposed system is provided in the next sections.

A. Time Sensor Decider

In this stage, time needed for the system to respond, the time
needed to check the sensors and the values that specify the
initial importance of the sensors are produced. This output is
based on the current situation of the environment. The current
situation of the environment is the description of the
surrounding situation. To clarify, if the situation we have may
produce a voice and a shape might be seen, the sensors
related to voice recognition and vision are necessary, whereas
a sensor related to touch might not be important in this case.
Another situation is based on touch only which means the
touch sensor is the only (the most important) sensor needed in
this case. Knowing this, we can train a neural net using
backpropagation. In our training, in addition to the sensor
importance, we can also provide the time needed for the
system to respond and the time needed to check the higher
priority sensors. Figure 3 shows the Time/ sensor decider. The
importance sensor in the figure and later in the text is termed
as ISj to indicate the importance of the jth sensor. In case

where no enough examples can be provided, neuroevolution
technique can be used to find the values of T1 and T2. This
needs a good fitness function based on the factors related to
the problem domain. In addition, certain genetic operators are
to be used properly.

Training
Time/Senor S;nsgr gelnsors
; > priority » elector
decider Decider

Figure 2. TC/DS proposed system .

C. Sensor Priority Decider

This stage is to decide the final value for the sensor
importance. The inputs of this stage are obtained from the first
stage. For each sensor, there is a subsystem to obtain its final
importance value. To find the final value of the sensor
importance, inputs of the subsystem are inputs for a
membership functions. The output of the membership
functions are passed to fuzzy rules and finally defuzzifying is
applied to get the final value of the sensor importance. The
first input is SIj’ where the second input is the average value

of the jth sensor in each environment situation and indicated
by AVGJ-. The initial value of AVGj is 0.To clarify this point,
let us assume that we have tried n arbitrary number of
environment situations, and let us assume further that IS;y is

the importance value of the jth sensor in the kth environmental
situation. Then

n
AVGj: (= ISjk)/n
k=1

The computation of the AVG; is considered to be a main

factor of the final decision to reflect the importance of the jth
sensor over various situations. This step will help the system
to learn from its experience. An example of some of the rules
that might be used in such as a system :

IF (ISjk is low) and (AVGj is low) Then (ISjk is low)

IF (ISjk is low) and (AVGj is high) Then (ISjk is moderate)
IF (ISjk is high) and (AVGj is high) Then (ISjk is high)

IF (ISjk is Med.) and (AVGj is low) Then (ISjk is low)

These rules are absolutely domain dependent and based on the
used membership functions. In the final stage defuzzifying is
applied to obtain the final value of the sensor importance
(FIS). This is done by any of the methods of defuzzifying such
as Center of Gravity or Sugeno-Style inference. Based on the
FIS value for each sensor, It would be very simple to order the
sensors. The higher is the value of the FIS for the sensor, the
more important is the sensor. Figure 4 shows the sensor
priority decider stage.

System time

limits T1
Environment
situation 1 '
Time needed to
. check the higher
Environment o
situation 2 priority sensors (T2)

Environment

o Importance sensorl
situation 3

Environment

L Importance sensor n
situation n

Figure 3. Time/sensor decider

C. Selecting the Sensor

In this stage, the outputs of the first and second stages are used
as inputs. The inputs of this stage are the final importance
sensor values (FIS) for all the sensors and the time needed to
decide the importance of the sensors (T2). The importance of
this stage is to distribute the T2 among the sensors based on
their importance values. Each sensor 's needed operation time
is known. This will help in deducting the operation time of the
chosen sensor based on the priority from T2. This process will
continue until the T2 is over. Some of the special cases
regarding the left time of T2 and the time of the selected
sensor 's operation time might be considered. In some cases,
the left time of the T2 is less than the necessary operation time
for the selected sensor. In this case, the next priority sensor 's
operation time is checked. Figure 5 shows selecting the
sensor stage.

To clarify the idea of selecting the sensors, let us consider
Table 1. It is assumed in the table that T1 is 30 and T2 is 10.
Therefore, T3 = T1-T2 and is equal to 20. We assume further
that we have six sensors in our system, each of which has a
specific time to be checked (sensor requested time). The
sensor priority in the table is assumed to be obtained after
getting the FIS for each sensor. Based on the T2, this time has
to be distributed among the sensors of the higher priority.
Sensors 4,1,3, and 6 are chosen in order for the sensors to be
checked. It is to be noted that sensor 3 should be chosen
instead of sensor 6, but because sensor 3 needs more time,
which makes the total time (summed time of the selected
sensors) exceeds T2, sensor 6 is chosen instead. A very
important note can be considered here, the sensor requested
time can be one of the main factors in the fuzzy rules or fuzzy
sets to decide about the degree of the importance of the sensor
instead of doing the procedure of exchanging the priority of
the sensor 6 with that of sensor 3.

15; AVG;j
A 4 A 4

Fuzzy subsets Fuzzy subsets

v v

Fuzzy Rule base

A 4

Defuzzifying

'

FISj

Figure 4. Sensor priority decider.

IV CONCLUSION

In this paper we tried to focus on a spot of research which has
not been tried extensively. A theoretical model to solve the
problem of distributing a slot of time to decide which sensors
in industry or controller have more importance and effect than
others in system response within time limits is developed. The
main problem is that, considering all the sensors to take a
decision might lead to inappropriate response time. Due to the
lack of information and uncertainty emerged from various
environmental situations, soft computing is used as a key
operator to the developed system. One of the main points of
the proposed system is its dependence on its experience about
the history of the degree of the importance of the sensor. The
developed system is based on three stages, training and
producing the initial importance values for the sensors,
obtaining the final values of the importance values for the
sensor, and finally determining which sensors to be checked
to take the action of the system within time constraints. This
paper is the first part of a sequence of continuous work. It 's
main goal is to help researchers to widen their perspective
towards a solution to this not yet solved problem. Some of the
future directions are 1. Exploring other solutions to the
time/cost distribution problem 2. Implementation of the
proposed system and apply it on various applications.

TS,

2 /
—

Selecting
> Ts,

the sensor

Figure 5. Selecting the sensor stage .

FIS >

TS,

TABLE 1. AN EXAMPLE OF THE SELECTING THE SENSOR
STAGE OF THE T/CDS

T1 T2 | T3 Sensor | Sensor Sensor Selected
requested L
number. | time priority sensors
time
30 10 | 20 1 5 2 5
2 3 4 0
3 2 3 2
4 1 1 1
5 4 6 0
6 2 5 2

REFERENCES

[1] L.A.Zadeh, Fuzzy logic, "Neural networks and soft computing," Comm.
of ACM, vol.37,n0.3,pp. 77-84, March 1994.

[2] L.A.Zadeh, "Soft computing and fuzzy logic," IEEE Software,
vol.11,n0.6,pp 48-58, 1994.

[3] D. Hong, C. Hwang, "Abrief introduction to soft computing," Proceedings
of the Autumn Conference, Korean statistical Society, pp 65-66, 2004.

[4] S. Taheri, "Trends in fuzzy statistics," Australian Journal of Statistics,
32,pp.239-257,2003.

[5] H.Takagi, S. Kamohara and T. Takeda, "Introduction of soft computing
techniques to welfare devices, "IEEE Midnight-Sun Workshop on Soft

Computing Methods in Industrial Applications (SMCia'99), Kuusamo,
Finland, June 16-18, pp 116-121, 1999.

[6] A. Agogino, K.Stanley and R.Miikkulainen, "Online interactive neuro-
evolution," Neural Processing Letters, 11, pp 29-37, 2000.

[71 A.Conradie, Risto Miikkulainen and C.Aldrich, "Adaptive control
utilizing Neural swarming," Proceedings of the 2002
Genetic&Evolutionary Computation Conference (GECC-2002), 2002.

[8] G.Drake and J.Smith, "Simulation system for real-time planning,
scheduling and control, " Proceedings of 28th Conference on Winter
Simulation, pp 1083-090,1996.

[9] J.Fan, R.Lau and R.Miikkulainen, "Utilizing domain knowledge in
neuroevolution," Proceedings of the Twentieth Inter. Conf. On Machine
Learning(ICML-03) Washington,Dc, 2003.

[10] R.Florian, "Evolution of alternate object pushing in a simulated
embodied agent," Preliminary report, Center for Cognitive and Neural
Studies (Coneural), Romania, August, 2004

[11] F.Gomez , " Robust non-linear control through neuroevolution," Ph.D
Dissertation, The university of Texas at Austin,USA, 2003.

[12] F.Gomez and R.Miikkulainen, "Transfer of neuroevolved controllers in
unstable domains," Proceeding of The Genetic Evolutionary
Computation Conference (GECCO 2004), 2004.

[13] F.Gomez and R.Miikulanien, "Active guidance for a fitness rocket using

neuroevolution, Proceedings of Genetic Evolutionary Computation
Conference (GECC-03), 2003.

[14] N. Hewahi, "Engineering industry controllers using neuroevolution,"
Journal of AIDAM: Artificial Intelligence for Engineering Design,
Analysis and Manufacturing,19(1),pp 49-57, 2005.

[15] N.Hewahi, "Neuroevolution based time/cost distributor for real time
system controllers," Proceedings of the 2™ Inter. Conference on
Information Technology, Amman, Jordan, pp 189-193, 2005.

[16] D.Law and R.Miikkulainen, "Grounding robotic control with genetic
neural networks," (Technical Report AI-94-223). Department of
Computer Sciences, The University of Texas at Austin, 1994.

[17] S.Nolfi and D.Floreano, Evolutionary Robotics, MIT press, Cambridge,
2000.

[18] S.Nolfi and D.Parisi, Evoultion of Artificial Neural Networks, in
M.A.Arbib(Ed.) Handbook of Brain Theory and Neural Networks, 2"
edition, Cambridge, MA: MIT press, pp 418-421, 2002.

[19] K.Stanley and R.Miikkulainen, "Efficient evolution of neural network
topologies," Proceedings of the 2002 Congress on Evolutionary
Computation(CEC’02), 2002.

	Introduction

