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Abstract: An approach to prediction of the arrival time of
interplanetary shocks using neural networks based on the
data gathered from single EPAM (Electron, Proton and
Alpha Monitor) channel of NASA’s ACE (Advanced
Composition Explorer) spacecraft is proposed in this
paper. A short description of ACE spacecraft and the
data, published online on the appropriate web-site, are
considered. A data choice to fulfill a prediction of
interplanetary shocks is proven and structure of neural
network is described. The results of simulation modeling
in MATLAB are considered in the end of the paper.
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1. INTRODUCTION

Interplanetary shocks in the space are the regions created
by supersonic gas flow with sharp differences of gas
density, pressure, temperature, ionization and other its
parameters [1]. The solar wind, putting this gas to the
Earth, goes to the Earth’s magnetosphere at about 500
km/s and makes a shock due to a resistance of Earth’s
magnetic field. The energetic storm particle (ESP) events
are associated with interplanetary shocks passages and
close related to the geomagnetic storms. Both these events
negatively influence on spacecrafts and satellites on a
low-orbital Earth’s orbit, terrestrial high-frequency radio
communications and radars, electrical grids and electrical
power systems, and people’s heath [2]. For example,
GOES-7 weather satellite lost half of its solar cells during
a large proton release by the sun during the powerful
March 13, 1989 storm which cut the operating life span of
this satellite in half. ANIK E-1 and E-2 (January 20-21,
1994) two Canadian communications satellites were
disabled due to the elevated activity of high-energy
electrons in the magnetosphere. On January 11, 1997
AT&T experienced a massive power failure in its Telstar
401 satellite [3]. There are much more examples of
satellites lose and their temporal disabling caused by the
interplanetary shocks. Therefore there are urgent tasks to
predict the solar activity and its influence on Earth’s
magnetosphere and the time of interplanetary shocks
arrival and peak intensity of energetic particles traveling
with the solar wind.

During last decades many strategies were proposed for
space weather prediction based on the data comes from
satellites and terrestrial observatories. Many research
teams use neural network approach for space weather
prediction. R. A. Calvo and H. A. Ceccatto use feed-
forward neural networks to study the solar dynamics, as

measured by the annual mean value of the Wolf
number. They conclude that neural networks are a
reliable tool for time series analysis. In particular, they
seem to be able to capture the intrinsic dynamics of
solar activity, producing good long-term forecastings
for periods of at least a complete solar cycle [4]. A.
Dmitriev and Yu. Minaeva et al use recurrent ANNs
for modeling of self-consistent time series of
geomagnetic indexes Dst, Kp, AP, etc [5]. Z. Voros
and D. Jankovicova propose prediction of geomagnetic
activity based on a method using local Holder
exponents a. The backpropagation artificial neural
network model with feedback connection was used for
the study of the solar wind - magnetosphere coupling
and prediction of geomagnetic Dstindex [6].

J. Vandegriff et al [7] have developed an algorithm that
can forecast the arrival of ESP events. The authors use
historical ion data from the NASA’s Advanced
Composition Explorer (ACE) spacecraft, which is
stationed in a halo orbit around Lagrange point L1 at
the distance about 1.5 million km from the Earth. They
trained an artificial neural network to detect the
characteristic signals that warn of an impending event.
The network predicts the time remaining until the
maximum intensity of the ions is reached on the Earth.
For the input of the prediction model they have used
five ion channels (P1, P3, P5, P6, P7) provided by the
web-site  of NOAA (U.S. National Oceanic and
Atmospheric Administration) real-time system and
additional derivative parameters. However the choice
of these data is not quite well explained and the
average uncertainty of the prediction by the proposed
method is 8.9 hours at 24-hours time interval.

The goal of this paper is to estimate usage of separate
ACE channels for prediction of the interplanetary
shocks arrival time in order to decrease a
computational complexity of a prediction algorithm
and the relative prediction error of interplanetary
shocks arrival time.

Il. ACE/EPAM DATA SET AND

PREDICTION APPROACH
The ACE Electron, Proton, and Alpha Monitor
(EPAM) data can characterize the dynamic behavior of
electrons and ions with ~0:03 to ~5 MeV that are
accelerated by impulsive solar flares and by
interplanetary shocks associated with Coronal Mass
Injections. EPAM instrument includes two telescope
assemblies with five separate apertures. The telescopes
use the spin of the spacecraft to sweep the full sky.



Solid-state detectors are used to measure the energy and
composition of the incoming particles. The eight channels
from the EPAM/LEMS30 (Low-Energy Magnetic
Spectrometer) detector and their energy passbands [8] are
presented in Table 1.

Table 1. Energy passbands of LEMS30/ACE detector

Energy Channel P?ﬁ;g@?d Species
P1 0.047-0.065 lons
P2 0.065-0.112 lons
P3 0.112-0.187 lons
P4 0.187-0.310 lons
P5 0.310-0.580 lons
P6 0.580-1.06 lons
P7 1.06-1.91 lons
P8 1.91-4.75 lons

ACE browse data are designed for monitoring large scale
particle and field behavior and for selecting interesting
time periods. The data are automatically generated from
the spacecraft data stream using simple algorithms
provided by the instrument investigators and published on
the web by NOAA in real-time. We used ACE Level 2
LEMS30 detector historical data that is suitable for a
scientific research [9].

Interplanetary shock events can be recognized from the
steam of EPAM data using two criteria [7]: velocity
dispersion in the shock onset and a peak intensity greater
than 10° particles/(s cm® ster keV) for the 47-65 keV
proton channel (see channel P1 in Table 1). J. Vandegriff
et al [7] have used a simple trigger designed to detect
velocity dispersion in order to detect the onset. The
trigger examines such additional parameters as the
spectral slope, the average height of the energy spectrum,
and the time derivatives of these quantities. All mentioned
quantities are used for neural network training, in
particularly the five ion channels (P1, P3, P5, P6, P7)
provided by the NOAA real-time system, which are listed
in Table 1 and the five quantities mentioned above, an
anisotropy coefficient, spectral slope (SS), intensity
midpoint (IMP) and time derivatives of these quantities
(SS’ and IMP’). Therefore a neural network had ten
inputs and one output, describing the time before shock
arrival, i.e. the time then ion intensity became greater 10°
particles/(s cm? ster keV). However such approach does
not effectively use a prediction model since each time
before arrival should correspond to the input part of the
appropriate training vector. Practically this approach leads
to necessity having an input data for neural network at
each prediction step and therefore it is not possible to
provide long-term prediction using this model.

In order to test our approach we have used two shock
events similarly to [7]:

e event 1 - onset begin at 14.00, 248 day of 2000;
shock begin at 12.00, 250 day of 2000
(06/09/2000) and duration of this event is 46
hours (550 points of 5-minute averaged solar
particle fluxes);

e event 2 - onset begin at 0.00, 21 day of 2001,
shock begin at 6.00, 23 day of 2001 (23/01/2001)
and duration of this event is 30 hours (360 points
of 5-minute averaged solar particle fluxes).

The graphs of EPAM solar particle fluxes of each
channel P1-P8 for the event 1 are shown on Fig. 1.
There are just an example figures, similar intensities
are available for other shock events. A numerical
analysis of graphs shown, that only P1 and P2 channels
can provide a peak intensity greater than 10°
particles/(s cm? ster keV). Therefore it is possible to
use the data from at least one channel for prediction the
time before shock arrival. Within our prediction
method we are going to predict an intensity excess of
10° particles/(s cm? ster keV) on the time interval. The
moment of time when the intensity will be greater that
10° particles/(s cm? ster keV) is treated as a predicted
moment of interplanetary shock. A comparison with a
real time of appropriate EPAM data is considered as
relative error of interplanetary shock arrival time.
Other channels P4-P8 except from P3 channel could be
used for more precise estimation of onset moment. Free
EPAM 1-minute and 5-minute data are accessible on
anonymous FTP server [10]. The data are putted on the
server each hour with a delay of 7 minutes which
allows providing prediction in real time.

1. STRUCTURE OF NEURAL

NETWORK
It is expediently to use a multi-layer perceptron to
fulfill the prediction task, since this architecture has the
advantage of being simple and widely used for
prediction tasks [11-12].
The output value of three-layer perceptron (Fig. 2) can
be formulated as:

N
y= F{Zwizhi _TJ’
=

where N is the number of neurons in the hidden layer,
w,, is the weight of the synapse from neuron i in the
hidden layer to the output neuron, h, is the output of

neuron i, T is the threshold of the output neuron and
F, is the activation function of the output neuron.

The output value of neuron j in the hidden layer is
given by:

M
h] = Fz[zwijxi _TJJ,
i=1

where w, are the weights from the input neurons to
neuron j in the hidden layer, x; are the input values
and T, is the threshold of neuron j. The logistic

activation function is used for the neurons of the
hidden layer and the linear activation function, having
a coefficient k , is used for the output neuron.

The Levenberg-Marquardt algorithm is used for the
training since it appears to be the fastest method for
training moderate-sized feed forward neural networks
[13].
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Fig. 1 — Particle intensities in separate channels P1-P8 for historical data test sequence: 248-251 days of year 2000

Fig. 2 — Structure of neural network

IV. SIMULATION MODELLING
RESULTS

An experimental simulation modeling has been done in
the MATLAB environment [14]. An input training set has
been formed according to Box-Jenkins [15] method. The
size of input window we have chosen to be equal 5, the
size of the output window is equal to one since we are
going to predict one step-by-step value of particle
intensity and estimate when it will be greater than 10°
particles/(s cm?® ster keV). The multi-layer perceptron
with 5 input neurons, 5 hidden neurons with tangent
activation function and 1 output linear neuron has been
used for prediction. We have used a Levenberg-
Marquardt method for perceptron training till sum-
squared error (SSE) of 10°. The results of simulation




modeling fulfilled several times for each shock event are
placed below.

The prediction result of energetic particles intensity for
the event 1 (06/09/2000) is depicted on Fig. 3. The 550
five-minute data set is used for perceptron’s training and
the same data are used for prediction in order to estimate
a relative prediction error inside the training set. As it is
seen the predicted and real data are practically the same.
The analysis of the numerical data of the result has shown
that the predicted time of shock arrival is equal to 540
value from onset and real time of shock arrival is equal to
545 value from onset. Therefore the relative prediction
error inside the training set is less than 0.01%.

Then, the perceptron trained on event 1 (550 data points)
has been used to predict the shock arrival for the event 2
(23/01/2001) with length of 360 data points. As it is seen
from Fig. 4, the predicted and real intensities are
practically the same too. The analysis of numerical data
shown, that the predicted time of shock arrival is equal to
352 value from onset and real time of shock arrival is
equal to 355 value from onset. Therefore in this case the
relative prediction error outside the training set is less
than 0.01% too. The prediction result for the event 2 by
the perceptron trained on the reduced data set (360
values) from the event 1 is depicted on Fig. 5.

X 10" Prediction of IP shocks values inside training set

12

\ — Real IP shocks values \

10 \ —— Predicted IP shocks values \ ,
i h

Particle intensities, particles/(s cm2 ster keV)
(2]
—

M

WWWN |

0 100 200 300 400
Time, 5-minute data step

I
|
1
500 600

Fig. 3 — Prediction interplanetary shocks for event 1
with 550 data in the training set
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with 550 data in the training set
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Fig. 5 — Prediction interplanetary shocks for event 2
with 360 data in the training set

The analysis of numerical data shown that the predicted
time of shock arrival is equal to 263 value from onset and
real time of shock arrival is equal to 355 value from onset.
Therefore the relative prediction error of interplanetary
shock arrival is about 27% at reduced training set for
perceptron training.

V. CONCLUSIONS

An approach to interplanetary shocks arrival time
prediction is proposed in this paper based on the usage of
separate channel’s EPAM data of ACE spacecraft. Neural
based approach is tested using energetic particle
intensities for the range 47-65 keV. The data about
interplanetary shock 06/09/2000 are used for neural
network training and the data about interplanetary shock
23/01/2001 are used for the testing. Experimental
simulation modeling results have shown non-stability of
the prediction changing in relative prediction error from
accurate 0.01% to not quite accurate 27% gathered on
reduced training set. Therefore in future investigations it
is expedient to fulfill a series of experimental researches
on usage both channels P1 and P2 of EPAM data for the
prediction and test both approaches on wide set of
interplanetary shocks events.
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