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Abstract: The paper deals in the preliminary way with the 
problem of an evaluation of fuzzy clustering results. Basic 
concepts of the AFC-method of fuzzy clustering are 
considered and some measures for the evaluation of fuzzy 
clustering results are proposed. Results of numerical 
experiments are presented and preliminary conclusions 
are made. 
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I. INTRODUCTION 
An outline for a new approach to fuzzy clustering was 
presented in [1], where a concept of allotment among 
fuzzy clusters was introduced and a basic version of 
heuristic fuzzy clustering method was described. The 
main goal of the paper is a consideration of a problem of 
inspection of fuzzy clustering results. For this purpose, 
basic concepts of the allotment among fuzzy clusters 
(AFC) method are considered. Illustrative examples are 
shown and conclusions are formulated. 
 

II. BASIC CONCEPTS 
Let us consider basic definitions of the AFC-algorithm 
which are considered in detail in [1].  
 
Definition 1. Let  be the initial set of 
elements and  some binary fuzzy 
relation on  with 

},...,{ 1 nxxX =
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},...,{ 1 nxxX =
Xxxxx jijiT ∈∀∈ ,],1,0[),(μ  being its membership 

function. The fuzzy binary intransitive relation T  which 
possesses the symmetricity property and the reflexivity 
property is the fuzzy tolerance relation on X . 
 
Let T  be a fuzzy tolerance on X  and α  be α -level 
value of T , ]1,0(∈α .  
 
Definition 2. The α -level fuzzy set 
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where  is the support 

of the fuzzy cluster . A condition  is 

met for each fuzzy cluster 
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Definition 3. If T  is a fuzzy tolerance on X , where X  
is the set of elements, and  is the family of 

fuzzy clusters for some 
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Definition 4. Let }2,,1|{)( )( ncclAXR l

z ≤≤== α
α  be a 

family of fuzzy clusters for some value of tolerance 
threshold ]1,0(, ∈αα , which are generated by some fuzzy 
tolerance T  on the initial set of elements . 
If a condition 
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is met for all ncclAl ≤= ,,1,)(α , then the family is the 
allotment of elements of the set  among 

fuzzy clusters 

},...,{ 1 nxxX =

}2,,1,{ )( ncclAl ≤≤=α  for some value of 
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corresponds to the formulation of a concrete problem, 
then this allotment is an adequate allotment. In particular, 
if a condition 
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are met for all fuzzy clusters clAl ,1,)( =α  of some 

allotment ]}1,0(,,,1|{)( )( ∈≤== αα
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the allotment is the allotment among fully separate fuzzy 
clusters. However, fuzzy clusters in the sense of definition 
2 can have an intersection area. So, the conditions (4) and 
(5) can be generalized [2]. In particular, a condition 
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and a condition 
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are generalization of the conditions (4) and (5). 
 
So, the problem of discovering the unique allotment 

 of the initial set of elements  
among  fully separate or particularly separate fuzzy 
clusters is the problem of classification. The matrix of 
similarity coefficients 

)(* XR },...,{ 1 nxxX =
c

njixxT jiT ,,1,)],,([ K== μ  is the 
matrix of initial data for the AFC-algorithm. The 
allotment  among c  fuzzy clusters and tolerance 
threshold 

)(* XR
α  are results of the classification process. The 

general plan of the AFC-algorithm for the problem 
solving is presented in [1].  

 
III. EVALUATION OF FUZZY CLUSTERS 
The qualitative inspection of fuzzy clustering results can 
be done, e.g., with a linear index of fuzziness or a 
quadratic index of fuzziness, used for evaluation of 
fuzziness degree of fuzzy clusters. These two indexes are 
introduced and considered in [3]. 
 
The linear index of fuzziness is defined as 
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where  is the number of 

objects in the fuzzy cluster  and 
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between the fuzzy cluster  and the crisp set lA )(α

lA )(α  

nearest to the fuzzy cluster . The membership 

function of the crisp set 
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where ]1,0(∈α . 
 
The quadratic index of fuzziness is defined as 
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between the fuzzy cluster  and the crisp set lA )(α

lA )(α  

which are defined by formula (10). For each fuzzy cluster 
 in , evidently, the following conditions are 

met: 
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Indexes (8) and (11) show the degree of fuzziness of 
bounds of fuzzy clusters which are elements of the 
allotment . Obviously, that 

 for a crisp set . 

Otherwise, if  then fuzzy cluster 

 is a maximal fuzzy set and 
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A density of fuzzy cluster can be defined as 
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where  and membership 
degree 

)(*),( )( XRAAcardn ll
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liμ  is defined by formula (1). It is obvious, that a 
condition  
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is met for each fuzzy cluster  in . Moreover, 

 for a crisp set  for any 
tolerance threshold 
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cluster shows an average membership degree of elements 
of a fuzzy cluster. 

 
IV. EXPERIMENTAL RESULTS 

The Anderson's Iris data [4] consist of sepal length, sepal 
width, petal length and petal width for 150 irises. The 
problem is to classify the plants into three subspecies on 
the basis of this information. The real assignments to the 
three classes are shown in Table 1. 
 

Table 1. Real objects assignment 
 

Class 
Number Name 

Numbers of objects 

 
 
 

1 

 
 
 

SETOSA 
 

1, 6, 10, 18, 26, 31, 36, 37, 
40, 42, 44, 47, 50, 51, 53, 
54, 55, 58, 59, 60, 63, 64, 
67, 68, 71, 72, 78, 79, 87, 
88, 91, 95, 96, 100, 101, 
106, 107, 112, 115, 124, 
125, 134, 135, 136, 138, 
139, 143, 144, 145, 149 

 
 
 

2 

 
 
 

VERSICOLOR 
 

3, 8, 9, 11, 12, 14, 19, 22, 
28, 29, 30, 33, 38, 43, 48, 
61, 65, 66, 69, 70, 76, 84, 
85, 86, 92, 93, 94, 97, 98, 
99, 103, 105, 109, 113, 114, 
116, 117, 118, 119, 120, 
121, 128, 129, 130, 133, 
140, 141, 142, 147, 150 

 
 
 

3 

 
 
 

VIRGINICA 
 

2, 4, 5, 7, 13, 15, 16, 17, 20, 
21, 23, 24, 25, 27, 32, 34, 
35, 39, 41, 45, 46, 49, 52, 
56, 57, 62, 73, 74, 75, 77, 
80, 81, 82, 83, 89, 90, 102, 
104, 108, 110, 111, 122, 
123, 126, 127, 131, 132, 
137, 146, 148 

 
 
The matrix of attributes is the matrix 
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So, the value  is the value of -th attribute for -th 
object. The data can be normalized as follows: 
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for all attributes . So, each object can be 
considered as a fuzzy set  and 

 are their membership 
functions. After application of a distance 
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njixxd ji ,1,),,( =  to the matrix of normalized data 

 a matrix of fuzzy 

intolerance 
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njixxI jiI ,,1,)],,([ K== μ  can be obtained. 
The matrix of fuzzy tolerance 

njixxT jiT ,,1,)],,([ K== μ  can be obtained after 

application of complement operation 
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to the matrix of fuzzy intolerance 

njixxI jiI ,,1,)],,([ K== μ . 
 
A few distances can be used as the njixxd ji ,1,),,( =  
distance. The most widely used distances for any two 
fuzzy sets  in ji xx , },...,{ 1 nxxX =  are [3]: 

• The normalized Hamming distance: 
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• The normalized Euclidean distance: 
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• The squared normalized Euclidean distance: 
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In the case of the normalized Hamming distance the 
allotment  which corresponds to the result, was 
obtained for the tolerance threshold 

)(* XR
8192.0=α . Fourteen 

mistakes of classification were received. Supports of 
fuzzy clusters in the case of the normalized Hamming 
distance are presented in Table 2. Misclassified objects 
are distinguished in Table 2. 
 

Table 2. The objects assignment in the case of the 
normalized Hamming distance 

 
Class 

Number Name 
Numbers of objects 

 
 
 

1 

 
 
 

SETOSA 
 

1, 6, 10, 18, 26, 31, 36, 37, 
40, 42, 44, 47, 50, 51, 53, 
54, 55, 58, 59, 60, 63, 64, 
67, 68, 71, 72, 78, 79, 87, 
88, 91, 95, 96, 100, 101, 
106, 107, 112, 115, 124, 
125, 134, 135, 136, 138, 
139, 143, 144, 145, 149 

 
 
 
 

2 

 
 
 
 

VERSICOLOR 
 

3, 5, 8, 9, 11, 12, 14, 16, 19, 
22, 25, 28, 29, 30, 32, 33, 
34, 38, 43, 46, 48, 52, 56, 
61, 62, 65, 66, 69, 70, 75, 
76, 82, 84, 85, 86, 90, 92, 
93, 94, 97, 98, 99, 103, 105, 
108, 109, 113, 114, 116, 
117, 118, 119, 120, 121, 
128, 129, 130, 133, 137, 
140, 141, 142, 150 

 
 

 
 

2, 4, 7, 13, 15, 16, 17, 20, 
21, 23, 24, 27, 35, 39, 41, 



 
3 

 
VIRGINICA 

 

45, 49, 57, 73, 74, 77, 80, 
81, 83, 89, 102, 104, 110, 
111, 122, 123, 126, 127, 
131, 132, 137, 146, 147, 
148 

 
 
The object  is the typical point  of the fuzzy cluster 
which corresponds to the first class. The object  is the 

typical point  of the fuzzy cluster which corresponds to 
the second class and the object  is the typical point 

 of the fuzzy cluster which corresponds to the third 
class. Membership values of the Setosa class are 
presented in Fig. 1. 
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Fig. 1. – Membership values of the SETOSA class in the case 

of the normalized Hamming distance 
 

Membership values of the Versicolor class are presented 
in Fig. 2. 

 

 
Fig. 2. – Membership values of the VERSICOLOR class in 

the case of the normalized Hamming distance 
 

Membership values of the Virginica class are presented in 
Fig. 3. 

 

 
Fig. 3. – Membership values of the VIRGINICA class in the 

case of the normalized Hamming distance 
 
Values of the linear index of fuzziness, the quadratic 
index and the density of fuzzy clusters are presented in 
Table 3. 
 

Table 3. Results of the evaluation of fuzzy clusters in the 
case of the normalized Hamming distance 

 
The value of  

Numbers
of classes 

the linear 
index of 
fuzziness 

the quadratic 
index of 
fuzziness 

the density 
of fuzzy 
cluster 

1 0.07199 0.08409 0.96400 
2 0.21713 0.23934 0.89143 
3 0.21044 0.22273 0.89478 

 
 
In the case of the normalized Euclidean distance the 
allotment  which corresponds to the result, was 
obtained for the tolerance threshold 

)(* XR
8104.0=α . Six 

mistakes of classification were received. The object  
is the typical point  of the fuzzy cluster which 
corresponds to the first class. The object  is the typical 

point  of the fuzzy cluster which corresponds to the 
second class and the object  is the typical point  of 
the fuzzy cluster which corresponds to the third class. 
Supports of fuzzy clusters in the case of the normalized 
Euclidean distance are presented in Table 4. Misclassified 
objects are distinguished in Table 4. 
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Table 4. The objects assignment in the case of the 

normalized Euclidean distance 
 

Class 
Number Name 

Numbers of objects 

 
 
 

1 

 
 
 

SETOSA 
 

1, 6, 10, 18, 26, 31, 36, 37, 
40, 42, 44, 47, 50, 51, 53, 
54, 55, 58, 59, 60, 63, 64, 
67, 68, 71, 72, 78, 79, 87, 
88, 91, 95, 96, 100, 101, 
106, 107, 112, 115, 124, 
125, 134, 135, 136, 138, 
139, 143, 144, 145, 149 

  3, 5, 8, 11, 12, 14, 19, 22, 



 
 
 

2 

 
 
 

VERSICOLOR 
 

25, 28, 29, 30, 33, 38, 43, 
48, 56, 61, 65, 66, 69, 70, 
76, 84, 85, 86, 90, 92, 93, 
94, 97, 98, 99, 103, 105, 
109, 113, 114, 116, 117, 
118, 119, 120, 121, 128, 
129, 130, 133, 140, 141, 
142, 150 

 
 
 

3 

 
 
 

VIRGINICA 
 

2, 4, 7, 9, 13, 15, 16, 17, 20, 
21, 23, 24, 27, 32, 34, 35, 
39, 41, 45, 46, 49, 52, 57, 
62, 73, 74, 75, 77, 80, 81, 
82, 83, 89, 102, 104, 108, 
110, 111, 122, 123, 126, 
127, 131, 132, 137, 146, 
147, 148 

 
 
Membership values of the Setosa class are presented in 
Fig. 4. 
 

 
Fig. 4. – Membership values of the SETOSA class in the case 

of the normalized Euclidean distance 
 

 
Membership values of the Versicolor class are presented 
in Fig. 5. 

 

 
Fig. 5. – Membership values of the VERSICOLOR class in 

the case of the normalized Euclidean distance 
 

Membership values of the Virginica class are presented in 
Fig. 6. 

 

 
Fig. 6. – Membership values of the VIRGINICA class in the 

case of the normalized Euclidean distance 
 

Values of the linear index of fuzziness, the quadratic 
index and the density of fuzzy clusters are presented in 
Table 5. 
 

Table 5. Results of the evaluation of fuzzy clusters in the 
case of the normalized Euclidean distance 

 
The value of  

Numbers
of classes 

the linear 
index of 
fuzziness 

the quadratic 
index of 
fuzziness 

the density 
of fuzzy 
cluster 

1 0.09497 0.10955 0.95251 
2 0.21005 0.22987 0.89497 
3 0.22848 0.24782 0.88576 

 
 
In the case of the normalized Euclidean distance the 
allotment  which corresponds to the result, was 
obtained for the tolerance threshold 

)(* XR
9642.0=α . Six 

mistakes of classification were received. The object  
is the typical point  of the fuzzy cluster which 
corresponds to the first class. The object  is the typical 

point  of the fuzzy cluster which corresponds to the 
second class and the object  is the typical point  of 
the fuzzy cluster which corresponds to the third class. 
Values of the membership function of typical points of 
fuzzy clusters are equal one. The object assignments 
resulting in the case of the normalized Euclidean distance 
(21) for the Anderson’s Iris data preprocessing are 
presented in Table 6. Misclassified objects are 
distinguished in Table 6. 
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Table 6. The objects assignment in the case of the squared 

normalized Euclidean distance 
 

Class 
Number Name 

Numbers of objects 

 
 
 

1 

 
 
 

SETOSA 
 

1, 6, 10, 18, 26, 31, 36, 37, 
40, 42, 44, 47, 50, 51, 53, 
54, 55, 58, 59, 60, 63, 64, 
67, 68, 71, 72, 78, 79, 87, 
88, 91, 95, 96, 100, 101, 



106, 107, 112, 115, 124, 
125, 134, 135, 136, 138, 
139, 143, 144, 145, 149 

 
 
 
 

2 

 
 
 
 

VERSICOLOR 
 

3, 5, 8, 11, 12, 14, 19, 22, 
25, 28, 29, 30, 33, 38, 43, 
48, 56, 61, 65, 66, 69, 70, 
76, 84, 85, 86, 90, 92, 93, 
94, 97, 98, 99, 103, 105, 
109, 113, 114, 116, 117, 
118, 119, 120, 121, 128, 
129, 130, 133, 140, 141, 
142, 150 

 
 
 

3 

 
 
 

VIRGINICA 
 

2, 4, 7, 9, 13, 15, 16, 17, 20, 
21, 23, 24, 27, 32, 34, 35, 
39, 41, 45, 46, 49, 52, 57, 
62, 73, 74, 75, 77, 80, 81, 
82, 83, 89, 102, 104, 108, 
110, 111, 122, 123, 126, 
127, 131, 132, 137, 146, 
147, 148 

 
Membership values of the Setosa class are presented in 
Fig. 7. 

 
Fig. 7. – Membership values of the SETOSA class in the case 

of the squared normalized Euclidean distance 
 

Membership values of the Versicolor class are presented 
in Fig. 8. 

 

 
Fig. 8. – Membership values of the VERSICOLOR class in 

the case of the squared normalized Euclidean distance 
 

Membership values of the Virginica class are presented in 

Fig. 9. 
 

 
Fig. 9. – Membership values of the VIRGINICA class in the 

case of the squared normalized Euclidean distance 
 

Values of the linear index of fuzziness, the quadratic 
index and the density of fuzzy clusters in the case of the 
squared normalized Euclidean distance for the data 
preprocessing are presented in Table 7. 
 

Table 7. Results of the evaluation of fuzzy clusters in the 
case of the squared normalized Euclidean distance 

 
The value of  

Numbers
of classes 

the linear 
index of 
fuzziness 

the quadratic 
index of 
fuzziness 

the density 
of fuzzy 
cluster 

1 0.00600 0.00929 0.99700 
2 0.02641 0.03265 0.98679 
3 0.02942 0.03451 0.98529 

 
If the linear index of fuzziness and the quadratic index of 
fuzziness are small for some fuzzy cluster, then a shape of 
the pattern of the fuzzy cluster is crisp. From other hand, 
if the density of fuzzy cluster is high for some fuzzy 
cluster, then membership values of elements of fuzzy 
cluster are high also. So, fuzzy clusters of the allotment 

 which received in the case of the squared 
normalized Euclidean distance using in data 
preprocessing are most compact and well-separated fuzzy 
clusters. Notable, that the squared normalized Euclidean 
distance is not metric [3]. 

)(* XR

 
V. CONCLUSIONS 

The results of the allotment method of fuzzy clustering 
application can be very well interpreted. The allotment 
method of fuzzy clustering is very simple from the 
heuristic point of view. Moreover, the objective function-
based fuzzy clustering algorithms are sensitive to 
initialization. Very often, the algorithms are initialized 
randomly multiple times, in the hope that one of the 
initializations leads to good clustering results. From other 
hand, the AFC-algorithm clustering results are stable.  
 
The results of application of the AFC-algorithm to 
Anderson’s Iris data show that the allotment method of 
fuzzy clustering is a precise and effective numerical 



procedure for solving classification problems. Moreover, 
the linear index of fuzziness, the quadratic index of 
fuzziness and the density of fuzzy clusters are effectual 
tools for the inspection of results of the AFC-method 
application to solving of fuzzy clustering problems. 
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