
Information-Based Algorithmic Design
Robert E. Hiromoto

Department of Computer Science
University of Idaho

Moscow, Idaho 83844-1010
USA

hiromoto@cs.uidaho.edu

Milos Manic
Department of Computer Science

University of Idaho
1776 Science Center Drive
Idaho Falls, Idaho 83402

USA
misko@uidaho.edu

Abstract— An information-based design principle is pre-
sented that provides a framework for the design of both
parallel and sequential algorithms. In this presentation, the
notion of information (data) organization and canonical sep-
aration are examined and used in the design of an iterative
line method for pattern grouping. In addition this tech-
nique is compared to the Winner Take All (WTA) method
and shown to have many advantages.

I. Introduction

Information is the basic building block of all processes
whether biological or physical in nature. The design pro-
cess in many engineering and scientific fields rely in one
form or another on the organization of information, and
its application to a process under investigation. However,
once a system is designed much of the information com-
plexity seems lost to the understanding of the applications
oriented users.

The organization and presentation of information repre-
sent a basic starting point for the understanding of process
driven systems. From a physical and mathematical per-
spective, the casting of a system into its canonical form is
an essential analysis process that provides insight and sim-
plicity in unraveling the underlying process or processes.

Although not surprisingly, the notion of canonical forms
appears not to be appreciated outside of the theoretical
realms. The solution of application problems or the re-
search in extending these solution methods are many times
led by past experience rather than a deeper formulation
that relies on the information complexity that the problem
exhibits and; thus, seek a canonical reformulation based on
the interactions of the information that defines the problem
and solution domains.

In terms of information, the present work is inspired by
Joseph Traub et al. [1] in his work on Information-Based
Complexity (IBC). IBC provides a different perspective on
the analysis of numerical algorithms. Although, there has
been some disagreements [2; 3] to IBC’s contribution from
the point of view of some in the numerical analysis (NA)
community, IBC introduces the notion of information oper-
ators, where information is partially derived and used by a
computation (an algorithm A that defines the information-
based solution method) to solve the problem. The solution
rate is measured by the number of iterations In to conver-
gence. Formally, if F is a set of problem elements f and G

the solution domain then the solution operator S is defined
by

S : F → G ∀f ∈ F (1)

Briefly, the partial information about f is gathered by
computing the information operations L(f), where L ∈ Λ
and Λ denotes a collection of information operations that
maybe computed. If U is the approximation to the solution
S then the sharp lower bound on the worst case error of U
is within some radius of informations r(N) that does not
exceed some error ε, where N is the information operator
and N(f) = {Li(F) | i = 1, 2, ..., n and Li ∈ Λ} then
U is guaranteed to be an ε − approximation. This atten-
tion to information operations furnishes a comparison of
algorithmic performance based on the information opera-
tor that is used. In this regard, the notion of non-adaptive
information operators (parallel use of partially computed
information) or adaptive information operators (sequential
use of partially computed information) can be compared
formally.

Within the context of this presentation, the introduction of
the information operator and information operations repre-
sents a novel and attractive approach to algorithm analysis
and design in general, and speaks to a broader applica-
tion than as applied in IBC. From an algorithmic point of
view, the flow and manipulation of information is the very
essence of an algorithm’s design.

The IBC, though steeped in the analysis of computation-
ally relevant information, limits itself to only the analysis.
In the following sections, we explore this question, and in
so doing provide an example where the analysis of informa-
tion flow or the use of information operators when placed
in a form of a canonically mapped information flow may
yields more optimal algorithmic designs when possible.

II. Canonical Information Flow

Traditionally in mathematics, a canonical form of a func-
tion is a function that is written in the most standard, con-
ventional, and logical way. In its standard form, examples
include the Jordan normal form of matrices, the canonical
prime factorization of positive integers, the decomposition
of a permutation into a product of disjoint cycles, and the
alignment of system of equations along an orthogonal basis
function.

Intimately connected with these canonical forms is the sim-
plest description of the underlying systemic properties that
defines the function or process. Once transformed into its
canonical form, the interdependence between parameters
can be uncoupled to expose the full degrees of freedom.

From an algorithmic perspective, the transformation to
canonical form also reduces the computational complex-
ity of applying the information operations Li as defined in
IBC. Anyone who has attempted to prove Kepler’s laws of
planetary motion using Newton’s equation for gravity when
choosing the coordinate system of the Earth as the basis,
no doubt is aware of the complications that are introduced.

In effect, the information complexity can be viewed as a
virtual complexity where the reduction to canonical form
reorganizes the information to its simplest complexity. In
this representation, IBC is certain to detect a more optimal
algorithm.

Unfortunately, the adherence to canonical form tends to
be lost or ignored when dealing with the actual implemen-
tation of an algorithm at the processor level. The art of
computing appears more like an art than a rigorous set of
well founded principles. Typically, an algorithm is assem-
bled to fit the programming style or programming language
that represents the fashions of the day. Algorithms are de-
signed with little worry of cache utilization issues, problem
sizes that are too large to remain in local memory, itera-
tions schemes that maximize the inefficient manipulation
of information, and so on. All of these examples are exam-
ples of the inefficient use of information that results in the
notion that could be termed virtual information complex-
ity.

In many optimization techniques, the reliance on random-
ness has played a significant role in the implementation
of problem solutions that are intractable. Random treat-
ment of problem solutions have proved to provide a con-
venient approach in surveying landscapes for optimization
problems where the solutions space is vast and appears to
follows no predetermined schedule or route. Monte Carlo
techniques [4] are invaluable in the estimation of otherwise
hard problems. However, in many situations the applica-
tion of these approaches may be applied without merit but
still used as an easy and straight forward (mindless) solu-
tion technique. The practical question to be asked is how
can information be organized in a Monte Carlo approach in
order to achieve a canonical form for information. Not sur-
prisingly Sequential Monte Carlo techniques [5] have been
proposed and studied, where adaptive information opera-
tions are applied to the Monte Carlo procedure to organize
and more effectively utilize the previous iterated informa-
tion. The value of reformulating information in terms of
a canonical formulation should not be down graded as less
important or orthogonal to the solution method [6; 7].

The approach proposed here introduces a notion of

Information-Based Algorithmic Design where information
flow of an algorithm is examined and then reformu-
lated into a canonical mapping or an information re-
mapping that better integrates the problem-solution do-
mains. Rather than simply mapping a given algorithm to a
particular processing unit, the task requires a fundamental
analysis of the information complexity in terms of enhanc-
ing the specific information operator. In this approach a
canonical information mapping is sought.

In the context of a canonical information flow description,
the analysis is done at a higher level than that of IBC.

III. Background

In this presentation, the application of an information-
based design approach for a neural network algorithm is
considered. The importance of neural network applications
and the advancement of their theory is widely acknowledge
in both the academic and industrial communities. Entire
conferences are held to disseminate the latest practices and
techniques in optimization, search, and recognition prob-
lems. Although the neural network community has moved
quite far from the anticipation that the science of neural
networks might solve the fascinating mystery of the func-
tional operation of the brain, the introduction of the artifi-
cial neural network (ANN) into the science of optimization
techniques has had a serious impact on the solution of in-
tractable problems.

The science of ANNs is still a challenging field. The basic
ANN is simple but at the same time complicated. The basic
network is formed from an input layer, an output layer, and
if required a hidden layer of neuron nodes. Learning rules
are conceptually easy to comprehend. Depending upon
the application or non-application of supervisory rules, the
learning procedure is incremental. These approaches are
all well defined; however, the ambiguities of the problem
domain makes the construction of a unique ANN difficult
to define. This difficulty can be understood in terms of the
number of inputs required for training, the number of ini-
tial nodes required for a given hidden layer, the relevance
of the information contained within the input for training,
the number of iterations required during the training pro-
cess, etc. On the other hand, similar issues arise in other
optimization techniques whether it be Genetic Algorithms
or Monte Carlo techniques. So ANNs are not unique in
these regards.

One intriguing question, which is the focal point of this
presentation, is the role that information may play in facil-
itating and/or addressing some of the issues raised above.
Clearly the use of heuristic is one time honored form of
an information-based strategy to circumvent the learning
process to achieve faster convergence. How does one iden-
tified and select the appropriate information is not always
clear. Can an ANN be designed a priori without training?
Is there a canonical form for neural network architectures

that is dictated solely by the problem specifications? If so
how can it be realized?

In the sections that follow, a simple analysis of the per-
ceptron neuron is presented within the context of its
information-based complexity or information operators.
This analysis then leads to a clustering algorithm whose
associated architecture is uniquely defined in a general
{n,m}-dimensional space and is shown to naturally sup-
port computational parallelism.

IV. Perceptron

The Perceptron is a classical neuron that dates back to the
1958 [8]. The perceptron computes a single output from
multiple real-valued inputs by forming a linear combination
according to its input weights. Mathematically the actual
output can be written as

net =
n∑

i=1

wixi

where wi and xi are the vectors of weights and inputs, re-
spectively. In general, each iteration of the inputs and cor-
responding weights may be passed through some nonlinear
activation function φ and a bias b, such that,

out = φ(
n∑

i=1

wixi + b)

or in vector notation

out = φ(WTx + b) (2)

Although a single perceptron is shown not to be a very gen-
eral learning algorithm, it is the building block of a much
larger and more practical multilayer perceptron (MLP)
network that consists of a set of source nodes forming
the input layer, one or more hidden layers of computa-
tion nodes, and an output layer of nodes. The input signal
propagates through the network layer-by-layer in a feedfor-
ward fashion.

A supervised learning rule for a single perceptron neuron
with a learning constant α is given by

∆Wi = αδXi

∆Wi = αXi(d− sign(Neti))

Wi+1 = ∆Wi + Wi

where

δ = d− o

where d is the desired response and o is the actual output.

(a) (b)

Fig. 1. 2-Dimensional detection (a) α = 0.3 (b) α = 0.1

Desired Output
Pattern1 1 2 +1 -1
Pattern2 2 1 +1 +1
Initial Weights 1 3 -3
Final Weights (a) 1 -0.5 -0.5
Final Weights (b) 1 -1 -0.5

Table 1. A simple pattern detection example in two-dimensions

The information-based complexity of Equation (1) can be
understood as an adaptive information operator where the
ith net result depends upon the previous i − 1 sequen-
tialized iterations. In a numerical analysis setting, such
an information operator returns an approximation whose
final value converges to within an ε of the answer. In
the perceptron model, the information-based complexity
of Equation (1) is overloaded in the sense that it repre-
sents both an approximation methods and an optimization
search technique. In 2-dimensions, xi may be viewed as a
2-dimensional vector that undergoes both a linear trans-
lation and rotation within a simple 2-dimensional region.
This dual composition of transformations and approxima-
tion methods can readably be uncoupled into a much sim-
pler canonical form that exposes these composite opera-
tions into pairs of non-adaptive information operations.
The transition from adaptive to non-adaptive forms also
implies the existence of a transformation from a sequential
to a parallel algorithmic formalism. Figure 1 shows a sim-
ple pattern detection application of the perceptron training
rule for a single neuron defined by Eqn. (1). A soft acti-
vation function is used and the effect of different learning
constants α is displayed for a single problem specification
(see Table 1).

Figure 1 illustrates two important features of the infor-
mation operator as it is applied to the specific problem de-
fined by Table 1. Upon closer examination of Figure 1, two
separate independent (orthogonal) degrees of freedom are
present. If the line is taken as the basic geometric unit then
the line undergoes two separate but linearly independent
motions: 1) translation and 2) rotation. It is through the
learning procedure of determining ∆Wi where the coupling
of these motions are performed. In addition, it is the value
of α that dictates the ranges of rotations and the spacing
between lines per iterations. Recall that Eqn. (1) defines
an adaptive sequence of information updates, thus the ef-

orthogonal
search x

orthogonal
search y

ro
ta

tio
na

l
sea

rch
 #

1

ro
ta

tio
n a

l
sea

rch
 #

n

rotational
search
#n+1

(in fully parallel
environment just

single node)

x

o
s
e

l
a
y
e
r

y

AND

x y

r s e l a y e r

AND AND

x y

o
s
e

l
a
y
e
r

Fig. 2. Basic two-layer neural network.

fects of ∆Wi and α suggest that the dependences between
subsequent updates is an artifact of the organization of the
information operator rather than the information required
for convergence. In other words, a non-adaptive informa-
tion operator exists that splits the orthogonal motions into
separate translation and rotation operations. One immedi-
ate consequence of this approach is the capability of non-
adaptive information operators to readily support parallel
execution. Within this context, this presentation exam-
ines the consequences of a canonical re-formulation of the
perceptron’s order of rule application. In the following sec-
tions, a canonical neural network emerges that exhibits a
fixed network complexity per iteration level and defines a
sparse solution matrix.

V. A Canonical Perceptron Model

The orthogonality of the proposed neural network architec-
ture consists of two essential layers: one input layer that
performs an orthogonal search, and one hidden layer that
performs rotational search. Figure 2 illustrates such an
architecture that is applied to a two-dimensional space.

The first input layer performs an orthogonal pass through
a search space in the x and y directions. This layer con-
sists of two sets of nodes (in two-dimensions) that can be
executed in parallel. Each node performs one orthogonal
scan (in the x and y directions) of the search space. The
output of the first input layer can be viewed as a pairwise
intersection of the possible output signals. In the simple ex-
ample of a two-dimensional scan space, each of these sets
performs a y-horizontal and x-vertical striping of the search
space, that results in a set of rectangular areas that may
possibly contain the patterns as illustrated in Figure 3. In
cases where the patterns are sparsely distributed, the com-
putational complexity of searching the initial space can be
dramatically reduced.

The second, hidden layer (depicted in Figure 2 as nodes
with {x,y} inputs) performs a further reduction of the
search space. This layer is similar to the first input layer
but differs by a rotation as defined by the {x,y} coordinate

Fig. 3. Output of first input layer.

pairs. This layer is necessary in order to uniquely elimi-
nate all empty rectangular sub-zones (associated with the
stripped two-dimensional space). This layer performs di-
agonal striping across the search space. Finally, the output
signals from first and second layer are intersected, which
results in a final set of non-empty clusters. Though fur-
ther layers are not necessary, each additional layer will only
sharpen the cluster of patterns within the space, hence im-
proving clustering resolution.

The resolution of the pattern depends directly on scanning
step size δ. The smaller the step size of δ, the better is the
resolution. The lower boundary of this search is recognition
of the whole set of patterns as belonging to a single cluster,
while the upper boundary is recognition of clusters with
single pattern belonging to it.

The complexity of the proposed neural network architec-
ture goes as following. For a general n x m input layer,
the corresponding set of nodes consists of n x m orthog-
onal search element (OSE) nodes, respectively (Figure 4).
These input node signals are intersected in pairwise fashion
using n x m AND nodes. The resulting signals are com-
pared with the n x m hidden layer of Rotational Search
Element (RSE) nodes (Figure 4), using the same number
of AND neurons.

The OSE node architecture is illustrated by Figure 5. The
OSE node consists of 3 neurons. Intersected signals from
first two neurons result in “stripped” areas, for both di-
mensions of an orthogonal search space. X-low and X-high
(Y-low and Y-high), are signals extracted and used in RSE
nodes. The RSE node architecture is illustrated by Figure
6. The RSE node also consists of 3 neurons. Intersected
signals from first two neurons result in a “stripped” area,
this time performing a rotational search. The sum of sig-
nals X-low and X-high (Y-low and Y-high), is used for the
biasing of the first two neurons in the node, as illustrated

y

os
e-

 o
rt

h
og

on
al

 s
ea

rc
h

 e
le

m
en

t
rs

e-
 r

ot
at

io
n

al
 s

ea
rc

h
 e

le
m

en
t

ose

ose

gr
ow

 a
s

n
ee

d e
d

ose

n
el

em
en

ts
m

el
em

en
ts

n
 'x

' s
tr

ip
es

m
 'y

' s
tr

ip
es

AND 1

AND 2

AND m

1

rse1

rse2

rsem

1

ose

ose

gr
ow

 a
s

n
ee

d e
d

ose

x

AND 1

AND 2

AND m

1

AND 1

AND 2

AND m

n

rse1

rse2

rsem

n

AND 1

AND 2

AND m

n

orth. search
outp 2

orth. search
outp 1

orth. search
outp n

orth. search
outp 2

orth. search
outp 1

orth. search
outp m

or
th

og
on

al
se

ar
ch

 #
2

or
th

og
on

al
se

ar
ch

 #
1

Fig. 4. The OSE Architecture.

x ose orth. search
output

x orth. search
output+1

+1

-1.5

+1

-1

-0.5

+0.7

1

2

AND

xlowxhigh

Fig. 5. The OSE Architecture.

by Figure 6. The process of combining signals through a
network is illustrated by Figure 7, as a part of the complete
network from Figure 4. Summation and AND neuron im-

x
rse rotat. search

output
y

+1

+1

-1.5

+1

-1

−Σlow

x

y

+1

-1

AND

Σlow
Σhigh

+Σhigh
+1

-1

rotat. search
output

Fig. 6. The RSE Architecture.

plementation is not explained in this paper as trivial.

As a neural network approach to clustering, the orthogonal
search algorithm can be used regardless of dimensionality
of search space.

x y

orth. search
output
xlow

xhigh

area

ose

ose

x

y

or
th

.
se

ar
ch

ou
tp

ut

Σhigh

Σ low rse
AND

AND T/F

area

diag. strip

ylow

yhigh

Fig. 7. The process of combining signals through a network.

VI. Orthogonality and Preconditioning

The orthogonality of the proposed neural network lends it-
self to the notion of “grow as needed,” the principle of the
cascade correlation network architecture [15]. The canon-
ical combinations of orthogonal translations and rotations
adds units of nodal layers to the network as required to
achieve a certain degree of clustering resolution.

The algorithm developed above represents a canonical for-
mulation of a clustering technique; however, it does have
the capability to be used as a preconditioning search algo-
rithm regardless of the dimensionality of the search space.
As a preconditioning process, the orthogonality of the pro-
posed algorithm can simplify the initial stages for deducing
specific properties for a given search space. This acquired
knowledge may ensure more accurate application of neural

network algorithms that are characterized by a high depen-
dence on the starting parameterization set chosen. Algo-
rithms such as Levenberg-Marquardt algorithm [9; 10] are
examples of this dependence. They are proven to be very
fast when the initial weight-set is chosen close to a solu-
tion but otherwise almost always fail to converge. Other
algorithms based on gradient search, such as Error Back
Propagation [11; 12; 13; 14], suffer from typical oscillation
and flat spot problems when weights are chosen far from
the solution.

VII. Orthogonal Search vs WTA

The Center of Gravity (COG) algorithms such as the Ko-
honen WTA algorithm [16; ?] are highly dependent on
the initial choice of parameters: the order of patterns ap-
plied; the initial configuration of the architecture; the ini-
tial weight-set; and the selected radius of attraction. The
initial weight-set, if not judicially selected, may bias the
centers of gravities and result in obstructing the learning
of new patterns; thereby, reducing the possible number of
final clusters detected. The order in which patterns are
applied can influence the selection of the center of gravity
for the final clusters. The weights determined by already
seen (learned) patterns limit the mobility towards unseen
patterns. In addition, the number of neurons initially used
to construct the neural network also influences the final
clustering of patterns. For example, too larger a number
of initial neurons used in the construction of a network
can result in the over-learning (over-fitting) of a problem,
which could result in a larger number of particularly small
clusters. On the other hand, too small a number of neurons
may prevent the network from learning the relationship be-
tween new clusters resulting in less resolution.

The WTA approach is particularly sensitive to the distri-
bution of patterns in the search space. For patterns that
are already grouped, the WTA approach performs satisfac-
torily. This assumes that a priori knowledge about a prob-
lem’s organization exists and is used. The result of each
run of the WTA algorithm is, therefore, expected to be the
same when patterns are fed to the WTA network a cluster
at a time. For patterns that are scattered throughout the
search space, the result of each run of WTA method may
dramatically differ depending on initial choice of all the
parameters. This applies especially to the order in which
patterns are applied, as well as with the cluster radius cho-
sen.

An ideal case for WTA are problems with very small, dis-
tinctively grouped patterns that are distributed at far dis-
tances. Here if the radius of attraction is much smaller
than the distance between clustered patterns, the WTA
approach is likely to return fast and repeatable results.

Even though different variations of the WTA approach may
rely upon a single iteration through all the patterns, more
general WTA algorithm may require a number of itera-

tions. Although sometimes computationally very fast, the
former WTA approaches has the negative effect of produc-
ing dramatically different clustered patterns for each of the
different runs. This unsupervised approach does little to
target a learning constant α that learns to anticipate the
possible cluster positions. As a consequence, the knowledge
gained from any one application of the WTA method does
not guarantee an improvement on subsequent applications.
In essence, the careful selection of the starting parameters
is key criteria to the performance of the WTA method.

In contrast to the WTA algorithm, the orthogonal search
algorithm is deterministic in the sense that the algorithm
returns the same clustering of patterns, irrespective of the
order that patterns are shown to the network. Hence, as
additional patterns are subsequently added to the search
space, no previous information about patterns already pro-
cessed is lost. This property distinguishes the advantages
of the orthogonal approach over the WTA method, and un-
derscores the importance of formulating information-based
operations in an orthogonal (independent) fashion.

The orthogonal search algorithm may result in a larger
number of clusters; some of which may contain only a single
pattern. For this reason, the orthogonal search may be
more suitable for detecting patterns, rather than clusters.
However, this is not a limitation. The resolution of the
pattern depends directly on the scanning step size δ. The
smaller the step size δ, the better is the resolution. At the
lower end of a search boundary, the entire set of patterns
is recognized as belonging to a single cluster, while at the
upper end of a search boundary the recognition of clusters
allows for a cluster containing a single pattern. Unlike the
WTA method, the orthogonal search algorithm does not
rely on the use of a learning constant, even though it is an
unsupervised method.

Both the WTA and the orthogonal approaches gener-
alize easily to higher-dimensional problems. In higher-
dimensions, the orthogonal search may prove to be slower
than WTA; however, the parallel and deterministic nature
of the orthogonal search method can be exploited to maxi-
mize computational efficiency. In addition, the orthogonal
search approach has the advantage of decoupling the prob-
lem domain into subspaces that can be explored systemati-
cally. This is done through the recursive application of the
RSE architectural unit layer, where each pair of dimensions
is investigated individually. The one most important ar-
chitectural aspect of the orthogonal search approach is the
recursive application of this fundamental RSE unit layer as
illustrated in Figure 2.

In Figures 8 and 9 an application of a COG (with α = 1)
and the orthogonal approaches are illustrated, respectively.
For the COG method, the possible clustering depend upon
the value of α, so that the example of patterns used is sus-
ceptible to several different clustering possibilities depend-
ing upon the value selected for α. The red line in Figure

8 merely indicates the order of pattern scanning applied in
this COG example.

Fig. 8. COG clustering.

The orthogonal approach is independent of α so that the
clustering is determine once and is never changed. The two
orthogonal searches are depicted by red and blue lines. For
a fix radius of attraction, all patterns grouped in one cluster
are surrounded by a red line that serves as one boundary
and a corresponding blue line on the opposite boundary. As
a consequence of the cluster invariance for the orthogonal
approach, a matrix representation of the cluster arrange-
ment can be formulated. In this formulation, as the pat-
terns are clustered into larger groups the matrix becomes
sparse and thus the cluster locations can easily be manip-
ulated during subsequent analysis. It should be noted that
the rotational lines are not drawn in the figure; however,
the rotations are applied to verify or eliminate patterns
that do or do not occupy positions defined by the initial
orthogonal search. In fact, this is the motivation to formu-
late the cluster positions in a sparse matrix representation.

Fig. 9. Orthogonal clustering.

Figure 10 pictures the corresponding matrix associated
with the results of the orthogonal scanning technique. For
the orthogonal approach, this representation is fixed and
provides a concise formulation of the clustered space. It is
very gratifying to realize the over all simplistic structures
that emerge from this canonical formalism.

Fig. 10. Sparse matrix representation.

VIII. On the Canonical Structure of the
Orthogonal Architecture

The orthogonal search neural network architecture is an
unsupervised, feedforward type of network. The network
is recursively applied to the search space defined by the
problem domain in two- or higher-dimensions. The archi-
tecture is built from two basic layers that are combined re-
cursively as it is applied to the search space. Although only
four layers are necessary, additional layers can be added to
enhance the sharpness of detecting, refining and smoothing
cluster boundaries within the search space. The first two
layers combine orthogonal search signals in the {n x m}-
dimensional space, and their outputs combined with the
rotational searches applied in the next layer. At each of
these levels, the computational dependence allows for and
defines the parallel aspects of the architecture. Within this
architectural framework, a highly parallel implementation
is easily achievable. This property is the result of the non-
adaptive nature of the information operators defined by
this architecture. Rather than the original formulation of
the perceptron model where the information operations are
defined by Equation (1), this new canonically simplified or-
thogonal architecture uniquely defines without ambiguities
the number of nodes required within each layer of an {n x
m}-dimensional network.

IX. Conclusion

The notion of information-based algorithmic design is
an abstraction that may potentially provide a means to

achieve a canonical formulation of the solution technique.
In this presentation, the information operator associated
with the perceptron learning algorithm is separated into
two independent components and used in a non-adaptive
formulation that defines an ANN architecture with unam-
biguous number of nodes per translation and rotation lay-
ers. Specifically, the basic design of the proposed ANN net-
work defines three {n x m}-dimensional layers that make
up the basic building blocks of the network. The recursive
application of this basic ANN block results in finer over-
all resolution. In addition, the non-adaptive nature of the
proposed algorithm exhibits a canonical structure that is
computational parallel and specifies uniquely the number
of neural nodes within each layer as required to define the
architecture exactly.

Both the WTA and the orthogonal algorithms belong to
the unsupervised type of learning, where learning the de-
sired outcome (number of clusters) is not known ahead of
time. The orthogonal search algorithm excels at detecting
patterns rather than clusters. However with predefined
search step it can also produce clustering of the pattern
space. An advantage of the orthogonal algorithm is the si-
multaneous execution of the two sets of input layer nodes.
Once the input layers have completed their orthogonal {n
x m}-dimensional search, the second layer of rotations can
assimilate the knowledge discovered by the first layer in a
parallel fashion as well. The intersection of these three lay-
ers, executed in parallel on three (sets of) nodes will result
in a clustered space.

References

[1] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski
(1988) “Information-Based Complexity,” Academic
Press Series In Computer Science And Scientific Com-
puting Archive.

[2] B. N. Parlett (1992) “Some Basic Information on
Information-Based Complexity Theory,” Bulletin of
the American Mathematical Society Vol. 26, No. 1,
pp. 3-28.

[3] J. F. Traub and H. Woźniakowski (1992) “Perspec-
tives on Information-Based Complexity,” Bulletin of
the American Mathematical Society Vol. 26, No. 1,
Pages 29-52.

[4] M. H. Kalos and P. A. Whitlock (1986) “Monte Carlo
Methods, Volume I: Basics,” Wiley-Interscience Pub-
lications, John Wiley and Sons, New York.

[5] A. Doucet, N. de Freitas, and N. Gordon (2001) “Se-
quential Monte Carlo Methods in Practice,” Springer.

[6] M. Gunzburger, R. E. Hiromoto, and M. Mundt
(1996) “Analysis of a Monte Carlo Boundary Prop-
agation Method,” Journal of Computers and Math.
with Applic. Vol. 31, No. 6, pp. 61-70, (1996).

[7] R.E. Hiromoto and R.G. Brickner (1991) “Empirical
Results of a Hybrid Monte Carlo Method for the So-
lution of Poisson’s Equation,” Applications of Super-

computers in Engineering, Boston, Mass., August 22-
25.

[8] F. Rosenblatt (1958) “The Perceptron: A Probabilis-
tic Model for Information Storage and Organization
in the Brain,” Psychological Review, v65, No. 6, pp.
386-408.

[9] Levenberg, K. (1944) “A Method for the Solution of
Certain Problems in Least Squares,” Quart. Appl.
Math. 2, 164-168.

[10] Marquardt, D. (1963) ”An Algorithm for Least-
Squares Estimation of Nonlinear Parameters,” SIAM
J. Appl. Math. 11, 431-441.

[11] Rumelhart, D.E., McClelland, J.L. (1986) “Paral-
lel Distributed Processing: Explorations in the Mi-
crostructure of Cognition,” Vol.1, Cambridge, Ma,
MIT Press.

[12] Rumelhart, D.E., Hinton, G.E., and Williams, R.J.
(1986) “Learning Internal Representation by Error
Propagation,” Parallel Distributed Processing, Vol.1,
pp.318-362, MIT Press, Cambridge, MA.

[13] J. M. Zurada (1992) “Introduction to Artificial Neural
Systems,” West Publishing Company.

[14] Sejnowski T.J., Rosenberg, C.R. (1987) “Parallel Net-
works that Learn to Pronounce English Text,” Com-
plex Systems 1:145-168.

[15] Fahlman & Lebiere (1990) “The Cascade-Correlation
Learning Architecture,” in Advances in Neural Infor-
mation Processing Systems 2, D.Touretzky, ed., San
Mateo, CA, Morgan Kaufmann, pp.524-532.

[16] Kohonen, T. (1982) “Self-organized formation of topo-
logically correct feature maps,” in Biological Cyber-
netics, 43:59-69.

[17] Kohonen, T. (1988) “Self-Organization and Associa-
tive Memory,” 2nd Ed. New York, Springer-Verlag.

