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Abstract: Recent advances in “neurobiology” allowed
highlighting some of key mechanisms of animal
intelligence. Among them one can emphasizes brain’s
“modular”  structure and its “self-organizing”
capabilities. The main goal of this paper is to show how
these primary supplies could be exploited and combined
in the frame of “soft-computing™ issued techniques in
order to design intelligent artificial systems emerging
higher level intelligent behavior than conventional
Artificial Neural Networks (ANN) based structures..
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1. INTRODUCTION

Much is still unknown about how the brain trains and
self-organizes itself to process so complex information.
However, the recent advances in “neurobiology” allowed
highlighting some of key mechanisms of animal (and
human) intelligence. In fact, our simple and inappropriate
binary technology remains too primitive to reproduce the
biological complexity of these marvels mechanisms, but a
number of those highlighted points could already be
sources of inspiration for higher level intelligent artificial
systems. Among interesting features of animal’s and
human’s brain, one can emphasize its “modular” structure
and it’s “self-organizing” capabilities. If it is still early to
state on “concurrent” or “cooperative” nature of ways that
these complex features interact, they could already be
considered as basic features in emergence of higher level
artificial intelligent behavior.

On the other hand, overcoming limitations of
conventional approaches thank to their learning and
generalization capabilities, Artificial Neural Networks
(ANN) made appear a number of expectations to design
“intelligent” information processing systems. If learning
and generalization capabilities of these bio-inspired
connectionist models appear as central requirements in
intelligent systems’ design, nowadays, it is well admitted
that intelligent behavior requires more sophisticated
mechanisms than those performed by these “simple”
models.

The main goal of this paper is to show how these
primary supplies could be exploited and combined in the
frame of “soft-computing” issued techniques in order to
design intelligent artificial systems emerging higher level
intelligent behavior than conventional Artificial Neural
Networks (ANN) based structures. These foremost
features have inspired a set of implementations dealing
with real-world applications and covering several

different areas as: robotics, image processing and pattern
recognition, classification and dynamic nonlinear
behavior modeling (identification and prediction).

The present paper is organized in following way: the
next section will briefly introduce the general frame of
modular modeling. Section 3 will describe a first
applicative implementation dealing with “biometric face
recognition” dilemma in the challenging frame of “mass
biometry”. In section 4, a different self-organizing tree-
like modular system, taking advantage from a
“complexity estimation” loop, will be described. Section
5 will present a modular Fuzzy-CMAC architecture
dealing with fully autonomous biped robot’s walking
dilemma. Section 6 will give an additional applicative
example of modular connectionist system dealing with
nonlinear dynamic systems’ behaviour identification.
Finally, the last section will conclude the present article
and discuss a number of perspectives.

2. GENERAL FRAME OF MODULAR

MODELING

Recently, a number of works dealing with multi-
modeling concept have been proposed for nonlinear
systems modeling ([1] to [7]) in order to avoid difficulties
(modeling complexity). In fact, taking advantage from
“modularity”, multi-modeling concept reduces
considerably modeling or processing complexity by
dividing the initial complex problem (or task) into a set of
local models (or local processing modules). Adding self-
organizing skill to a multi-model (or to a modular
processing architecture) could lead to powerful structure,
especially if local models (or local modules) are ANN
based units.

From a general point of view; a multi-model is
composed of several models each of which is valid in a
well defined interval which corresponds to a part of the
operation range of the system or covers a part of the
whole feature space of the problem to be solved. The
local validity of a model in a well defined interval is
specified by using functions with limited supports which
tend to significantly increase the contribution of the local
models in that zone and tend to decrease it elsewhere. The
combination of all local models allows description of the
whole system’s behavior. The local models participations
in the multi-model’s output are determined by “activation
degree” associated to each local model. The action of
“activation degrees” on multi-model’s response could be
seen as some kind of local models responses weighting
fashioning its response in order to approximate the
modeled behavior.

Consider a system described by the general equation



(or transfer function), expressed by relation (1), where
F() represents a global unknown model (complex task
to be performed, complex system to be identified,
complex behavior to be described, etc...) and go(t) is a

feature vector (characteristic vector composed by a
number of features related to data to be processed,
regression vector composed by a number of delayed
system’s inputs and outputs, etc...). The associated multi-
model, composed by M local models (or processing units)

is defined by relation (1) where fi(go(t)) represents the i-

th local model (or local processing unit) and S is a

parameter vector. S (.) represents a fusion operator or a
selection function.

y(t)=S(elt), B) ()

.
Local Model N°M

Fig.1 - General bloc diagram of a multi-model concept in the
frame of the relation (2).
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Fig.2 - General bloc diagram of a multi-model concept in the
frame of the relation (3).

One of the most popular fusion operators is the
weighted sum function. In this case, the associated multi-
model, composed by M local models (or processing units)

and their weights pi((p(t), ,&), with pi(go(t) i) >0 (for
all i) and i p(olt), 4)>0 (for all @t)), is defined by

j=1
the weighted average expressed in the relation (2). In this
relation fi(qo(t)) represents the i-th local model and /&

is a parameter related to the validity function pi.
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Among popular selection functions is the relation
expressed by (3), which depends on (/)(t), and some

parameters p and/or conditions &. py represents some
particular values of parameter p and &, denotes some
particular value of condition &, respectively.

S(pt) p.&)=(s, - s - su)
with 3
s =1 if p=peand & =&
{ s, =0 else

Figure 1 shows the bloc diagram of a multi-model
described by relation (2) and figure 2 gives the bloc
diagram corresponding to a modular structure described
by relation (3).

3. MODULAR FACIAL RECOGNITION
SYSTEM USING KERNEL FUNCTIONS

ANN AS LOCAL PROCESSING UNITS

Contrary to “individual biometry” where both
authentication and identification operations assume a
precise biometrical characterization of concerned
individuals, the main goal in “mass biometry” is to
authenticate or identify an unusual (suspect) behavior
within a flow of mass customary behaviors. That’s why,
in “mass biometry” the chief requirements concern on the
one hand, the ability of handling patterns containing
relatively poor information and on the other hand, the
skill of high speed processing in order to treat a mass
number of patterns in a reasonably acceptable delay (real-
time). The solution we propose [8] includes three main
stages. The two firsts are a video (image flow) acquisition
device, which could be a standard digital video camera
and an image processing stage performing a set of image
pre-processing operations and extracting a number of
facial biometric features. The last stage is a modular stage
composed by a set of kernel functions based ANN ([9] to
[12]) units carrying out classification and decision
operations.
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Fig.3 — Bloc diagram of the implemented modular face
recognition system.

A prototype of such modular facial recognition system
has been realized using three ANNs (figures 3 and 5).



Each ANN is specialized in processing of a specific kind
of biometric feature extracted from the input image. Then
a decision logic based procedure performs (on the basis of
classification results relative to each biometric feature)
the identification of the concerned individual. The
implementation has been done on the basis of ZISC-036
neuro-processor based board composed by 16 chips, each
one including 36 neurons ([13] to [16]).
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Fig.4 - Example of “localized biometric features” processed
by each module composing the classification-decision stage.
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Fig.5 — Photographs, showing the implemented system
(upper picture), the ZISC-036 neuro-processor based board
(lower-left), and the screen of the implemented modular face
recognition system (lower-middle and lower-right pictures).

The proposed solution takes advantage at the same
time from kernel functions based ANN’s image
processing ability implemented by ZISC-036 and from
the massively parallel architecture of this neuro-processor
allowing very high processing speed. The obtained
promising results show feasibility and effectiveness of the
proposed solution reaching 85% correct identification
involving a relatively weak number of learned samples (5
samples per face).

4. TREE-LIKE MULTIPLE NEURAL
NETWORK MODELS GENERATOR
WITH A COMPLEXITY ESTIMATION

BASED DECOMPOSER
In a very large number of cases dealing with real world

dilemmas and applications (system identification,
industrial processes, manufacturing regulation,
optimization, decision, pattern recognition, systems,

plants safety, etc), information is available as data stored
in files (databases etc.). So, the efficient data processing
becomes a chief condition to solve problems related to
above-mentioned areas. In the most of those cases,
processing efficiency is closely related to several issues
among which are:

- Data nature: including data complexity, data quality

and data representative features.

- Processing technique related issues: including model
choice, processing complexity and intrinsic processing
delay.

One of the key points on which one can act is the
complexity reduction. It concerns not only the problem
solution level but also appears at processing procedure
level. An issue could be model complexity reduction by
splitting a complex problem into a set of simpler
problems: multi-modelling where a set of simple models
is used to sculpt a complex behaviour ([4] & [5]). Another
promising approach to reduce complexity takes advantage
from hybridization [17].
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Fig. 6. General bloc diagram of DTS, presenting main
operation levels.

The T-DTS includes two main operation modes. The
first is the learning phase, when T-DTS system
decomposes the input data and provides processing sub-
structures and tools for decomposed sets of data. The
second phase is the operation phase (usage the system to
process unlearned data). There could be also a pre-
processing phase at the beginning, which arranges
(prepare) data to be processed. Pre-processing phase
could include several steps (conventional or neural
stages). Figure 6 gives the general bloc diagram of T-DTS
operational steps. As shows this figure, T-DTS could be
characterized by three main operations: “data pre-
processing”, “learning process” and “generalization
process” (or “working process”).

We designed and implemented an ANN based data
driven treelike Multiple Model generator, that we called
T-DTS (Treelike Divide To Simplify), able to reduce
complexity on both data and processing chain levels
([19], [4], [5]). T-DTS and associated algorithm construct
a tree-like evolutionary neural architecture automatically
where nodes, called also “Splitting Units” (SU), are
decision units, and leafs, called also “Neural Network
based Models” (NNM), correspond to neural based
processing units.

The learning phase is an important phase during which
T-DTS performs several key operations: splitting the
learning database into several sub-databases, constructing
(dynamically) a treelike Supervision/Scheduling Unit
(SSU) and building a set of sub-models (NNM)
corresponding to each sub-database. Figure 7 represents



the division and NNM construction process bloc
diagrams. As this figure shows, after the learning phase,
a set of neural network based models (trained from sub-
databases) are available and cover (model) the behaviour
region-by-region in the problem’s feature space. In this
way, a complex problem is decomposed recursively into a
set of simpler sub-problems: the initial feature space is
divided into M sub-spaces. For each subspace k, T-DTS
constructs a neural based model describing the relations
between inputs and outputs. If a neural based model
cannot be built for an obtained sub-database, then, a new
decomposition will be performed on the concerned sub-
space, dividing it into several other sub-spaces.
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Fig. 7. General bloc diagram of T-DTS learning phase
and its tree-like splitting process.

Very promising results, obtained for different areas:
classification problems, industrial process identification
and prediction, pattern (biomedical signal) recognition,
etc... show efficiency of such self-organizing multiple
model structure.

5. BIPED ROBOT’S ADAPTIVE WALK
USING INTUITIVE HYBRID MODULAR

CONTROLLER

One of the most challenging topics, over the recent
decades, in the field of robotics concerned the design and
the control of biped robots. Several potentialities make
this foremost research area particularly appealing in the
frame of middle and long term projection. On the
fundamental side, advances in this research area can lead
to a better comprehension of the human locomotion
mechanisms. From, the applicative point of view, it could
concern a wide spectrum of applications among which:
the design of more efficient prosthesis and the
construction of more sophisticated humanoid robots for
interventions in hostile environments.

Two main control strategies are generally used in the
field of biped robots’ locomotion: one is based on a
kinematics and dynamic modeling of the whole robot’s
mechanical structure, and another takes advantage from
soft-computing techniques (fuzzy logic, neural networks,
genetic algorithm, etc...) and heuristically established

rules resulting from the expertise of the walking human.
Additionally to requirements related to high precision
measurement and to a fine interaction forces’ evaluation,
the first strategy needs the modeling of whole biped
robot’s real environment remaining a very complex task.
That is why the computing of the on-line trajectories are
generally performed using simplified models ([20] to
[23]), making this first strategy not always well adapted
when biped robot moves in real environment. Taking
advantages from soft-computing skills, the second
solution doesn’t need the aforementioned requirements:
firstly, it is not necessary to know perfectly the
mechanical structure and secondly, this category of
techniques takes advantage from learning capabilities
([20] to [24]).

Investigating soft-computing based fully autonomous
biped robot’s walking, we proposed a new approach
taking advantage simultaneously from local and global
generalization. Our approach [25] is based on a modular
Fuzzy-CMAC architecture: a set of CMAC ANN (see
[26] to [28])) based modules and a fusion stage. The
fusion is carried out by using Takagi-Sugeno FIS (Fuzzy
Inference System). The main task of Fuzzy-CMAC based
modular part of the system is to compute the swing leg’s
trajectory (using a Fuzzy Inference System fusion of
several CMAC neural networks’ outputs). The second one
allows regulating the average velocity from a
modification of the desired pitch angle at each new step.
Figure 8 gives the bloc diagram of the proposed hybrid
architecture.
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Fig.8 — Bloc- diagram of the Fuzzy-CMAC based hybrid
control strategy.
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Fig. 9 — Learning strategy principle’s bloc diagram.

Figure 9 shows the bloc diagram of the training
strategy. The trajectories of the swing leg (in terms of



joint positions and velocities) are learned by four "single-
input/single-output CMAC, with k=1,...4 neural
networks (four trajectories to learn). The learned
trajectories are joint angles g;; and q;,, and the two
corresponding angular velocities d;; and ¢;,. Q;; and
g;, are respectively the measured angles at the hip and
the knee of the leg i. In the same way, @;; and g;, are

respectively the measured angular velocities at the hip and
the knee of the leg i (see figure 8). During the training
stage, five trajectories corresponding to five different
average velocity values (V,, measured in m/s) included

in [0.4 , 0.8] interval are learned by five CMAC based
modules. Each module (labelled CMAC',  with
l€{,2,34,5}) includes four CMAC, neural networks
(corresponding to the four above-mentioned robot’s
trajectories). V,, is computed by using relation (6) where

Leep IS the distance between the two feet at the moment
of double impact and tg,, is the duration of the step
(from takeoff to landing of the same leg).

L
Vi = (6)

step

The Fuzzy Inference System is obtained from the five
following rules, where Y'corresponds to the output of
CMAC' with 1 € {1,2,3,4,5}:

e IFVy ISVerySmall THEN Y =Y
e IFV, IS SmallTHEN Y =Y?
e IFV, ISMediumTHENY =Y?3
e IFV, ISBigTHENY =Y*
e IFV, ISVeryBigTHEN Y =Y°®
N
I-'-__ VerySmall Small Medium Big VerpBis
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Fig. 10 — Membership functions used by Fuzzy Inference
stage of Fuzzy-CMAC.

Figure 10 gives the membership functions
corresponding to the upper-indicated FIS rules. The
average velocity is modelled by five fuzzy sets
(“VerySmall”, “Small”, “Medium”, “Big”, “VeryBig”).

The validation of proposed approach has been done on
an under-actuated robot: RABBIT [29], [30]. This robot
constitutes the central point of a project, within the
framework of CNRS (Centre Nationale de la Recherche

Scientifigue) ROBEA (ROBotique et Entité Artificielle)
program [31], concerning the control of walking and
running biped robots, involving several French
laboratories. This robot is composed of two legs and a
trunk and has no foot as shown on figure 11. The
characteristics (masses and lengths of the limbs) of this
biped robot are summarized in table 1.

Fig.11 - RABBIT prototype’s photograph.

Table 1. Masses and lengths of the robot’s limbs

Limb Weight (kg) Length (m)
Trunk 12 0.2
Thigh 6.8 0.4
Shin 3.2 0.4

Fig. 12 — Stick diagram showing a walking sequence of the
biped robot with increasing average velocity increases.

If it is true, from design point of view, that RABBIT is
simpler compared to a robot with feet, from the control
theory point of view, the control of this robot is a more
challenging task, particularly because, in phase of single
support, the robot is under-actuated. A numerical model
of the previously described robot has been implemented
within the ADAMS software. This software is able to
simulate RABBIT’s dynamic behavior and namely to
calculate the absolute motions of the platform and the
relative motions of the limbs when torques are applied on
the joints by the virtual actuators. The model used to
simulate the interaction between feet and ground is
exposed in [32]. Figure 12 gives the stick diagram of the



biped robot’s walking sequence when the desired average
velocity increases. It must be noticed that the control
strategy allows adapting automatically the pitch angle and
the step length as the human being.

The main interest of this approach is to proffer to the
walking robot autonomy and robustness. The obtained
results show the adaptability of the walking step length.
Furthermore, the Fuzzy-CMAC approach allows
decreasing the memory size in comparison to the
traditional multi-input CMAC ANN. Future works will
focus firstly on the extension of the Fuzzy-CMAC
approach in order to increase the autonomy of the walking
robot according to the nature of the environment (get up
and down stairs for instance), avoidance and dynamic
crossing obstacles and secondly on the experimental
validation of our approach.

6. SELF-ORGANIZING IDENTIFICATION
OF NONLINEAR DYNAMIC SYSTEMS’

BEHAVIOR

Identification of nonlinear systems behavior is an
important task in a large number of areas dealing with real
world requirements and issued applications. Among
numerous areas concerned by this task, one can mention
model based control and regulation, systems design,
complex systems simulation, complex systems’ behavior
prediction, fault diagnosis, etc... The identification task
involves two essential steps: structure selection and
parameter estimation. These two steps are linked and
generally have to be performed in order to achieve the
best compromise between the identification (or
prediction) error minimization and the number of
parameters increase in the issued model. In real world
applications (real world situations), strong nonlinearity
and large number of related parameters make the
realization of those steps challenging, and so, the
identification task difficult.

To overcome the above-mentioned difficulties, we
propose to take advantage simultaneously from multi-
modeling concept’s modularity (described in section 2)
and self-organizing clusters construction, making the
proposed solution self-adaptive regarding the system’s
(nonlinear system to be identified) nonlinearity.
Concerning the self-organization, the proposed identifier
benefits from a self-organizing clusters construction,
based on concurrent minimization of both identification
error and number of local models. Regarding partitioning
strategy, two promising partitioning strategies have been
investigated: “decision tree construction” (DTC - a
deterministic  partitioning  approach) and “fuzzy
clustering” (FC — a fuzzy based partitioning approach
[33]).

The identification is performed by an “Equation
Error” (EE) multi-model, known also as NARX
(Nonlinear Autoregressive with eXogenous Inputs) multi-
model, using “decision tree construction” or “fuzzy
clustering” partitioning to split the system’s feature space
in a number of operating ranges [34]. Figure 13 shows the
bloc diagram of an EE multi-model based identifier. As
one could remark from this figure, the EE multi-model
based identifier identifies the system by using both
system’s inputs and outputs.
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Fig. 13 - Learning bloc diagrams of EE multi-model.

In the case of a deterministic partitioning strategy, the
“activation degree” of the i-th local model is defined

conformably to the relation (7), where p; () called the
“validity function” of the the i-th local model, is defined
by the relation (8). In relation (8), 4, () represents the
“membership function” defined for the k-th variable of
the regression vector gp(t) and Q is the number of

variables in the regression vector. In our approach, we use
Gaussian membership functions expressed in (9),

where: Zki(t) is the value of the k-th variable of the
regression vector (p(t) involved in the i-th local model,
Cy; Is the center of the partition corresponding to the
Z. (t) and o, is the dispersion of the Gaussians for all
partitions of the k-th variable. It is interesting to note that
the parameters vector /3, contains all the dispersion of
the Gaussians.

o, ((D(t),ﬂ)= Mpi (¢(t)’IBI) (7)

Z_:pj(¢(t)vﬂj)

Pi (§D(t)’ B ): ]j:uk (Zki (t)) ©))
(Zki (t)_cki )2

w2, () =exp 1L ()

20,

The FC partitioning strategy uses the “fuzzy-c-mean”
clustering algorithm. Conformably to the fuzzy nature of
the clustering, the issued intervals (operating ranges)
could share some overlapping region (with different
membership degree). Feature space decomposition is
performed in each dimension (for each input variable)
according to concurrent minimization of both
identification error and “intra-clusters” error defined by
relation (10), where dj; expressed by relation (11) denotes
the distance between the j-th value of the variable z
(which could take Q different values) and the center c; of
the i-th cluster (among M possible clusters). w;; in relation
(10) represents the membership degree relative to the
variable z regarding the i-th cluster (among M possible
clusters), defined by relation (12). The *“activation



degree” is the given by the values of Hij - The center ¢; of

the i-th cluster is defined conformably to the relation (13).
Finally, the parameter m, known as “fuzzy exponent”, is a
parameter representing overlapping shapes between
clusters. Generally, this parameter is set to m=2. But in
our solution the value of this parameter will be optimized

during the multi-model’s self-organization process
(learning process).
M m 2
J(Cl,CZ,...,CM):Z:Z:luij d; (6)
i=1 j=1
dy =|z; -/ ™
1
My =5 2imay (8)
]
k= dg
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7. CONCLUSIONS

If learning and generalization capabilities of ANN
models appear as central requirements in intelligent
systems’ design, nowadays, it is well admitted that
intelligent  behavior requires more sophisticated
mechanisms than those performed by these “simple”
models.

On the other hand, a number of appealing features of
animal’s and human’s brain, as its “modular” structure
and it’s “self-organizing” capabilities, could be sources of
inspiration in emergence of higher level artificial
intelligent behavior. The main goal of this paper was to
show how these primary supplies could be exploited or
combined in the frame of “soft-computing” in order to
design intelligent artificial systems emerging higher level
intelligent behavior than conventional ANN. These
foremost features have inspired a set of implementations
dealing with real-world applications and covering several
different areas as: robotics, image processing and pattern
recognition, classification and dynamic nonlinear
behavior modeling (identification and prediction). The
presented examples and issued results show the

significant  potentiality of modular connectionist
architectures for designing higher level intelligent
functions.
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