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Abstract. In this paper we present a theoretical model based on soft computing to 
distribute the time/cost among the industry/machine sensors or effectors based on the 
type of the application. One of the most unstudied significant work is to recognize 
which sensor in an industry for example has higher priority than others. This is 
important to know which sensor to be checked first and within time limits of the 
system response. The problem of such systems is their variant environmental 
situations. Based on these varied situations, the priority of the importance of each 
sensor might change from time to another. Due to this uncertainty and lack of some 
information, soft computing is considered to be one of the plausible solutions. The 
presented idea is based on initially training of the system and continuously exploiting   
the system experience of the degree of importance of the sensors. The proposed 
system has three main stages, the first stage is concerned with training the system to 
obtain the necessary system time to respond, the necessary time allocated to recognize  
which sensors to check (or which has higher priority), and the initial importance value 
for each sensor, which indicates the initial judgment about the sensor importance. The 
second stage is to use the system experience about the importance of the sensor using 
fuzzy logic to decide the final values of each sensor 's importance. Based on the 
output of the second stage and the output of the first stage, the system distributes the 
time/cost among the sensors (some sensors with lower priority might be neglected). 
The main idea of the proposed work is based on neurofuzzy   
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1   Introduction 
We introduce in this section the soft computing and its applications. On the other 
hand we define the system which we present in this paper. It is time/cost distributor 
system.  
 
1.1  Soft Computing 
 
Soft computing (SC) is a term originally expressed by Lotfi Zadeh [18][19] to denote 
systems "exploit the tolerance for imprecision, uncertainty, and partial truth to achieve 
tractability, robustness, low solution cost, and better rapport with reality" [19]. Soft 
computing differs from conventional (hard) computing, unlike hard computing, it is 
tolerant of impression, uncertainty, partial truth and approximation. The human mind 
is the way in which soft computing work. SC techniques are a natural way of handling 
the inherent flexibility with which humans communicate, request information, 
describe events or perform actions. Soft computing has been divided into two groups 
namely knowledge driven reasoning such as fuzzy logic and probabilistic reasoning, 
and data driven search and optimization approaches such as neuro computing and 
evolutionary computing[18][19]. Soft computing is a partnership in which each of the 
partners contributes a distinct methodology for addressing problems in its domain. 
Based on this vision, the main constituent methodologies in SC are complementary 
rather than competitive. At present, the research activities of SC applications are 
focused in the areas of structural engineering, environmental engineering, geo-
technical engineering, intelligent interfaces, information retrieval and intelligent 



assistants. One of the good examples of a particularly effective combination is what 
has come to be known as "neurofuzzy systems". Such systems are becoming 
increasingly visible as consumer products ranging from air conditioners and washing 
machines to photocopiers and camcorders[11][16][17]. Other combinations could be a 
neural networks and genetic algorithms which is termed by "neuroevolution". 
Neuroevolution has proven very high capabilities in various applications and in 
reinforcement learning tasks [6-10,12-15].  In difficult real-world learning tasks such 
as controlling robots, playing games, or pursuing or evading an enemy, there are no 
direct targets that would specify correct actions for each situation. In such problems, 
optimal behavior must be learned by exploring different actions, and assigning credit 
for good decisions based on sparse reinforcement feedback.  Comparing 
neuroevolution to the standard reinforcement learning, neuroevolution is often more 
robust against noisy and incomplete input, and allows continuous states and action 
naturally. Much of the research in neuroevolution is on control tasks such as  pole 
balancing and mobile robot control. Some other applications are related to industry 
controllers. Other existing combinations is the combination of neural networks, 
genetic algorithms and fuzzy logic. Such systems area used in industry, medicine, 
prediction and  game playing [2][6][9][12][13][15].   
 
1.2  Time/Cost Distributor System 
 
Some of the very common systems for applications is applying Neural networks, 
genetic algorithms, fuzzy systems, evolutionary computing  or combination of them in 
the real time industry system. In all the applications, the used technology works to 
simulate, control or improve the performance of the industry. None of these trials 
considered the system response time. Due to some factors, the industry should take a 
certain action. The problem is to know which sensors should take more /less time to 
be checked to allow the system to take  the proper action  within the time limit. Based 
on the industry situation, the needed sensors to be checked differ from time to time. 
We shall define the Time/Cost Distributor System (T/CDS) as a system that is 
responsible for distributing the given time to the sensors based on their importance to 
give the system the opportunity to respond within the time limit. This means, in 
certain cases all the sensors might  be checked, whereas in some other cases some of  
them are checked. Figure 1 depicts T/CDS. As shown in Figure 1, the surrounding 
environment is the input of the  T/CDS. T/CDS distributes the time to be obtained by 
one of its stages   among the sensors to be checked based on their importance 
according to the current situation. The output of T/CDS is the the time slot allocated 
to each sensor to be checked. TSi in the figure means the slot of time allocated to the 
ith sensor. 
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            Figure 1. Time/Cost Distributor Systems   



 
      Some of the applications that might use T/CDS are:  

1. Robots that play soccer. At certain position(mostly), the robot has to know 
where to pass the ball very quickly (might not check all his surroundings), 
otherwise, one of his opponents might come and get the ball. 

 
2. Automatic pilot in cases of emergency. A very fast response is required based 
on the situation or the plane might get crashed. 
 
3. Games where players should do some action or otherwise destroyed by other 
player.  
 
4. Industries and controllers 
 
Another version of the same time distribution for controllers is the cost distributors. 
Cost distributors can be used in economic and commercial applications. It can also be 
used in information retrieval based on speed, memory and the size of the databases. 
 

      2  Research Objectives 
 

Designing T/CDS which is able to decide which sensor should be given more/less 
priority in a given environmental situation, or even which is to be neglected is the 
main objective of this research. This increases the  ability to take the appropriate 
action within time limits. The T/CDS should be able to decide the necessary time 
limit for the whole system to respond, and the time limit necessary to check the 
sensors with higher priority. To simplify this process, we consider T1 as the time limit 
for the system to respond. T2 is the time to be lost to check the selected sensors. T3 is 
T1-T2 which is the remaining time for the system response. The proposed T/CDS is 
based on soft computing and more specifically on neurofuzzy system. Soft computing 
is used here to overcome the problem of uncertainty, partial truth and approximation. 
In [10], T/CDS system based on neuroevolution for real time system controllers is 
proposed. The proposed system has four main stages, the first one is to decide the 
time constraints based on the given environment surroundings, the second stage is to 
distribute the time/cost to determine the importance of each behavior based on the 
decided time by stage one. Stage three is to take the output of stage two to place 
appropriate controller which finally applied to the forth stage to recognize the final 
action of the system. It is shown how the proposed system can be applied on a soccer 
robot example. The main difference between this approach and the approach which 
we propose is that the system in [10] is based on neuroevolution and fitness function 
to decide the degree of the importance of  the sensor, whereas in our proposed system 
as we shall see, the degree of the importance of a sensor is based on the system 
experience which finally uses the neurofuzzy to decide it. In general, neuroevolution 
technique is good when no enough examples can be provided, its performance 
depends  highly on the fitness function which is in common not easy to have an 
optimum one. On the other hand, neurofuzzy is basically based on uncertainties and 
lack of information, moreover, it is in general  faster than neuroevolution in such kind 
of problems.  
Deciding the necessary time (changeable) to perform the action which is changeable 
in real time applications, is one of the very challenging  and not yet widely tackled 



problems. This problem is difficult to solve using neural networks alone because in 
many different situations the time needed and the action to be taken is changeable. 
This research is a continuous research started in [10]. It is to explore and investigate a 
solution to the posed problem of T/CDS using neurofuzzy technique. The purpose of 
this research is to help other researchers to tackle the problem of T/CDS in a near 
future. 
 
3  The Proposed System 
 
The proposed system is based on three stages : 

1. Time/ sensor decider : This stage is concerned with deciding the  time limit of 
the system and the time needed for the sensors to be checked. In addition this 
stage is concerned with specifying an initial value for each sensor. This value 
is to indicate an initial impression about the importance of the system. This 
stage is based on Backpropagation algorithm since several examples can be 
provided. The input for this neural network is the environment inputs and the 
output is the T1, T2 and the initial importance value for each sensor based on 
the given environment inputs. This stage is firstly used alone to train the 
system, then used as apart of the T/CDS system to get the values of the 
sensors, and T1 and T2.   

  
2. Sensor priority decider : Deciding the final value of the importance of each 

sensor is the main goal of this stage. In this stage soft computing is used. In 
this stage we take each sensor importance value obtained from stage 1  as 
input to a fuzzy membership function (fuzzy set) and the old experience about 
the importance of this sensor in various environment situations. The 
experience importance value is obtained by getting always the average value 
of the importance value of the sensor. The experience value is passed to a 
fuzzy set. The initial value for the experience sensor value  is 0. The stage uses 
these two inputs to produce the final value of  importance for the sensor in the 
current situation. This is done by a constructed fuzzy rules and defuzzifying 
by using center of gravity or Sugeno-style inference. Using the system 
previous experience of the importance of the sensor is very significant. This 
will help the system to scale up always the importance of the sensor and how 
often it is used.   

 
   
3. Selecting the sensor: One of the important inputs for the T/CDS is the time 

needed by each sensor which is known. Knowing the importance of each 
sensor, the sensors are ordered based on their importance. The sensors to be 
checked are selected based on their priority order and T2.  

 
 Figure 2 shows the stages  of  TC/DS. A detailed explanation about the proposed 
system is provided in the next sections. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
3.1 Time/sensor decider  
 
In this stage, time  needed for the system to respond, the time needed to check the 
sensors and the values the specify the initial importance of the censors are produced. 
This output is based on the current situation of the environment. The current situation 
of the environment is the description of the situation. To make it clear, if the situation 
we have may produce a voice  and  a shape might be seen, the sensors related to voice 
recognition and vision are necessary, whereas a sensor related to touch might not be 
important in this case. Another situation is based on touch only which means the 
touch sensor is the only (the most important) sensor needed in this case. Knowing 
this, we can train a neural net using backpropagation. In our training, in addition to 
the sensor importance, we can also provide the time needed for the system to respond 
and the time needed to check the higher priority sensors. Figure 3 shows the Time/ 
sensor decider. The importance sensor in the figure and  later in the text is termed as 
ISj to indicate  the importance of the jth sensor. In case where no enough examples 
can be provided, neuroevolution technique can be used to find the values of T1 and 
T2 [10]. This needs a good fitness function based on the factors related to the problem 
domain. In addition, certain genetic operators are to be used properly.  
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3.2  Sensor priority decider 
  
This stage is to decide the final value for the sensor importance. The inputs of this 
stage are obtained from the first stage. For each sensor, there is a subsystem to obtain 
its final importance value. To find the final value of the sensor importance, inputs of 
the subsystem are inputs for a membership functions. The output of the membership 
functions  are passed to fuzzy rules and finally defuzzifying is applied to get the final 
value of the sensor importance. The first input is SIj, where the second input is the 
average value of  the jth sensor in each environment situation and indicated by AVGj. 
The initial value of AVGj is 0.To clarify this point, let us assume that we have tried n 
arbitrary number of environment situations, and let us assume further that ISjk  is the 
importance value of the jth sensor in the kth environmental situation. Then 
 
                 n  
AVGj =  ( Σ  ISjk ) / n        
                 k=1 
 
The computation of the AVGj is considered to be  a main factor of the final decision 
to reflect the importance of the jth sensor over various situations. This step will help 
the system to learn from its experience. 
 
An example of some of the rules that might be used in such as a system : 
 
IF ( ISjk is low) and (AVGj is low) Then (ISjk is low) 
IF (ISjk is low) and (AVGj is high ) Then (ISjk is moderate) 
IF (ISjk is high) and (AVGj is high) Then (ISjk is high) 
IF (ISjk is Med.) and (AVGj is low) Then (ISjk is low) 
  
These rules are absolutely domain dependent and based on the used membership 
functions. In the final stage defuzzifying is applied to obtain the final value of the 
sensor importance (FIS). This is done by any of the methods of defuzzifying such as 
Center of Gravity or Sugeno-Style inference. Based on the FIS value for each sensor, 
It would be very simple to order the sensors. The higher is the value of the FIS for the 
sensor, the more important is the sensor. Figure 4 shows the sensor priority decider 
stage. 
 
3.3  Selecting the sensor 
 
In this stage, the outputs of the first and second stages are used as inputs. The inputs 
of this stage are the final importance sensor values (FIS) for all the sensors and the 
time needed to decide  the importance of the sensors (T2). The importance of this 
stage is to distribute the T2 among the sensors based on their importance values. Each 
sensor 's needed operation time is known. This will help in deducting the operation 
time of the chosen sensor based on the priority from T2. This process will continue 
until the T2 is over. Some of the special cases regarding the left time of T2 and the 
time of the selected sensor 's operation time might be considered. In some cases, the 
left time of the T2 is less than the necessary operation time for the selected sensor. In 



this case, the next priority sensor 's operation time is checked.  Figure 5 shows 
selecting the sensor stage.    
 
To make a clear idea about selecting the sensors, let us consider Table 1. It is assumed 
in the table that T1 is 30 and T2 is 10. Therefore, T3 =  T1-T2 and is equal to 20. We 
assume further that we have six sensors in our system, each has a specific time to be 
checked (sensor requested time). The sensor priority in the table is assumed to be 
obtained after getting the FIS for each sensor. Based on the T2, this time has to be 
distributed among the sensors of the higher priority. Sensors 4,1,3, and 6 are chosen in 
order to be the sensors to be checked. It is to be noted that sensor 3 should be chosen 
instead of sensor 6, but because sensor 3 needs more time, which makes the total time 
(summed time of the selected sensors) exceeds T2, sensor 6 is chosen instead. A very 
important note can be considered here, the sensor requested time can be one of the 
main factors in the fuzzy rules or fuzzy sets to decide about the degree of the 
importance of the sensor instead of doing the procedure of exchanging the priority of 
the sensor 6 with that of sensor 3. 
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T1 T2 T3 Sensor 

number. 
Sensor 
requested 
time 

Sensor 
priority 

Selected 
sensors 
time 

1 5 2 5 
2 3 4 0 
3 2 3 2 
4 1 1 1 
5 4 6 0 

30 10 20 

6 2 5 2 
 

Table 1. An example of the selecting the sensor stage of the T/CDS 
 
4  Conclusions 
 
In this paper we tried to focus on a spot of research which has not been tried 
extensively. A theoretical model to solve the problem of distributing a slot of time to 
decide which sensors in industry or controller have more importance and effect than 
others in system response within time limits is developed. The main problem is that, 
considering all the sensors to take a decision might lead to inappropriate response 
time. Due to the lack of information and uncertainty emerged from various 
environmental situations, soft computing is used as a key operator to the developed 
system.  One of the main points of the proposed system is its dependence on its 
experience about the history of the degree of the importance of the sensor. The 
developed system is based on three stages, training and producing the initial 
importance values for the sensors, obtaining the final values of the importance values 
for the sensor, and finally determining  which sensors to be checked to take the action 
of the system within time constraints. This paper is the first part of a sequence of 
continuous work. It 's main goal is to help researchers  to  widen their perspective 
towards a solution to this yet not solved problem. Some of the future directions are 1. 
Exploring other solutions to the time/cost distribution problem 2. Implementation of 
the proposed system and apply it on various applications.  
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