
 Soft Computing as a solution to Time/ Cost Distributor

 Nabil M. Hewahi
 Department of Computer Science
 Islamic University Of Gaza- Palestine
 nhewahi@mail.iugaza.edu

Abstract. In this paper we present a theoretical model based on soft computing to
distribute the time/cost among the industry/machine sensors or effectors based on the
type of the application. One of the most unstudied significant work is to recognize
which sensor in an industry for example has higher priority than others. This is
important to know which sensor to be checked first and within time limits of the
system response. The problem of such systems is their variant environmental
situations. Based on these varied situations, the priority of the importance of each
sensor might change from time to another. Due to this uncertainty and lack of some
information, soft computing is considered to be one of the plausible solutions. The
presented idea is based on initially training of the system and continuously exploiting
the system experience of the degree of importance of the sensors. The proposed
system has three main stages, the first stage is concerned with training the system to
obtain the necessary system time to respond, the necessary time allocated to recognize
which sensors to check (or which has higher priority), and the initial importance value
for each sensor, which indicates the initial judgment about the sensor importance. The
second stage is to use the system experience about the importance of the sensor using
fuzzy logic to decide the final values of each sensor 's importance. Based on the
output of the second stage and the output of the first stage, the system distributes the
time/cost among the sensors (some sensors with lower priority might be neglected).
The main idea of the proposed work is based on neurofuzzy

Keywords: soft computing, neural networks, fuzzy logic

 Soft computing as a solution for Time/Cost Distributor

Abstract. In this paper we present a theoretical model based on soft computing to
distribute the time/cost among the industry/machine sensors or effectors based on the
type of the application. One of the most unstudied significant work is to recognize
which sensor in an industry for example has higher priority than others. This is
important to know which sensor to be checked first and within time limits of the
system response. The problem of such systems is their variant environmental
situations. Based on these varied situations, the priority of the importance of each
sensor might change from time to another. Due to this uncertainty and lack of some
information, soft computing is considered to be one of the plausible solutions. The
presented idea is based on initially training of the system and continuously exploiting
the system experience of the degree of importance of the sensors. The proposed
system has three main stages, the first stage is concerned with training the system to
obtain the necessary system time to respond, the necessary time allocated to recognize
which sensors to check (or which has higher priority), and the initial importance value
for each sensor, which indicates the initial judgment about the sensor importance. The
second stage is to use the system experience about the importance of the sensor using
fuzzy logic to decide the final values of each sensor 's importance. Based on the
output of the second stage and the output of the first stage, the system distributes the
time/cost among the sensors (some sensors with lower priority might be neglected).
The main idea of the proposed work is based on neurofuzzy

Keywords: soft computing, neural networks, fuzzy logic

1 Introduction
We introduce in this section the soft computing and its applications. On the other
hand we define the system which we present in this paper. It is time/cost distributor
system.

1.1 Soft Computing

Soft computing (SC) is a term originally expressed by Lotfi Zadeh [18][19] to denote
systems "exploit the tolerance for imprecision, uncertainty, and partial truth to achieve
tractability, robustness, low solution cost, and better rapport with reality" [19]. Soft
computing differs from conventional (hard) computing, unlike hard computing, it is
tolerant of impression, uncertainty, partial truth and approximation. The human mind
is the way in which soft computing work. SC techniques are a natural way of handling
the inherent flexibility with which humans communicate, request information,
describe events or perform actions. Soft computing has been divided into two groups
namely knowledge driven reasoning such as fuzzy logic and probabilistic reasoning,
and data driven search and optimization approaches such as neuro computing and
evolutionary computing[18][19]. Soft computing is a partnership in which each of the
partners contributes a distinct methodology for addressing problems in its domain.
Based on this vision, the main constituent methodologies in SC are complementary
rather than competitive. At present, the research activities of SC applications are
focused in the areas of structural engineering, environmental engineering, geo-
technical engineering, intelligent interfaces, information retrieval and intelligent

assistants. One of the good examples of a particularly effective combination is what
has come to be known as "neurofuzzy systems". Such systems are becoming
increasingly visible as consumer products ranging from air conditioners and washing
machines to photocopiers and camcorders[11][16][17]. Other combinations could be a
neural networks and genetic algorithms which is termed by "neuroevolution".
Neuroevolution has proven very high capabilities in various applications and in
reinforcement learning tasks [6-10,12-15]. In difficult real-world learning tasks such
as controlling robots, playing games, or pursuing or evading an enemy, there are no
direct targets that would specify correct actions for each situation. In such problems,
optimal behavior must be learned by exploring different actions, and assigning credit
for good decisions based on sparse reinforcement feedback. Comparing
neuroevolution to the standard reinforcement learning, neuroevolution is often more
robust against noisy and incomplete input, and allows continuous states and action
naturally. Much of the research in neuroevolution is on control tasks such as pole
balancing and mobile robot control. Some other applications are related to industry
controllers. Other existing combinations is the combination of neural networks,
genetic algorithms and fuzzy logic. Such systems area used in industry, medicine,
prediction and game playing [2][6][9][12][13][15].

1.2 Time/Cost Distributor System

Some of the very common systems for applications is applying Neural networks,
genetic algorithms, fuzzy systems, evolutionary computing or combination of them in
the real time industry system. In all the applications, the used technology works to
simulate, control or improve the performance of the industry. None of these trials
considered the system response time. Due to some factors, the industry should take a
certain action. The problem is to know which sensors should take more /less time to
be checked to allow the system to take the proper action within the time limit. Based
on the industry situation, the needed sensors to be checked differ from time to time.
We shall define the Time/Cost Distributor System (T/CDS) as a system that is
responsible for distributing the given time to the sensors based on their importance to
give the system the opportunity to respond within the time limit. This means, in
certain cases all the sensors might be checked, whereas in some other cases some of
them are checked. Figure 1 depicts T/CDS. As shown in Figure 1, the surrounding
environment is the input of the T/CDS. T/CDS distributes the time to be obtained by
one of its stages among the sensors to be checked based on their importance
according to the current situation. The output of T/CDS is the the time slot allocated
to each sensor to be checked. TSi in the figure means the slot of time allocated to the
ith sensor.

 Environment

T/CDS

TS1

TS2

TS3
 .
 .

TSn

 Figure 1. Time/Cost Distributor Systems

 Some of the applications that might use T/CDS are:

1. Robots that play soccer. At certain position(mostly), the robot has to know
where to pass the ball very quickly (might not check all his surroundings),
otherwise, one of his opponents might come and get the ball.

2. Automatic pilot in cases of emergency. A very fast response is required based
on the situation or the plane might get crashed.

3. Games where players should do some action or otherwise destroyed by other
player.

4. Industries and controllers

Another version of the same time distribution for controllers is the cost distributors.
Cost distributors can be used in economic and commercial applications. It can also be
used in information retrieval based on speed, memory and the size of the databases.

 2 Research Objectives

Designing T/CDS which is able to decide which sensor should be given more/less
priority in a given environmental situation, or even which is to be neglected is the
main objective of this research. This increases the ability to take the appropriate
action within time limits. The T/CDS should be able to decide the necessary time
limit for the whole system to respond, and the time limit necessary to check the
sensors with higher priority. To simplify this process, we consider T1 as the time limit
for the system to respond. T2 is the time to be lost to check the selected sensors. T3 is
T1-T2 which is the remaining time for the system response. The proposed T/CDS is
based on soft computing and more specifically on neurofuzzy system. Soft computing
is used here to overcome the problem of uncertainty, partial truth and approximation.
In [10], T/CDS system based on neuroevolution for real time system controllers is
proposed. The proposed system has four main stages, the first one is to decide the
time constraints based on the given environment surroundings, the second stage is to
distribute the time/cost to determine the importance of each behavior based on the
decided time by stage one. Stage three is to take the output of stage two to place
appropriate controller which finally applied to the forth stage to recognize the final
action of the system. It is shown how the proposed system can be applied on a soccer
robot example. The main difference between this approach and the approach which
we propose is that the system in [10] is based on neuroevolution and fitness function
to decide the degree of the importance of the sensor, whereas in our proposed system
as we shall see, the degree of the importance of a sensor is based on the system
experience which finally uses the neurofuzzy to decide it. In general, neuroevolution
technique is good when no enough examples can be provided, its performance
depends highly on the fitness function which is in common not easy to have an
optimum one. On the other hand, neurofuzzy is basically based on uncertainties and
lack of information, moreover, it is in general faster than neuroevolution in such kind
of problems.
Deciding the necessary time (changeable) to perform the action which is changeable
in real time applications, is one of the very challenging and not yet widely tackled

problems. This problem is difficult to solve using neural networks alone because in
many different situations the time needed and the action to be taken is changeable.
This research is a continuous research started in [10]. It is to explore and investigate a
solution to the posed problem of T/CDS using neurofuzzy technique. The purpose of
this research is to help other researchers to tackle the problem of T/CDS in a near
future.

3 The Proposed System

The proposed system is based on three stages :

1. Time/ sensor decider : This stage is concerned with deciding the time limit of
the system and the time needed for the sensors to be checked. In addition this
stage is concerned with specifying an initial value for each sensor. This value
is to indicate an initial impression about the importance of the system. This
stage is based on Backpropagation algorithm since several examples can be
provided. The input for this neural network is the environment inputs and the
output is the T1, T2 and the initial importance value for each sensor based on
the given environment inputs. This stage is firstly used alone to train the
system, then used as apart of the T/CDS system to get the values of the
sensors, and T1 and T2.

2. Sensor priority decider : Deciding the final value of the importance of each

sensor is the main goal of this stage. In this stage soft computing is used. In
this stage we take each sensor importance value obtained from stage 1 as
input to a fuzzy membership function (fuzzy set) and the old experience about
the importance of this sensor in various environment situations. The
experience importance value is obtained by getting always the average value
of the importance value of the sensor. The experience value is passed to a
fuzzy set. The initial value for the experience sensor value is 0. The stage uses
these two inputs to produce the final value of importance for the sensor in the
current situation. This is done by a constructed fuzzy rules and defuzzifying
by using center of gravity or Sugeno-style inference. Using the system
previous experience of the importance of the sensor is very significant. This
will help the system to scale up always the importance of the sensor and how
often it is used.

3. Selecting the sensor: One of the important inputs for the T/CDS is the time

needed by each sensor which is known. Knowing the importance of each
sensor, the sensors are ordered based on their importance. The sensors to be
checked are selected based on their priority order and T2.

 Figure 2 shows the stages of TC/DS. A detailed explanation about the proposed
system is provided in the next sections.

3.1 Time/sensor decider

In this stage, time needed for the system to respond, the time needed to check the
sensors and the values the specify the initial importance of the censors are produced.
This output is based on the current situation of the environment. The current situation
of the environment is the description of the situation. To make it clear, if the situation
we have may produce a voice and a shape might be seen, the sensors related to voice
recognition and vision are necessary, whereas a sensor related to touch might not be
important in this case. Another situation is based on touch only which means the
touch sensor is the only (the most important) sensor needed in this case. Knowing
this, we can train a neural net using backpropagation. In our training, in addition to
the sensor importance, we can also provide the time needed for the system to respond
and the time needed to check the higher priority sensors. Figure 3 shows the Time/
sensor decider. The importance sensor in the figure and later in the text is termed as
ISj to indicate the importance of the jth sensor. In case where no enough examples
can be provided, neuroevolution technique can be used to find the values of T1 and
T2 [10]. This needs a good fitness function based on the factors related to the problem
domain. In addition, certain genetic operators are to be used properly.

Sensor
priority
Decider

Sensors
Selector

Training

Time/Senor
decider

Figure 2. TC/DS proposed system

Environment situation 1

Environment situation 2

Environment situation 3

Environment situation n

 System time
limits (T1)

Figure 3 . Time/sensor decider

 .
 .

Time needed to check
the higher priority
sensors (T2)

 Importance sensor1

Importance sensor2

Importance sensor m

 .
 .

3.2 Sensor priority decider

This stage is to decide the final value for the sensor importance. The inputs of this
stage are obtained from the first stage. For each sensor, there is a subsystem to obtain
its final importance value. To find the final value of the sensor importance, inputs of
the subsystem are inputs for a membership functions. The output of the membership
functions are passed to fuzzy rules and finally defuzzifying is applied to get the final
value of the sensor importance. The first input is SIj, where the second input is the
average value of the jth sensor in each environment situation and indicated by AVGj.
The initial value of AVGj is 0.To clarify this point, let us assume that we have tried n
arbitrary number of environment situations, and let us assume further that ISjk is the
importance value of the jth sensor in the kth environmental situation. Then

 n
AVGj = (Σ ISjk) / n
 k=1

The computation of the AVGj is considered to be a main factor of the final decision
to reflect the importance of the jth sensor over various situations. This step will help
the system to learn from its experience.

An example of some of the rules that might be used in such as a system :

IF (ISjk is low) and (AVGj is low) Then (ISjk is low)
IF (ISjk is low) and (AVGj is high) Then (ISjk is moderate)
IF (ISjk is high) and (AVGj is high) Then (ISjk is high)
IF (ISjk is Med.) and (AVGj is low) Then (ISjk is low)

These rules are absolutely domain dependent and based on the used membership
functions. In the final stage defuzzifying is applied to obtain the final value of the
sensor importance (FIS). This is done by any of the methods of defuzzifying such as
Center of Gravity or Sugeno-Style inference. Based on the FIS value for each sensor,
It would be very simple to order the sensors. The higher is the value of the FIS for the
sensor, the more important is the sensor. Figure 4 shows the sensor priority decider
stage.

3.3 Selecting the sensor

In this stage, the outputs of the first and second stages are used as inputs. The inputs
of this stage are the final importance sensor values (FIS) for all the sensors and the
time needed to decide the importance of the sensors (T2). The importance of this
stage is to distribute the T2 among the sensors based on their importance values. Each
sensor 's needed operation time is known. This will help in deducting the operation
time of the chosen sensor based on the priority from T2. This process will continue
until the T2 is over. Some of the special cases regarding the left time of T2 and the
time of the selected sensor 's operation time might be considered. In some cases, the
left time of the T2 is less than the necessary operation time for the selected sensor. In

this case, the next priority sensor 's operation time is checked. Figure 5 shows
selecting the sensor stage.

To make a clear idea about selecting the sensors, let us consider Table 1. It is assumed
in the table that T1 is 30 and T2 is 10. Therefore, T3 = T1-T2 and is equal to 20. We
assume further that we have six sensors in our system, each has a specific time to be
checked (sensor requested time). The sensor priority in the table is assumed to be
obtained after getting the FIS for each sensor. Based on the T2, this time has to be
distributed among the sensors of the higher priority. Sensors 4,1,3, and 6 are chosen in
order to be the sensors to be checked. It is to be noted that sensor 3 should be chosen
instead of sensor 6, but because sensor 3 needs more time, which makes the total time
(summed time of the selected sensors) exceeds T2, sensor 6 is chosen instead. A very
important note can be considered here, the sensor requested time can be one of the
main factors in the fuzzy rules or fuzzy sets to decide about the degree of the
importance of the sensor instead of doing the procedure of exchanging the priority of
the sensor 6 with that of sensor 3.

ISj AVGj

 Fuzzy subsets Fuzzy subsets

Fuzzy Rule base

Defuzzifying

FISj

 Figure 4. Sensor Priority Decider

Selecting
the sensor

T2

FIS

TS1

TSn

TS2
 .
 .

Figure 5. Selecting the sensor stage

T1 T2 T3 Sensor

number.
Sensor
requested
time

Sensor
priority

Selected
sensors
time

1 5 2 5
2 3 4 0
3 2 3 2
4 1 1 1
5 4 6 0

30 10 20

6 2 5 2

Table 1. An example of the selecting the sensor stage of the T/CDS

4 Conclusions

In this paper we tried to focus on a spot of research which has not been tried
extensively. A theoretical model to solve the problem of distributing a slot of time to
decide which sensors in industry or controller have more importance and effect than
others in system response within time limits is developed. The main problem is that,
considering all the sensors to take a decision might lead to inappropriate response
time. Due to the lack of information and uncertainty emerged from various
environmental situations, soft computing is used as a key operator to the developed
system. One of the main points of the proposed system is its dependence on its
experience about the history of the degree of the importance of the sensor. The
developed system is based on three stages, training and producing the initial
importance values for the sensors, obtaining the final values of the importance values
for the sensor, and finally determining which sensors to be checked to take the action
of the system within time constraints. This paper is the first part of a sequence of
continuous work. It 's main goal is to help researchers to widen their perspective
towards a solution to this yet not solved problem. Some of the future directions are 1.
Exploring other solutions to the time/cost distribution problem 2. Implementation of
the proposed system and apply it on various applications.

References

[1] A. Agogino, K.Stanley and R.Miikkulainen, Online interactive neuro-evolution,
Neural Processing Letters, 11, pp 29-37, 2000.
[2] A.Conradie, Risto Miikkulainen and C.Aldrich, Adaptive control utilizing Neural
swarming, Proceedings of the 2002 Genetic&Evolutionary Computation Conference
(GECC-2002), 2002.
[3] G.Drake and J.Smith, Simulation system for real-time planning, scheduling and
control, Proceedings of 28th Conference on Winter Simulation, pp 1083-090,1996.
 [4] J.Fan, R.Lau and R.Miikkulainen, Utilizing domain knowledge in neuroevolution,
Proceedings of the Twentieth Inter. Conf. On Machine Learning(ICML-03)
Washington,Dc, 2003.
[5] R.Florian, Evolution of alternate object pushing in a simulated embodied agent:
Preliminary report, Center for Cognitive and Neural Studies (Coneural), Romania,
August, 2004.

[6] F.Gomez , Robust non-linear control through neuroevolution, Ph.D dissertation,
The university of Texas at Austin,USA, 2003.
[7] F.Gomez and R.Miikkulainen, Transfer of Neuroevolved Controllers in Unstable
Domains, Proceeding of The Genetic Evolutionary Computation Conference
(GECCO 2004), 2004.
[8] F.Gomez and R.Miikulanien, Active Guidance for a Fitness Rocket using
Neuroevolution, Proceedings of Genetic Evolutionary Computation Conference
(GECC-03), 2003.
[9] N. Hewahi, Engineering Industry Controllers Using Neuroevolution, Journal of
AIDAM: Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
USA,19,pp 49-57, 2005.
[10] N.Hewahi, Neuroevolution Based Time/Cost Distributor For Real Time System
Controllers, Proceedings of the 2nd Inter. Conference on Information Technology,
Amman, Jordan, pp 189-193, 2005.
[11] D. Hong, C.Hwang, Abrief Introduction to Soft Computing, Proceedings of the
Autumn Conference, Korean Statistical Society, pp 65-66, 2004.
[12] D.Law and R.Miikkulainen, Grounding Robotic Control with Genetic Neural
Networks, (Technical Report AI-94-223). Department of Computer Sciences, The
University of Texas at Austin, 1994.
[13] S.Nolfi and D.Floreano, Evolutionary Robotics, MIT press, Cambridge, 2000.
[14] S.Nolfi and D.Parisi, Evoultion of Artificial Neural Networks, in M.A.Arbib(Ed.)
Handbook of Brain Theory and Neural Networks, 2nd edition, Cambridge, MA: MIT
press, pp 418-421, 2002.
[15] K.Stanley and R.Miikkulainen, Efficient evolution of neural network
topologies,Proceedings of the 2002 Congress on Evolutionary Computation(CEC’02),
2002.
[16] S.Taheri, Trends in Fuzzy Statistics, Australian Journal of Statistics, 32,pp.239-
257,2003.
[17] H.Takagi, S. Kamohara, T. TAKEDA, Introduction of Soft Computing
Techniques to Welfare Devices, IEEE Midnight-Sun Workshop on Soft Computing
Methods in Industrial Applications (SMCia'99), Kuusamo, Finland, June 16-18, pp
116-121, 1999.
[18] L.A.Zadeh, Fuzzy logic, Neural Networks and Soft Computing, Comm. Of
ACM, Vol.37,No.3,pp. 77-84, March 1994.
[19] L.A.Zadeh, Soft Computing and Fuzzy Logic, IEEE Software, Vol.11, No.6,pp
48-58, 1994.

