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ABSTRACT: In this paper, we have proposed a new
neural network based hybrid intuitive approach for biped
robot’s adaptive walking. Our approach takes advantage
on the one hand from a Fuzzy-CMAC based stage and on
the other hand from high level intuitive control strategy
involving only the regulation of the robot’s average
velocity. The main interest of this approach is to proffer
to the walking robot autonomy and robustness, involving
only one parameter: the average velocity. Experimental
results validating the proposed intelligent hybrid control
strategy have been presented and discussed.

Keywords: Artificial Neural Networks, Fuzzy-CMAC,
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1. INTRODUCTION

One of the most challenging topics, over the recent
decades, in the field of robotics concerned the design and
the control of biped robots. Several potentialities make
this foremost research area particularly appealing in the
frame of middle and long term projection. On the
fundamental side, advances in this research area can lead
to a better comprehension of the human locomotion
mechanisms. From, the applicative point of view, it could
concern a wide spectrum of applications among which:
the design of more efficient prosthesis and the
construction of more sophisticated humanoid robots for
interventions in hostile environments.

However, if autonomy and decision ability of such
biped humanoid robots is a vast dare, their basic
locomotion remains still today a big challenge. If it is true
that a number of already constructed prototypes (Asimo
[1] and HRP-2P [2], have proved the feasibility of such
robots, it is also factual that the performances of these
walking machines are still far from equalizing the
human’s dynamic locomotion process. That is why the
design of new control schemes allowing adaptability to
complex environment for real dynamic walking is thus
today fundamental. In fact, such robots must be able to
adapt themselves automatically to indoor and outdoor
human environments. Consequently, it is necessary to

develop appropriated control strategies in order to allow
them, on the one hand to adapt their gait to the complex
environment and on the other hand, to counteract external
perturbations.

In the field of bipeds’ locomotion, the control
strategies could be classified in two main categories. The
first one is based on a kinematics and dynamic modeling
of the whole robot’s mechanical structure, implying to
identify perfectly the intrinsic parameters of its
mechanical structure. However, additionally to high
precision measurements (of the limbs’ angles, velocities
and accelerations) requirements and to a precise
evaluation of interaction forces (between feet and
ground), the modeling of whole biped robot taking into
account real environment remains a very complex task.
That is why the computing of the on-line trajectories are
generally performed using simplified models ([3], [4], [5],
[6]), making this first strategy not always well adapted
when biped robots move in real environment including
internal and external perturbations, and changes of the
foot/ground interactions. The second solution consists to
use the soft-computing techniques (fuzzy logic, neural
networks, genetic algorithm, etc...) and heuristically
established rules resulting from the expertise of the
walking human. Two main advantages distinguish this
second class of approaches. Firstly, it is not necessary to
know perfectly the characteristics of the mechanical
structure. Secondly, this category of techniques takes
advantage from learning capabilities. This last point
constitutes a key point for autonomy of the biped robot.

We are investigating fully autonomous biped robot’s
walking based on a soft-computing approach. In this
paper, we present a CMAC (Cerebellar Model Control
Avrticulation) neural network based adaptive control
strategy able to generate changing walking gait. This
neural network has already used to generate the joint
trajectories of the swing leg with fixed (constant) gait [7].
In this paper, we show how it is possible to change the
walking gait by using a fuzzy based fusion of different
trajectories learned by a set of CMAC neural networks.
The validation of proposed approach has been done on an



under-actuated robot: RABBIT [8], [9]. This robot
constitutes the central point of a project, within the
framework of CNRS (Centre Nationale de la Recherche
Scientifigue) ROBEA (ROBotique et Entité Artificielle)
program [10], concerning the control of walking and
running biped robots, involving several French
laboratories.

This paper is organized as follows. Before describing
our Fuzzy-CMAC hybrid strategy in section 4, section 2
presents the RABBIT robot and the numerical model
simulating the dynamic behavior of this under-actuated
robot. Then section 3 reminds structure and principles of
the CMAC-like neural network. Section 5 gives the main
obtained validation results. Finally, conclusions and
further perspectives of the presented work are given by
the last section.

2. RABBIT ROBOT AND ITS BEHAVIOR

SIMULATION TOOL

This robot is composed of two legs and a trunk and
has no foot as shown on figure 1. The characteristics
(masses and lengths of the limbs) of this biped robot are
summarized in table 1.

Fig.1 - RABBIT prototype’s photograph.

Table 1. Masses and lengths of the robot’s limbs

Limb Weight (kg) Length (m)

Trunk 12 0.2
Thigh 6.8 0.4
Shin 3.2 0.4

The motions of this robot are included in the sagittal
plane by using a radial bar link fixed at a central column
that allows one to gait the direction of progression of the
robot around a circle. Since the contact between the robot
and the ground is just one point (passive Degree Of
Freedom), the robot is under-actuated during the single
support phase: there are only two actuators (at the knee
and at the hip of the contacting leg) to control three
parameters (vertical and horizontal position of the

platform and pitch angle). If it is true, from design point
of view, that RABBIT is simpler compared to a robot
with feet, from the control theory point of view, the
control of this robot is a more challenging task,
particularly because, in phase of single support, the robot
is under-actuated. It is interesting to note that this robot is
minimal system able to generate a dynamic biped walking
and running gaits.
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Fig.2 — Modeling RABBIT’s behavior with ADAMS.

A numerical model of the previously described robot
has been implemented within the ADAMS software. This
software is able to simulate RABBIT’s dynamic behavior
and namely to calculate the absolute motions of the
platform and the relative motions of the limbs when
torques are applied on the joints by the virtual actuators
(figure 2). The model used to simulate the interaction
between feet and ground is exposed in [11]. The normal
contact force is given by equation (1), wherey and y are

foot’s position and velocity (with regard to the ground),

respectively. kcn and /12 represent the generalized

stiffness and damping of the normal forces, respectively.
They are chosen in order to avoid the rebound and to limit
the penetration of the foot in the ground. The tangential
contact forces are computed using equation (2) in the case
of a contact without sliding or with the equation (3) if
sliding occurs. x and X are respectively the position and
the velocity of the foot with regard to the position of the

contact point X, at the instant of impact with ground.

ki and A, are respectively the generalized stiffness
is the

coefficient of dynamic friction depending on the nature of
surfaces in contact and g a viscous damping

and damping of the tangential forces. /19

coefficient during sliding. The interest of this model is
that it is possible to simulate walking with or without
phases of sliding allowing us to evaluate the robustness of
the control.
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Within the framework of a real robot’s control, the
morphological description of this one is insufficient. It is
thus necessary to take into account the technological
limits of the actuators in order to implement the control
laws used in simulation on the experimental prototype.
From the characteristics of servo-motor RS420J used for
RABBIT, we thus choose to apply the following
limitations:

e when velocity is included in [0 , 2000] rpm, the
torque applied to each actuator is limited to 1.5 Nm
what corresponds to a torque of 75 Nm at the output
of the reducer (ration gear equal to 50),

e when velocity is included in [2000 , 4000] rpm the
power of each actuator is limited to 315 W,

e when the velocity is bigger than 4000 rpm, the
torque is imposed to be equal to zero.

3. CMAC NEURAL NETWORK

The CMAC is a neural network imagined by Albus
from the studies on the human cerebellum [12] [13].
Despite its biological relevance, its main interest is the
reduction of the training and computing times in
comparison to other neural networks [14]. This is of
course a considerable advantage for real time control.
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Fig.3 — Bloc- diagram showing example of a three layers
CMAC ANN.

CMAC is an associative memory type neural network.
Its structure includes a set of Ny detectors regularly
distributed on several C, layers. The receptive fields of
these detectors cover the totality of the input signal but
each field corresponds to a limited range of the inputs. On
each layer, the receptive fields are shifted of a
quantification step g. Consequently, the widths of the
receptive fields are not always equal. When the value of
the input signal is included in the receptive fields of a
detector, this one is activated. For each value of the input
signal, the number of activated detectors is equal to the
number of layers C, (parameter of generalization). Figure
3 shows a simplified organization of the receptive fields
having 14 detectors distributed on 3 layers. Taking into
account the receptive fields’ overlapping, neighbouring
inputs will activate common detectors. Consequently, this
neural network is able to carry out a generalization of the

output calculation for inputs close to those presented
during learning (local generalization).

The output Y of the CMAC ANN (Artificial Neural
Network) is computed using two mappings. The first
mapping projects an input space point u into a binary
associative vector A=[ay,...,ay]. Each element of A is
associated with one detector. When one detector is
activated, the corresponding element in A of this detector
is 1 otherwise it is equal to 0. The second mapping
computes the output Y of the network as a scalar product
of the association vector A and the weight vector
W=[wj,..wy] according to the relation (4), where (u)’
represents the transpose of the input vector.

Y=A(u)w 4)

The weights of CMAC ANN are updated by using
equation (5). w(i) and w(i-1) are, respectively, the weights
before and after the training at each sample time i
(discrete time). C, is the generalization number of each
CMAC and g is a parameter included in [0,1]. e is the
error between the desired output Y¢ of the CMAC and the
computed output Y of the corresponding CMAC.

w(i) = w (i—1)+% (5)

The intrinsic structure of CMAC neural model is
relatively well adapted for the control of complex systems
and has already been subject of some researches in the
field of the control of biped robots [15], [16]. However,
the memory size depends firstly of the input signal’s
quantification step and secondly of the input space’s size.
For real applications, the CMAC memory size is very
large because the quantification step must be small in
order to increase precision and generally the size of the
input space is greater than two. In order to solve this
problem, hashing function is used. But in this case,
because the weight memory is smaller than virtual
addressing memory, some collisions can occur. Another
problem occurring in the case of multi-input CMAC is the
necessity to use a learning database covering the totality
of the input space. This is due to the local generalization
abilities of the CMAC and implies to do a lot of
simulation.

4. PROPOSED APPROACH

In this paper, we propose a new approach allowing a
mixture of local and global generalization: the Fuzzy-
CMAC. Our Fuzzy-CMAC approach is based on a fusion
of the all outputs of each single-input CMAC. This fusion
is carried out by using Takagi-Sugeno FIS (Fuzzy
Inference System). This allows to decrease the memory
size and to increase the generalization abilities in
comparison to a multi-input CMAC.

Figure 4 gives the bloc diagram of the proposed
hybrid architecture. Two main parts compose this
architecture. The first one computes the trajectory of the
swing leg using several CMAC neural networks’ outputs
and a Fuzzy Inference System. The second one allows
regulating the average velocity from a modification of the



desired pitch angle at each new step. In this section, we
present essentially the Fuzzy-CMAC. For more
information about the control strategy, please see [7].
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Fig.4 — Bloc- diagram of the Fuzzy-CMAC based hybrid
control strategy.

The Fuzzy-CMAC approach requires two stages:

e during the first stage, we carry out the training of
each CMAC. The data learned by the CMAC
correspond at the trajectories of the swing leg.

e during the second stage, we use a fusion of the
trajectories learned by CMAC ANN.

4.1. LEARNING CMAC ANN

During the learning phase, we use a set of pragmatic
rules allows generating a stable dynamic walking with
velocity variations corresponding to different step lengths
[17]. This intuitive control strategy is based on three
points:

o the observation of the relations between joint
movements and the evolution of the parameters
describing the motions of the robot platform,

e an interpretation of the muscular behaviour,

o the analysis of the intrinsic dynamics of a biped.

The goal is to generate the legs’ movements by using

a succession of passive and active phase based on
parametric  rules  determined from the three
aforementioned points. Also, it becomes possible to
modify step length, average velocity by an adjustment of
different parameters allowing a set of reference
trajectories (data) which are learned, as it has been
previously indicated, by a set of CMAC neural networks.
However, during this first stage, we consider that the
virtual robot move in an ideal environment (without
disturbance). We also assume that frictions are negligible.
Figure 5 shows the bloc diagram of the training
strategy. The trajectories of the swing leg (in terms of
joint positions and velocities) are learned by four "single-
input/single-output CMAC, with k=1,...4 neural
networks (four trajectories to learn). The learned
trajectories are joint angles q;; and q;,, and the two

corresponding angular velocities ¢;; and ¢;,. @g;; and
Qg;, are respectively the measured angles at the hip and
the knee of the leg i. In the same way, ¢;; and d;, are

respectively the measured angular velocities at the hip and
the knee of the leg i (see figureb).

Virtual robot

Fig. 5 — Learning strategy principle’s bloc diagram.

When leg 1 is in support (e.g. g;, =0), the input of
each CMAC ANN is the angle g,; (e.9. u=q;,) and
when leg 2 is in support (g,, =0), the CMAC networks’
input is the angle g,; (e.9. u=q,;). Consequently, the

trajectories learned by the neural networks are not
function of time but depends on robot’s geometrical
patterns. Furthermore, we consider that the trajectories of
each leg in swing phase are identical. This allows
reducing on the one hand the required number of CMAC
neural networks (reducing by two) and on the other hand
the training time. Each CMAC, have 6 C, layers. The
width of the receptive fields, L, is equal to 1.5° and the
quantification step q is equal to 0.25°. The input signal is
included in [qi,™ - gi’™].

During the training stage, five trajectories
corresponding to five different average velocity values
(Vy measured in m/s) included in [0.4 , 0.8] interval are

learned by five CMAC based modules. Each module
(labelled CMAC', with 1e{1,2,3,4,5}) includes four

CMAC, neural networks (corresponding to the four
above-mentioned robot’s trajectories). Table 2 gives the
main parameters, used in the intuitive control, during the
learning phase according to the desired average velocity
Vu -

Table 2. Parameters used during the learning phase

Vi (M5) | qf ) | q% ) | a )
CMAC! 0.4 20 -7 35
CMAC? 0.5 25 -10 3.0
CMAC® 0.6 30 -15 25
CMAC* 0.7 35 -20 8.0
CMAC® 0.8 40 -25 8.0

qf and qg are respectively the desired relative angle
between the two thighs and the desired pitch of the trunk.
qsdW corresponds to the desired angle of the knee at the

end of the knee extension of the swing leg just before the
double contact phase. V,, is computed by using relation

(6) where Lg,, is the distance between the two feet at the



moment of double impact and tg,, is the duration of the
step (from takeoff to landing of the same leg).

L
Vi = (6)

step

The number of the receptive field Ny for each reference
walking is given by equation (7). Ny depends of the

limited range [q1®™ , g™ ] of the input signal, the

width of the receptive fields Ly and the number of layer
C;. Table 3 gives the number of the receptive fields

necessary of each CMAC' in function of 1" and g7 .
q_max _ q_min
Ny =——C,+C, -1 7)

f

Table 3. Number of the receptive fields for each
CMAC'

Vy (m/s) | g™ ) | g™ () Ng
CMAC! 0.4 -8 115 83x4
CMAC? 0.5 -10.5 15 107x4
CMAC® 0.6 -12 18 125x4
CMAC* 0.7 -15 21 149x4
CMAC® 0.8 -16.5 24 167x4

4.2. FUZZY-CMAC

The final desired trajectory Y and the corresponding
angular positions and velocities are computed by the
Fuzzy based level, inherent to the Fuzzy-CMAC
architecture, on the basis of predefined membership
functions. These angular positions (qg;; and q;,), and the

two corresponding angular velocities (d;; and g;,) are

carried out by using fusing the five aforementioned
learned trajectories. This fusion is realized by using a
Fuzzy Inference System (FIS), composed of the five
following rules, where Y'corresponds to the output of

CMAC' with 1 €{1,2,3,4,5}:

e IFV, ISVerySmall THEN Y =Y

e IFV,, IS Small THEN Y =Y ?2

e IFV, ISMediumTHEN Y =Y?3

e IFV, ISBigTHENY =Y*

e IFV, ISVeryBigTHEN Y =Y°

Figure 6 gives the membership functions

corresponding to the upper-indicated FIS rules. The
average velocity is modelled by five fuzzy sets
(“VerySmall”, “Small”, “Medium”, “Big”, “VeryBig”).

04 0s 0.6 07 08

Fig. 6 — Membership functions used by Fuzzy Inference
stage of Fuzzy-CMAC.

The desired trajectory Y is computed by using
equation (8), where ,ul represents the fuzzy membership

parameter.
5
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5. VALIDATION RESULTS

Figure 7 gives the stick diagram of the biped robot’s
walking sequence when the desired average velocity
increases. It must be noticed that the control strategy
allows adapting automatically the pitch angle and the step
length as the human being.

Fig. 7 — Stick diagram showing a walking sequence of the
biped robot with increasing average velocity increases.

Figures 8 and 9 show the evolution of the angle q;
and d;, when the average velocity increases. It is

interesting to note that, as it has been mentioned before,
the trajectory depends on the one hand on the stance leg’s
geometrical position and on the other hand on the
measured average velocity. The regulation at each step of
the average velocity is obtained thanks to an adequate
adjustment of the pitch angle (see figure 4). In fact, the
biped robot is able to adapt his gait with only one
parameter: the real average velocity. Furthermore, if the
robot is pushed forwards, the average velocity increases
and consequently the step length increases in order to
compensate this kind of perturbations.
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Consequently, the proposed approach allows us, with
a limited number of learned walking, to control biped
walking robot in autonomous manner. Furthermore, the
Fuzzy-CMAC permits to reduce considerably the size
memory of the ANN.

6. CONCLUSIONS

In this paper, we have proposed a new neural network
based hybrid intuitive approach for biped robot’s adaptive
walking taking advantage on the one hand from a Fuzzy-
CMAC issued computation of robot’s swing leg’s desired
trajectory and on the other hand from high level intuitive
control strategy involving only the regulation of the
robot’s average velocity. The main interest of this
approach is to proffer to the walking robot autonomy and
robustness. The obtained results show the adaptability of
the walking step length. Furthermore, the Fuzzy-CMAC
approach allows decreasing the memory size in
comparison to the traditional multi-input CMAC ANN.

Future works will focus firstly on the extension of the
Fuzzy-CMAC approach in order to increase the autonomy
of the walking robot according to the nature of the
environment (get up and down stairs for instance),
avoidance and dynamic crossing obstacles and secondly
on the experimental validation of our approach.
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