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Abstract—In this article, a modular neurocontroller is as a methodology for study embodied systems consisting
presented. It has the capability to generate a reactive behavior of sensors and actuators for explicit agent-environment

of walking machines. The neurocontroller is formed on the ; ; P :
; . . interactions or th n displ rtificial r ion-
basis of a modular structure. It consists of the three dif- te. actions or they can display as artificial perceptio
action systems.

ferent functionality modules: neural preprocessing, a neural - ) ] ] ) )
oscillator network and velocity regulating networks. Neural Here, the biologically inspired six-legged walking ma-
preprocessing is for sensory signal processing. The neural os- chine AMOS-WDO06 is employed as an experimental

cillator network, based on a central pattern generator (CPG),  device for the development and testing of a neurocontroller
generates the rhythmic movement for basic locomotion of . sing a sensor-driven reactive behavior. This neurocon-

the walking machines while the velocity regulating networks ler i d he basis of dul o
(VRNs) change the walking directions of the machines with troller is created on the basis of a modular structure; 1.e.

respect to the sensory inputs. As a result, this neurocontroller it is flexible to adapt for controlling in different walking
enables the machines to explore in- and out-door environ- machines [27] and it is even able to modify for generating

ments by avoiding obstacles and escaping from corners or (different reactive behaviors, e.g. sound tropism (positive

deadlock situations. It was firstly developed and tested on @ yyqism) [28]. In this article, it is constructed in the way

physical simulation environment, and then was successfully . . . )

transferred to the six-legged walking machine AMOS-WD06. that it 'enables' the walking mgchme to av0|d.the obstacles
(negative tropism) by changing the rhythmic leg move-

Index Terms—walking machines, recurrent neural net- ments of the thoracic joints. Furthermore, it also prevents
works, modular neural control, obstacle avoidance, sensor- the walking machine from getting stuck in corners or
driven reactive behavior deadlock situations by applying hysteresis effects provided
by the recurrent neural network of the neural preprocessing
module.

The idea behind this article is to investigate the neural The following section describes the technical specifica-
mechanisms controlling biologically inspired walking ma- tions of the walking machine together with its physical
chines represented as sensor-driven systems. The systegasiulator. Section 3 explains a modular neurocontroller
are designed in a way that they can react to real environogether with the subnetworks (modules) for a reactive
mental stimuli (positive or negative tropism) as they sens@bstacle-avoidance behavior. The experiments and results
without concern for task planning algorithm or memory are discussed in section 4. Conclusions and an outlook on
capacities. future research are given in the last section.

Research in the domain of biologically inspired walking
machines has been ongoing for over 10 years. Most of theml!. THE BIOLOGICALLY INSPIRED WALKING MACHINE
has been focussed on the construction of such machines [6], AMOS-WDO06

[14], [17], [29], [31] on a dynamic gait control [25], [33],  The AMOS-WDO06 [26] consists of six identical legs and
and on the generation of an advanced locomotion contrgdsch leg has three joints (three degrees of freedom (DOF))
[2], [11], [22], for instance on rough terrain [4], [5], [13], which is somewhat similar to a cockroach leg [32]. The
[18], [21]. In general, these walking machines were solelyypper joint of the legs, called thoracic joint, can move
designed for the purpose of motion without the sensing ofhe |eg forward and backward while the middle and lower
environmental stimuli. However, from this research areajoints, called basal and distal joints respectively, are used
only few have presented physical walking machines reaciyy elevation and depression or even for extension and
ing to an environmental stimulus using different approachegiexion of the leg. The levers which are attached to distal
[1]. [3], [20], [30]. joints were built with proportional to the dimension of the

On the one hand, this shows that less attention has begRachine. And they are kept short to avoid greater torque in
paid to the walking machines performing a reactive behav-

ior. On the other hand, such complex systems can serve!Advanced MObility Sensor driven-Walking Device 06.

I. INTRODUCTION



the actuators. This leg configuration provides the machinef the trunk. Moreover, a tail with two DOF rotating in the
with the possibility to perform omnidirectional walking; horizontal and vertical axes was implemented on the back
i.e. the machine can walk forward, backward, lateral andf the trunk. The tail was motivated by a scorpion tail
turn with different radii. Additionally, the machine can also with sting which can actively move [10]. All leg joints are
perform a diagonal forward or backward motion to the leftdriven by analog servomotors producing a torque between
or the right by activating the forward or backward motion 80 and 100 Ncm. The backbone joint is driven by a digital
together with the lateral left or right motion. The high servomotor with a torque between 200 and 220 Ncm. For
mobility of the legs enables the walking machine to walkthe tail joints, micro-analog servomotors with a torque
over an obstacle, stand in an upside-down position or evearound 20 Ncm were selected. The height of the walking
climb over obstacles (see Fig. 1). machine is 12 cm without its tail and the weight of the fully
equipped robot (including 21 servomotors, all electronic
components and a mobile processor) is approximately 4.2
kg. In addition, the walking machine has six Infra-Red (IR)
sensors. Two of them, which can detect the obstacle at
a long distance between 20-150 cm, were fixated at the
forehead while the rest of them, operating at a shorter
distance between 4-30 cm, were fixated at the two forelegs
Fig. 1. (A) The AMOS-WDO06 walks over an obstacle with the maximum and two middle legs. They h.elp the Walkm_g_ machine to
height of 7 cm, (B) stands in an upside-down position and (C) climbs ovedetect obstacles and prevent its legs from hitting obstacles,
obstacles with the help of an active backbone joint (arrow). like chair or desk legs. Also, one upside-down detector
was implemented beside the machine trunk. It provides

Inspired by invertebrate morphology of the americanthe in_formation of gpside_-d_ovyn position of thg walkin_g
cockroach’s trunk and its motion (see Fig. 2), a backbong]achme' On the ta'.l’ amini wweless_ camera with a bu_|It—
joint which can rotate in a horizontal axis was constructed!” mlcrqphone was !nstallec_i for monitoring and observing
It is desired to imitate like a connection between the ﬁrstIhe enwronment while walking. .

(T1) and second (T2) thoracic of a cockroach. Thus, it will All in all the AMOS-WD06 has 21 active degrees of
provide enough movement for the machine to climb ove{reedom, 7 sensors and 1 wireless camera, and therefore
an obstacle by rearing the front legs up to reach the top df Can Serve as a reasonably complex platform for ex-

an obstacle and then bending them downward during Ste;E,eriments concerning the functioning of a neural sensor-
climbing (compare Fig. 1C). driven system. However, to test neurocontrollers and to

observe the reactive behavior of the walking machine
(e.g. obstacle avoidance), it was firstly done through a
physical simulation environment, namely “Yet Another
Robot Simulator” (YARS). The simulator is based on
Open Dynamics Engine (ODE) [34]. It provides a defined
set of geometries, joints, motors and sensors which is
adequate to create the AMOS-WDO06 with IR sensors in
a virtual environment with obstacles. The basic features of
the simulated walking machine are closely coupled to the
physical walking machine, e.g. weight, dimension, motor
o2 A cockroach climb | bstacles. It bend its ¢ torque and so on. It consists of body parts (head, backbone
dowrward at he Joint between the irst (11> and second (T2) thoracie 1JOINt: runk and limbs), servomotors, IR sensors and an
keep the legs close to the top surface of the obstacles for an optimur@dditional tail. The simulated walking machine with its
climbin_g position and even to prevent unstable actions (modified fromyijrtual environment is shown in Fig. 3.
R.E. Ritzmann 2004 [32] with permission). Furthermore, the simulator enables an implementation,
which is faster than real time and which is precise enough
However, this active backbone joint will not be activatedto present the corresponding behavior of the physical walk-
in a normal walking condition of the machine. Mainly, it ing machine. This simulation environment is also connected
is used to connect the trunk (second thoracic), where twio the Integrated Structure Evolution Environment (ISEE)
middle legs and two hind legs are attached, with the heaff4] which is a software platform for developing neuro-
(first thoracic), where two forelegs are installed. The trunkcontrollers. In the final stage, a developed neurocontroller
and the head are formed with the maximum symmetry ta@fter the test on the simulator is then applied to the
keep the machine balanced for the stability of walking.physical walking machine to demonstrate the behavior in
They are also designed to be as narrow as possible to ensure
optimal torque from the supporting legs to the center line 2http:/mww.ais.fraunhofer.de/INDY/, see menu item TOOLS.




To do so, all signals of IR sensor$§ K1, IR2, 1IR3,

IR4, IR5 andI R6) are mapped onto the intervat1, +1],

with —1 representing “no obstacles”, ardl “an obstacle

is detected”. Then, the three sensory signals on each side

(right or left) are simply combined in a linear domain of

the sigmoid transfer function at hidden neurons; i.e. each of

0.15. The output signals of the hidden neurons are directly

connected to the output neuron@ut1, Out2) while the

Fig. 3. (A) Top view of the simulated walking machine with the virtual fig| output signals of the networlOutputl, Output2)

environment. (B) The simulated walking machine. . .
will be connected to another network called the velocity
regulating networks (VRNSs) described later. The parame-
ters of the preprocessing network were manually adjusted

the real environment. The controller is then programmedn the basis of its well understood functionality [23].

into a mobile processor (a personal digital assistant (PDA)) First, the bias term B) of the hidden neurons is set

with an update frequency of up to 75 Hz. The PDA istg determine a threshold value of the sum of the sensory

interfaced with the Multi-Servo 10-Board (MBoard) which jnputs, e.g. 0.2. When the measured value is greater than

digitizes sensory input signals and generates a pulse widtfe threshold in any of the three sensory signals, excitation

modulation (PWM) signal at a period of 20 ms to commandof the hidden neuron on the corresponding side occurs.
the servomotors. The communication between the PDA an@donsequently, the activation of each hidden neuron can

the MBoard is accomplished via an RS232 interface at 57.Qary in the range betwees -0.245 (“no obstacles is de-

kBits per second. tected”) andr 0.572 (“all three sensors on the appropriate
side simultaneously detect obstacles”). Furthermore, the
weights from the hidden to the output units are set to a
In order to create the robust and effective neurocontrollehigh value, i.e.W7 s = 25, to eliminate the noise of the
which is able to generate exploration and reactive obstaclgensory signals. In fact, these high multiplicative weights
avoidance behaviors, the dynamical properties of recurrersirive the signals to switch between two saturation domains,
neural networks are utilized. The standard additive neurofne low ¢ -1) and the other higha{ +1). After that,
model with sigmoidal transfer function together with its the self-connection weightsi}(s.10) of Outl and Out2
time-discrete dynamics is given by were manually adjusted to derive a reasonable hysteresis
. input interval which results to an appropriate turning angle
_ . of the walking machine when the obstacles are detected.
ai(t+1) = Bi+z Wiy tanh(a;(8)) i =1,....n (1) Hereby, they are set to 4. Finally, the recurrent connections
(W11,12) between output neurons were symmetrized and
where n_denotes the number of unitg, their activity, manually adjusted to the value of -2.5. This guarantees the
B; represents a fixed internal bias term together with @ptimal functionality described later. The resulting network
stationary input to neurofy andV;; the synaptic strength s shown in Fig. 4.
of the connection from neurop to neuroni. The output
of the neurons is given by the sigmoig = tanh(ai)- Inputs on the left Inputs on the right
Input units are configured as linear buffers. The modular fRd IR5 RS TR1 IR2 IR3
neurocontroller for the desired behaviors are divided into
three subnetworks (modules) which are siignal process-
ing network, theneural oscillatornetwork and thevelocity
regulatingnetwork. All networks are described in detail in
the following sections.

IIl. NEURAL PERCEPTIONACTION SYSTEMS

Jj=1

A. Signal processing network

The perception systems are driven by using six IR
sensors. The minimal recurrent controller (MRC) structure
[23] is applied for preprocessing IR signals. This controller
has been originally developed for controlling a miniature
.Khepera'r.obot (71, Wh|Ch_ IS a two Wh_eeleq pIaFform. Here'Fig. 4.  The signal processing network of six IR sensors with the
it is modified for controlling the walking directions of the appropriate weights for controlling the walking direction of the machine to
machine to avoid obstacles or escape from a corner arfyoid obstacles and to prevent the machine from getting stuck in corners

. . or deadlock situations.
even a deadlock situation.

Output2 Outputl



The set-up parameters cause that the network can elimileadlock situations depending on which sensor side has
nate the noise of the sensory signals. The network can evdreen previously active. In special situations, like walking
determine the turning angle in accordance with the widthitoward a wall, both sider{ght andleft) of IR sensors
of the hysteresis loop; i.e. the wider the loop, the larger thenight get positive outputs at the same time, and, because
turning angle is. The capability of the network in filtering of the velocity regulating networks, the walking machine
the sensory noise together with the hysteresis loop of this able to walk backward. During walking backward, the
network are shown in Fig. 5. activation of the sensory signal of one side might be still

active while the other might be inactive. Correspondingly,
L Turning to the right the walking machine will turn into the opposite direction
057 of the active signal and it can finally leave from the wall.
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B. Neural oscillator network for the locomotion

No turning
T

-1.5 T T -1.5 T T T

0 200 400 600 03 <01 01 03 05 The concept of neural oscillators for walking machines
A Time [steps] B Input has been studied in various works, e.g. [12]. There, a
Fig. 5. (A) Th ignall @5 line) bef _neural oscillator network with four neurons is constructed
ig. 5. e sensory signal , gray line) before preprocessing . . , . .
and the output signalutput2, solid line) after preprocessing. (B) The by connegtl_ng four neural oscillator’s, each of which drives
“hysteresis effects” between input and output signalOeft2. In this  each hip joint of the legs of a four-legged robot TEKKEN.
situation, the_lnput c_>Dut2 varles_betweem -0.245 and=~ 0.572 back  Here a so-called “2-neuron network” [9] is employed.
and forth while the input oDutl is set tox -0.245 (“no obstacles are It i d tral it t CPG hich
on the right side”). Here, when the output 6fut2 is active & 1); i.e. IS used as a cen I’{;l p‘f" Fj'm generator ( ) whic
“obstacles are on the left side”, then the walking machine will be drivencorresponds to the basic principle of locomotion control of
hand, if such condition occurs f@ut1, the input ofOut1 will derive (see Fig. 7A). It has already been implemented successfully
the same hysteresis effect as the inputaft2 does. ) " : ;
on other walking machines [16], [27]. The same weight
. . . . matrixes presented there are used here. Consequently, it
_ Inl agd't'ﬁ_nh there is a C‘{[hlrdmgysteress pgenomenorbenerates the oscillating output signals corresponding to
involved which is associated to theen loop [8] between 5 o a6j.periodic attractor (see Fig. 7B). They are used to

the two output neurons. In general conditions, only ON&yrive the motors directly for generating the appropriate
neuron at a time is able to get a positive output, while,g.omotion of the AMOS-WDOS.

the other one has a negative output, and vice versa. The
phenomenon is presented in Fig. 6.
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Fig. 6. (A) and (B) present the sensory signdI®{ and/ R4, gray line)  Fig. 7. (A) The structure of the 2-neuron network with the synaptic
and the output signalutput1 and Output2, solid line), respectively.  weights for the purposeB1 and B2 are bias terms withB1 = B2 =
Due to the inhibitory synapses between two output neurons and the high.01. (B) The output signals of neurons 1 (dashed line) and 2 (solid line)
activity of Out1 (A), Output2 (B) is still inactive although 24 becomes  from the neural oscillator network. The output of neuron 1 is used to
activated at around 170 time steps. At around 320 time steps, the switchingrive all thoracic joints and the activated backbone joint while the output
condition betweeutputl and Output2 occurs becauseR1 becomes  of neuron 2 is used to drive all basal and all distal joints.
inactivated, meaning “no obstacles detected” wHile4 is still active,
meaning “obstacles detected”.
This network is implemented on a PDA with an update

By applying the described phenomena, the walkingrequency of 25.6 Hz. It generates a sinusoidal output with
machine is able to avoid the obstacles and escape from frequency of approximately 0.8 Hz. By using symmetric
corners as well as deadlock situations. Finallytputl  output weights, a typical tripod gait for the six-legged
and Output2 of the preprocessing network together with walking machine is obtained. This typical gait enables an
the velocity regulating networks, described below, decideefficient motion, where the diagonal legs are paired and
and switch the behavior of the walking machine; formove together.
instance, switching the behavior from “walking forward” h loci lati «
to “turning left’ when there are obstacles on the right,C- The velocity regulating networ
or vice versa. The network output also decides in which To change the motions, e.g. from walking forward to
direction the walking machine should turn in corners orbackward and to turning left and right, the simplest way is



09 09 09 09 09 -09
@
4,01 ll/
01" 014 0|< 0.15
1 Ja02
r—

?,_( Ne (rm
Prepio CEssin,
e -2 ),,{.

to perform a 180 degree phase shift of the sinusoidal signa
which drive the thoracic joints. To do so, the velocity reg-
ulating network (VRN) is introduced. The network used is
taken from [15]. It performs an approximate multiplication-
like function of two input values;, y € [-1,+1]. For this
purpose the input is the oscillating signal coming from
the neural oscillator network to generate the locomotior
and the inputy is the sensory signal coming from the
neural preprocessing network to drive the reactive behavio
The output signal of the network will be used to drive
the thoracic joints. Fig. 8A presents the network consisting
of four hidden neurons and one output neuron. Fig. 8E
shows that the output signal which gets a phase shift @
180 degrees, when the sensory signal (inputthanges
from -1 to +1.

InputX InputY

Amplitude

B o 25 350 75 100 125
Time [steps]

Output Fig. 9. (A) The modular neurocontroller. It generates a tripod gait which
is modified when obstacles are detected. The bias teBh®f{the VRNs

Fig. 8. (A) The VRN with four hidden neurons and the given bias termsare again all equal to -2.48285. Six IR sensors are directly connected
B which are all equal to -2.48285. The Inputis the oscillating signal  to the input neurons of the signal processing network. If the obstacle is
coming from the neural oscillator and the Inputis the output signal ~ detected, the outputs of the signal processing make the walking machine
of the neural preprocessing. (B) The output signal (solid line) when thdurn because the VRNs change the quasi-periodic signals at the thoracic
input y is equal to +1 and the output signal (dashed line) when the inpufoints. (B) The layout of all motor and input neurons.
y is equal to -1.

IV. EXPERIMENTS AND RESULTS

The performance of the modular neural network shown
in Fig. 9 is firstly tested on the physical simulation with

The combination of all three networks (modules) leadsa complex environment (see Fig. 3), and then it is down-
to an effective neural network for reactive behavior controlloaded into the mobile processor of the AMOS-WDO06 for
in changing environments. On the one hand, one oscillating test on the physical autonomous robot. The simulated
output signal from the neural oscillator network is directly walking machine and the physical walking machine behave
connected to all basal and distal joints. On the othegqualitatively. The sensory information of IR sensors is
hand, the other output is connected to the thoracic jointsised to modify the machine behavior as expected from
only indirectly, passing through all hidden neurons of thea perception-action system. If the obstacles are presented
VRNs through the so called-inputs. The outputs of the on either the right or the left side, the controller will
signal processing network are also connected to all hiddeghange the rhythmic movement at the thoracic joints of
neurons of the VRNs ag—inputs. Thus, the rhythmic leg the legs, causing the walking machine to turn on the spot
movement is generated by the neural oscillator network anénd immediately avoiding the obstacles. In some situations,
the steering capability of the walking machine is realizedike approaching a corner or a deadlock situation, the
by the VRNs in accordance with the outputs of the signapreprocessing network decides the turning direction.
processing network. The structure of this controller and the The modification of the motor neurons with respect to
location of the corresponding motor neurons on the walkinghe sensory inputs is exemplified in Fig. 10.
machine AMOS-WDO06 are shown in Fig. 9. MO0, M1 and M2 of the thoracic joints (compare Fig. 9,

D. The modular neurocontroller
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Fig. 10. Left: The left sensor/ (R4) detected the obstacle while the other
sensors{R1, I R2, IR3, IR5 andI R6) did not detect the obstacle; this v

caused motor neurondf{0, M1 and M2) on its right to change into the
opposite direction. As a result, the walking machine will turn right. Right:
If the obstacle is detected at the right of the walking machine (here, it
was detected by only R1), then the motor neurons\(3, M4 and M 5)

on its left are reversed. Consequently, the walking machine will turn left.

Fig. 11. Examples of the behavior driven by the IR sensors of the AMOS-
WDO06. Left: The AMOS-WDO06 escaped from a corner-like deadlock
situation without getting stuck. Middle: It was able to protect its legs
from colliding with the leg of a chair which was detected by the sensors
left) are turned into the opposite direction because one dfistalled on the right legs. Right: It turned away from the unknown

the left sensors (herd,R4) detects the obstacle. On the obstacles which were detected by the sensors at the foreliézidgnd
other hand,M3, M4 and M5 of the thoracic joints are [R4) and then at the left legs! (25 and I RG).

turned into the opposite direction when, at least, one of the

right sensors (herd,R1) is active (compare Fig. 9, right).

In special situations, e.g. walking toward a wall or detecting As demonstrated, the modular neurocontroller is ade-
obstacles on both sides, IR sensors of both side may bguate to successfully complete the obstacle avoidance task.
active simultaneously. Thus/0, M1, M2, M3, M4 and Due to the capability of the controller, the walking machine
M5 of the thoracic joints are reversed which causes thean perform an exploration task or a wandering behavior
walking machine to walk backward and eventually it iswithout getting stuck in the corner or the deadlock-like
able to leave the wall. situation.



V. CONCLUSIONS

The six-legged walking machine AMOS-WDO06 is pre-
sented as a reasonably complex robot platform to test2]
a neurocontroller generating the robust sensor-driven ex-
ploration and obstacle avoidance behaviors. The moduIaH?,]
neurocontroller was designed as a neural network consist-
ing of a signal processing network for preprocessing IR
signals, a neural oscillator network for generating basid!4
locomotion, and the velocity regulating network (VRN)
for changing the locomotion appropriately. The controller
is used to generate the walking gait and to perform thé!®l
reactive behavior; for instance, exploring an in-door en-
vironment by wandering around, avoiding obstacles when
they are detected, and leaving from a corner-like deadlock®
situation. The controller has been tested successfully in
the physical simulation environment as well as on the
real world walking machine. Thus we were able to repro17]
duce these basic behaviors, generally achieved for wheeled
robots, also for a machine with many degrees of freedom.
The generated behaviors are of course essential for digl
autonomous walking machine. More demanding tasks will
be related to the use of additional sensors. Therefore, future
research we will make use of auditory signals coming froni19]
a stereo auditory sensor. It will be used for navigation
based on sound tropism. Finally all these different reactivézo]
behaviors will be fused into one modular neurocontroller,
where modules have to cooperate or compete as in versati[lze1
perception-action systems.

[11]

]
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