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Abstract – This paper examines different approaches to 
remote sensing images classification. Included in the study 
are statistical approach, namely Gaussian maximum 
likelihood classifier, and two different neural networks 
paradigms: multilayer perceptron trained with EDBD 
algorithm, and ARTMAP neural network. These 
classification methods are compared on data acquired from 
Landsat-7 satellite. Experimental results showed that to 
achieve better performance of classifiers modular neural 
networks and committee machines should be applied.
 
Keywords - remote sensing image classification, neural 
networks, statistical methods, Landsat-7 satellite. 

I. INTRODUCTION 

Recent advances in technologies made it possible to 
develop new satellite sensors with considerably improved 
parameters and characteristics. For example, the spectral 
resolution increased up to 144 channels as in Hyperion 
sensor; radiometric resolution increased up to 14 bits as in 
MODIS sensor, etc. In turn, the use of such space-borne 
satellite sensors enables acquisition of valuable data that 
can be efficiently used for various applied problems 
solving in agriculture, natural resources monitoring, land 
use management, environmental monitoring, and so on. 

Land cover classification represent one of the most 
important and typical applications of remote sensing data. 
Land cover corresponds to the physical condition of the 
ground surface, for example, forest, grassland, artificial 
surfaces etc. To this end, various approaches have been 
proposed, among which the most popular are neural 
networks [1] and statistical [2] methods. 

In this paper different approaches to remote sensing 
images classification are examined. The following 
approaches are included in the study: statistical approach, 
namely Gaussian maximum likelihood (ML) classifier [2], 
and two different types of neural networks: feed-forward 
multilayer perceptron (MLP) and ARTMAP neural 
network [3]. MLP is trained by means of 
Extended-Delta-Bar-Delta (EDBD) algorithm [4] which 
represent a fast modification of standard error 
backpropagation algorithm [5]. In turn, ARTMAP 
belongs to the family of adaptive resonance theory (ART) 

networks [6], which are characterized by their ability to 
carry out fast, stable, on-line learning, recognition, and 
prediction. 

Comparative analysis of classification methods is done 
on data acquired by Enhanced Thematic Mapper Plus 
(ETM+) sensor of Landsat-7 satellite [7]. 

II. OVERVIEW OF RELATED WORKS 

Nowadays, various approaches have been proposed to 
land cover classification of remote sensing data. In past 
classification has traditionally been performed by 
statistical methods (e.g., Bayesian and k-nearest-neighbor 
classifiers). In recent years, the remote sensing 
community has become interested in applying neural 
networks to data classification. Neural networks provide 
an adaptive and robust approach for the analysis and 
generalization of data with no need of a priori knowledge 
on statistical distribution of data. It is particularly 
important for remote sensing image classification since 
information is provided by multiple sensors or by the 
same sensor in many measuring contexts. It is the main 
problem associated with most statistical models, since it is 
difficult to define a single model for different types of 
space-bourn sensors [8]. In this section we give a brief 
overview of approaches to remote sensing data 
classification. 

In [9] classification of remote sensing data was done 
using MLP. The main goal was the investigation of 
applicability of MLP to the classification of terrain radar 
images. MLP performances were compared with those of 
a Bayesian classifier, and it was found that significant 
improvements can be obtained by the MLP classifier. 

Benediktsson et al. [8] applied MLP to the 
classification of multisource remote sensing data. In 
particular, Landsat MSS and topographic data were 
considered. Classification performances were compared 
with those of a statistical parametric method that takes 
into account the relative reliabilities of the sources of data. 
They concluded that the relative performances of the two 
methods mainly depend on priori knowledge about the 
statistical distribution of data. MLPs are appropriate for 

 



cases where such distributions are unknown, for they are 
data-distribution-free. The considerable training time 
required is one of the main drawbacks of MLP, compared 
with statistical parametric methods. 

Bischof et al. [10] reported the application of a 
three-layer perceptron for classification of Landsat TM 
data. They compared MLP performances with those of 
Bayesian classifier. The obtained results showed that the 
MLP performs better then Bayesian classifier. 

Dawson and Fung [11] reviewed examples of the use of 
MLP to classification of remote sensing data. In their 
study they proposed an interesting combination of 
clustering algorithms and scattering models to train MLP 
when no ground truth is available. 

Roli et al. [12] proposed a type of structured neural 
networks (treelike networks) to multisource remote 
sensing data classification. This kind of architecture 
allows one to interpret the network operations. For 
example, the roles played by different sensors and by their 
channels can be explained and quantitatively assessed. 
The proposed method was compared with fully connected 
MLP and probabilistic neural networks on images 
acquired by synthetic aperture radar (SAR) sensor. 

Carpenter et al. [13] described the ARTMAP 
information fusion system. The fusion system uses 
distributed code representations that exploit the neural 
network’s capacity for one-to-many learning in order to 
produce self-organizing expert systems that discover 
hierarchical knowledge structures. The fusion system 
infers multi-level relationships among groups of output 
classes, without any supervised labeling of these 
relationships. The proposed approach was tested on two 
testbed images, but not limited to the image domain. 

In [14] various algorithms are examined in order to 
estimate mixtures of vegetation types within forest stands 
based on data from the Landsat TM satellite. The 
following methods were considered in that study: 
maximum likelihood classification, linear mixture models, 
and a methodology based on the ARTMAP neural 
network. The reported experiments showed that 
ARTMAP mixture estimation method provides the best 
estimates of the fractions of vegetation types comparing to 
others.  

Hwang et al. [15] described a structured neural network 
to classify Landsat-4 TM data. A one-network one-class 
architecture is proposed to improve data separation. Each 
network is implemented by radial basis function (RBF) 
neural network. The proposed approach outperformed 
other methodologies, such as MLP and a Bayesian 
classifier. 

III. METHODOLOGY 

In this section we give a brief overview of 
methodologies that will be compared for remote sensing 
image classification. 

A. MLP trained with EDBD 
MLP represent a kind of feed-forward neural networks 

in which all the connections are unidirectional. MLP 
consists of an input layer, output layer, and at least one 
hidden layer of hidden neurons. Unidirectional 
connections exist from the input layer to hidden layer and 
from hidden layer to output neurons. There are no 
connections between any neurons within the same layer. 

Error backpropagation algorithm [5] is a popular 
method for MLP training, i.e. for neural networks weights 
adjustment. However, despite its widespread use for many 
applications, it has a drawback of considerable training 
time required. That is why in this study we use a fast 
modification of error backpropagation method 
Extended-Delta-Bar-Delta (EDBD) rule [4]. This 
algorithm is based on the following heuristics: 

— On each step of training process learning rate and 
momentum factor are automatically estimated for each 
neural network weight. On the first step initial and 
maximum values for learning rates and momentum are set, 
and remain constant during the whole training process. 

— If partial derivative of error preserves its sign 
(positive or negative) within some training steps, then 
learning rate and momentum for corresponding weight 
increases.  

— If partial derivative of error changes its sign within 
some training steps, then learning rate and momentum for 
corresponding weight decreases. 

More detailed description of EDBD algorithm can be 
found in [1, 4]. In this study for EDBD simulations we use 
MNN CAD software [16]. 

B. ARTMAP neural networks 
ARTMAP belongs to the family of ART networks [6], 

which are characterized by their ability to carry out fast, 
stable, on-line learning, recognition, and prediction. These 
features differentiate ARTMAP from the family of 
feed-forward MLPs, including backpropagation, which 
typically require slow learning. ARTMAP systems 
self-organize arbitrary mappings from input vectors, 
representing features such as spectral values of remote 
sensing images and terrain variables, to output vectors, 
representing predictions such as vegetation classes or 
environmental variables. Internal ARTMAP control 
mechanisms create stable recognition categories of 
optimal size by maximizing code compression while 
minimizing predictive error. 

ARTMAP is already being used in a variety of 
application settings, including industrial design and 
manufacturing, robot sensory motor control and 
navigation, machine vision, and medical imaging, as well 
as remote sensing [13, 14]. A more detailed description of 
ARTMAP neural networks can be found in [3]. For 
ARTMAP simulations we use ClasserScript v1.1 software 
[17] from http://profusion.bu.edu/techlab/. 



C. Gaussian Maximum Likelihood Classification 
The ML classifier is one of the most popular methods of 

classification in remote sensing, in which a pixel with the 
maximum a posteriori probability is classified into the 
corresponding class. In the case of multivariate Gaussian 
distribution a posteriori probability is defined as follows: 
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where µi and Σi are ith class mean vector and covariance 
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The ML method has an advantage from the view point 
of probability theory, but care must be taken with respect 
to the following items: 

— Sufficient ground truth data should be sampled to 
allow estimation of the mean vector and the 
variance-covariance matrix of population. 

— The inverse matrix of the variance-covariance 
matrix becomes unstable in the case where there exists 
very high correlation between two bands or the ground 
truth data are very homogeneous.  

— When the distribution of the population does not 
follow the Gaussian distribution, the ML method cannot 
be applied. 

IV. DATA DESCRIPTION 

An image acquired by ETM+ sensor of Landsat-7 
satellite was used for comparative analysis of 
above-described methods (Fig. 1, a). Parameters of image 
in World Reference System (WRS) [18] are path=186, 

row=25. Date of image acquisition is 10.06.2000. 
Dimensions: 4336x2524 pixels (30 m resolution) = 
130x76 km. 

ETM+ sensor provides data in 6 visible and infra-red 
spectral ranges with spatial resolution 30 m (bands 1-5 
and 7); in thermal spectral range with spatial resolution 
60 m (band 6), and in panchromatic range with spatial 
resolution 15 m (band 8). In this study we use as input to 
classification methods the six spectral bands 1-5 and 7. 

In raw Landsat-7 images pixel values are digital 
numbers (DN) ranging from 1 to 255 (8 bits per pixel). 
Since these values are influenced by solar radiation [19], a 
procedure of converting DNs to at-satellite reflectance 
was applied according to [20]. In such a case pixel values 
lie in range [0; 1]. 

Since in this study we examine methods of supervised 
classification we need to provide so called ground truth 
data (sample pixels) in order to estimate weights and 
parameters of neural networks and statistical models. 
Unfortunately, we didn’t have a possibility of gathering 
corresponding independent field data. In this case we use 
data provided by European CORINE project that aims at 
land cover classification [21]. In particular, we use 
CLC 2000 version of this project (Fig. 1, b). 

Additionally, the following information was also used 
to distinguish land cover classes on Landsat-7 image. 

— Estimated Normalized Difference Vegetation Index 
(NDVI): 

NDVI=(ETM4-ETM3)/(ETM4+ETM3) 
where ETM3 and ETM4 are at-satellite reflectance values 
for spectral bands 3 and 4 respectively; 

— Tasseled Cap transformation [19] that is based on 
principal component analysis (PCA) algorithm [22], and 
allows one to decorrelate components. Moreover, in 
tasseled cap transformation first three major components 
has the following physical meaning: brightness, greenness, 
and wetness. 

In this study eight target output classes were specified 
(Table 1). 

 
        (a) Landsat-7 image                                                       (b) CORINE data 

        
Fig. 1. (a) Image acquired by ETM+ sensor of Landsat-7 satellite (spatial resolution: 30 m). Area covers south-eastern part of Poland 
that borders with Ukraine. (b) Data for the same area provided by CORINE project (spatial resolution: 100 m). The study area is 
dominated by forests, arable lands, and pastures. © EEA, Copenhagen, 2000. 



Table 1. Class titles, CORINE code levels, and number of 
sample pixels for each class.* 

# Class Title CORINE 
Code Level 

Number of 
pixels 

1 Broad-leaved forest 311 17890 
2 Coniferous forest 312 20025 
3 Mixed forest 313 10110 
4 Non-irrigated arable land 211 25588 
5 Pastures 231 9177 
6 Inland waters 51x 7379 
7 Artificial surfaces 1xx 12369 
8 Open spaces with little or 

no vegetation 
33x 2799 

 Total  105337 
* x symbol is used to denote lower level classes that cannot be 

discriminated on Landsat-7 images. For example, it is hardly 
possible to distinguish water courses (e.g. rivers) from water 
bodies (e.g. lakes), or different types of artificial surfaces since 
their spectral characteristics do not differ. For this purpose, 
additional information should be provided. 

V. RESULTS OF EXPERIMENTS 

A. Performance Measures and Training and Testing 
Protocols 

For comparative analysis of neural networks and 
statistical models for Landsat-7 images classification we 
use the same measure and the same training and testing 
sets. Performance of classification methods was evaluated 
in terms of classification rate. Both overall classification 
rate for all sample pixels and classification rate for each 
class separately were estimated. 

Training and testing was done using five-fold 
cross-validation procedure [1, 23] as statistical design tool 
for methods assessment. According to this procedure 
available set of sample pixels is divided into five disjoint 
subsets; i.e. each subset consists of 20% of data. Models 
are trained on all subsets except for one, and classification 
rate is estimated by testing it on subset left out. All 
reported results reflect values averaged across 5 
training/testing runs. So, this procedure produces robust 
performance measures while ensuring that no test sample 
pixels were ever used in training. 

From table 1 it can be seen that number of sample 
pixels among target classes varies considerably. For 
example, there are 25588 sample pixels labeled 
“Non-irrigated arable land”, and 7379 sample pixels 
labeled “Inland waters”. In order for neural networks 
models to prevent imbalances of exemplars, we copied 
existing sample pixels for each class to be the same size. 
Such procedure allows one to “generate” training sets of 
the same size. 

B. Input and Output Representation 
Six channels from ETM+ sensor, namely 1-5 and 7, 

were selected to form feature vector for each pixel. 

Components of such vector represent at-satellite 
reflectance values lying in the range [0; 1]. 

Considering output coding for neural networks models, 
both MLP and ARTMAP have 8 output neurons 
corresponding to 8 target classes. During training target 
output is set to 1 for pixels belonging to such a class; 
otherwise, they are set to 0. 

C. Classification with MLP 
Five-fold cross-validation procedure was repeated at 

different MLP architectures: with 5, 15, 20, 25, 35, and 45 
hidden neurons. Only one hidden layer was used in this 
study. For MLPs training EDBD algorithm was used. 
Training was stopped after 500 epochs. Save best mode 
was also applied during training process. Within this 
mode training and testing are sequentially applied to 
neural network. After each test the current classification 
rate is compared with previous results and neural network 
is saved as the best one if current result is better than 
previous. 

In all simulations initial values for learning rate and 
momentum factor in EDBD algorithm were set to 0.7 and 
0.5 respectively. 

Table 2 shows averaged classifications rates on testing 
sets for different MLP architectures. 

 
Table 2. Averaged cross-validation results for MLP trained 

with EDBD algorithm.* 
 MLP Architecture 

Class no. 6-5-8 6-15-8 6-20-8 6-25-8 6-35-8 6-45-8
1 97.63 98.78 98.99 99.02 99.15 98.97
2 80.95 83.57 83.99 84.20 84.64 85.67
3 67.09 68.70 68.12 68.38 68.00 67.37
4 85.44 87.72 88.24 89.03 89.84 89.56
5 86.16 90.42 91.55 90.41 91.01 91.43
6 97.14 97.71 97.66 97.75 97.63 97.64
7 69.09 83.45 84.09 83.99 83.46 83.56
8 95.57 96.82 96.28 96.53 96.79 96.52

Total 84.88 88.40 88.62 88.68 88.81 88.85
* the best estimates are indicated in boldface type. 
 
The best value of classification rate was obtained for 

MLP with 45 hidden neurons. 

D. Classification with ML 
Mean vectors and covariance matrixes were estimated 

for each class using each of five training sets. For this 
purpose we use the following standard estimates 
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sample pixels in ith class. 
Averaged classifications rates on testing sets for 

Gaussian ML classifier are shown in Table 3. 
 

 



Table 3. Averaged cross-validation results for ML classifier. 
Class no.  

1 98.73 
2 83.68 
3 67.68 
4 89.66 
5 92.82 
6 96.57 
7 82.18 
8 96.75 

Total 88.02 

E. Classification with ARTMAP 
Five-fold cross-validation procedure was repeated for 

different vigilance parameters of ARTMAP network: 0.1, 
0.2, 0.3, 0.5, and 0.95. The obtained results are shown in 
Table 4. 

 
Table 4. Averaged cross-validation results for ARTMAP 

neural network.* 
 Vigilance parameters 

Class no. 0.1 0.2 0.3 0.5 0.95 
1 98.92 99.68 99.56 98.52 99.88 
2 79.58 80.86 80.34 79.16 80.88 
3 69.14 68.16 68.66 69.36 68.14 
4 81.50 81.50 81.72 81.88 83.50 
5 76.48 74.26 75.34 74.10 78.94 
6 96.70 96.60 96.76 97.40 93.76 
7 79.38 77.28 78.32 77.12 76.78 
8 96.42 97.36 97.00 97.54 98.24 

Total 83.68 83.80 83.74 83.24 84.22 
* the best estimates are indicated in boldface type. 
 
The best value of classification rate was obtained for 

ARTMAP with vigilance parameter set to 0.95. 

F. Comparison of classification methods 
The comparative analysis of best results obtained by 

neural networks models with ML classifier show no 
preferences of one method on others (Table 5). 

The best overall classification rate of 88.85% (on all 
sample pixels) was achieved by using MLP. 

Considering classification rates obtained for classes 
separately, different methods performed better on 
different classes. For class no. 2, 6, and 7 MLP 
outperformed ARTMAP and ML classifier. In turn, 
ARTMAP neural network was better for classes 1, 3, 8, 
and ML classifier was better for classes 4 and 5. 

The worst performance of all classification methods 
was for class no. 3, “Mixed forest” (maximum 68.14%). 
This is due to the fact that mixed forests (class 3) consist 
of both broad-leaved (class 1) and coniferous forests 
(class 2), and its corresponding spectral properties mix up. 

 
 

Table 5. Comparison of classification methods.* 
 Method 

 Class no. MLP ML ARTMAP
1 98.97 98.73 99.88 
2 85.67 83.68 80.88 
3 67.37 67.68 68.14 
4 89.56 89.66 83.50 
5 91.43 92.82 78.94 
6 97.64 96.57 93.76 
7 83.56 82.18 76.78 
8 96.52 96.75 98.24 

Total 88.85 88.02 84.22 
* the best estimates are indicated in boldface type. 
 

VI. CONCLUSIONS AND FUTURE WORKS 

In this paper we examined different neural networks 
models, namely MLP and ARTMAP networks, and 
statistical approach, namely maximum likelihood method, 
for classification of remote sensing images. For 
comparative analysis of these methods data acquired by 
ETM+ sensor of Landsat-7 satellite and land cover data 
from European CORINE project were used. The best 
overall classification rate for all classes (88.85%) was 
achieved by using MLP. While considering classification 
rates obtained for classes separately, different methods 
performed better on different classes. This, probably, is 
due to the complex topology of data that were used in this 
paper, and, thus, for different classes different 
classification methods are appropriate. The analysis of 
available data represent separate task, and is not covered 
in this article. 

In order to improve performance of methods for remote 
sensing image classification future works should be 
directed to the use of modular neural networks and 
committee machines. It envisages the use of different 
models within single architecture (e.g. neural networks 
with various parameters, or neural networks jointly with 
statistical methods) allowing one to exploit advantages of 
different classification methods. 
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