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Abstract — This paper examines different approaches to
remote sensing images classification. Included in the study
are statistical approach, namely Gaussian maximum
likelihood classifier, and two different neural networks
paradigms: multilayer perceptron trained with EDBD
algorithm, and ARTMAP neural network. These
classification methods are compared on data acquired from
Landsat-7 satellite. Experimental results showed that to
achieve better performance of classifiers modular neural
networks and committee machines should be applied.
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I.  INTRODUCTION

Recent advances in technologies made it possible to
develop new satellite sensors with considerably improved
parameters and characteristics. For example, the spectral
resolution increased up to 144 channels as in Hyperion
sensor; radiometric resolution increased up to 14 bits as in
MODIS sensor, etc. In turn, the use of such space-borne
satellite sensors enables acquisition of valuable data that
can be efficiently used for various applied problems
solving in agriculture, natural resources monitoring, land
use management, environmental monitoring, and so on.

Land cover classification represent one of the most
important and typical applications of remote sensing data.
Land cover corresponds to the physical condition of the
ground surface, for example, forest, grassland, artificial
surfaces etc. To this end, various approaches have been
proposed, among which the most popular are neural
networks [1] and statistical [2] methods.

In this paper different approaches to remote sensing
images classification are examined. The following
approaches are included in the study: statistical approach,
namely Gaussian maximum likelihood (ML) classifier [2],
and two different types of neural networks: feed-forward
multilayer perceptron (MLP) and ARTMAP neural
network [3]. MLP is trained by means of
Extended-Delta-Bar-Delta (EDBD) algorithm [4] which
represent a fast modification of standard error
backpropagation algorithm [5]. In turn, ARTMAP
belongs to the family of adaptive resonance theory (ART)
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networks [6], which are characterized by their ability to
carry out fast, stable, on-line learning, recognition, and
prediction.

Comparative analysis of classification methods is done
on data acquired by Enhanced Thematic Mapper Plus
(ETM+) sensor of Landsat-7 satellite [7].

Il.  OVERVIEW OF RELATED WORKS

Nowadays, various approaches have been proposed to
land cover classification of remote sensing data. In past
classification has traditionally been performed by
statistical methods (e.g., Bayesian and k-nearest-neighbor
classifiers). In recent years, the remote sensing
community has become interested in applying neural
networks to data classification. Neural networks provide
an adaptive and robust approach for the analysis and
generalization of data with no need of a priori knowledge
on statistical distribution of data. It is particularly
important for remote sensing image classification since
information is provided by multiple sensors or by the
same sensor in many measuring contexts. It is the main
problem associated with most statistical models, since it is
difficult to define a single model for different types of
space-bourn sensors [8]. In this section we give a brief
overview of approaches to remote sensing data
classification.

In [9] classification of remote sensing data was done
using MLP. The main goal was the investigation of
applicability of MLP to the classification of terrain radar
images. MLP performances were compared with those of
a Bayesian classifier, and it was found that significant
improvements can be obtained by the MLP classifier.

Benediktsson et al. [8] applied MLP to the
classification of multisource remote sensing data. In
particular, Landsat MSS and topographic data were
considered. Classification performances were compared
with those of a statistical parametric method that takes
into account the relative reliabilities of the sources of data.
They concluded that the relative performances of the two
methods mainly depend on priori knowledge about the
statistical distribution of data. MLPs are appropriate for



cases where such distributions are unknown, for they are
data-distribution-free. The considerable training time
required is one of the main drawbacks of MLP, compared
with statistical parametric methods.

Bischof et al. [10] reported the application of a
three-layer perceptron for classification of Landsat TM
data. They compared MLP performances with those of
Bayesian classifier. The obtained results showed that the
MLP performs better then Bayesian classifier.

Dawson and Fung [11] reviewed examples of the use of
MLP to classification of remote sensing data. In their
study they proposed an interesting combination of
clustering algorithms and scattering models to train MLP
when no ground truth is available.

Roli et al. [12] proposed a type of structured neural
networks (treelike networks) to multisource remote
sensing data classification. This kind of architecture
allows one to interpret the network operations. For
example, the roles played by different sensors and by their
channels can be explained and quantitatively assessed.
The proposed method was compared with fully connected
MLP and probabilistic neural networks on images
acquired by synthetic aperture radar (SAR) sensor.

Carpenter et al. [13] described the ARTMAP
information fusion system. The fusion system uses
distributed code representations that exploit the neural
network’s capacity for one-to-many learning in order to
produce self-organizing expert systems that discover
hierarchical knowledge structures. The fusion system
infers multi-level relationships among groups of output
classes, without any supervised labeling of these
relationships. The proposed approach was tested on two
testbed images, but not limited to the image domain.

In [14] various algorithms are examined in order to
estimate mixtures of vegetation types within forest stands
based on data from the Landsat TM satellite. The
following methods were considered in that study:
maximum likelihood classification, linear mixture models,
and a methodology based on the ARTMAP neural
network. The reported experiments showed that
ARTMAP mixture estimation method provides the best
estimates of the fractions of vegetation types comparing to
others.

Hwang et al. [15] described a structured neural network
to classify Landsat-4 TM data. A one-network one-class
architecture is proposed to improve data separation. Each
network is implemented by radial basis function (RBF)
neural network. The proposed approach outperformed
other methodologies, such as MLP and a Bayesian
classifier.

Il. METHODOLOGY

In this section we give a brief overview of
methodologies that will be compared for remote sensing
image classification.

A. MLP trained with EDBD

MLP represent a kind of feed-forward neural networks
in which all the connections are unidirectional. MLP
consists of an input layer, output layer, and at least one
hidden layer of hidden neurons. Unidirectional
connections exist from the input layer to hidden layer and
from hidden layer to output neurons. There are no
connections between any neurons within the same layer.

Error backpropagation algorithm [5] is a popular
method for MLP training, i.e. for neural networks weights
adjustment. However, despite its widespread use for many
applications, it has a drawback of considerable training
time required. That is why in this study we use a fast
modification of error backpropagation method
Extended-Delta-Bar-Delta (EDBD) rule This
algorithm is based on the following heuristics:

— On each step of training process learning rate and
momentum factor are automatically estimated for each
neural network weight. On the first step initial and
maximum values for learning rates and momentum are set,
and remain constant during the whole training process.

— If partial derivative of error preserves its sign
(positive or negative) within some training steps, then
learning rate and momentum for corresponding weight
increases.

— If partial derivative of error changes its sign within
some training steps, then learning rate and momentum for
corresponding weight decreases.

More detailed description of EDBD algorithm can be
found in [1, 4]. In this study for EDBD simulations we use
MNN CAD software [16].

B. ARTMAP neural networks

ARTMAP belongs to the family of ART networks [6],
which are characterized by their ability to carry out fast,
stable, on-line learning, recognition, and prediction. These
features differentiate ARTMAP from the family of
feed-forward MLPs, including backpropagation, which
typically require slow learning. ARTMAP systems
self-organize arbitrary mappings from input vectors,
representing features such as spectral values of remote
sensing images and terrain variables, to output vectors,
representing predictions such as vegetation classes or
environmental variables. Internal ARTMAP control
mechanisms create stable recognition categories of
optimal size by maximizing code compression while
minimizing predictive error.

ARTMAP is already being used in a variety of
application settings, including industrial design and
manufacturing, robot sensory motor control and
navigation, machine vision, and medical imaging, as well
as remote sensing [13, 14]. A more detailed description of
ARTMAP neural networks can be found in [3]. For
ARTMAP simulations we use ClasserScript v1.1 software
[17] from http://profusion.bu.edu/techlab/.

[4].



C. Gaussian Maximum Likelihood Classification

The ML classifier is one of the most popular methods of
classification in remote sensing, in which a pixel with the
maximum a posteriori probability is classified into the
corresponding class. In the case of multivariate Gaussian
distribution a posteriori probability is defined as follows:
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where p; and X; are ith class mean vector and covariance
matrix, respectively, L is the number of classes and input
xeRP.  Assuming equally likely classes, the ML
classification rule then is given by:

xei < i=argmaxd,(x),
1<i<L
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where d, (x) is a discriminate function in the form of:

d,(x)= In( f, (X)) =
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The ML method has an advantage from the view point
of probability theory, but care must be taken with respect
to the following items:

— Sufficient ground truth data should be sampled to
allow estimation of the mean vector and the
variance-covariance matrix of population.

— The inverse matrix of the variance-covariance
matrix becomes unstable in the case where there exists
very high correlation between two bands or the ground
truth data are very homogeneous.

— When the distribution of the population does not
follow the Gaussian distribution, the ML method cannot
be applied.

IV. DATA DESCRIPTION

An image acquired by ETM+ sensor of Landsat-7
satellite was used for comparative analysis of
above-described methods (Fig. 1, a). Parameters of image
in World Reference System (WRS) [18] are path=186,

a) Landsat-7 'm e

row=25. Date of image acquisition is 10.06.2000.
Dimensions: 4336x2524 pixels (30 m resolution) =
130x76 km.

ETM+ sensor provides data in 6 visible and infra-red
spectral ranges with spatial resolution 30 m (bands 1-5
and 7); in thermal spectral range with spatial resolution
60 m (band 6), and in panchromatic range with spatial
resolution 15 m (band 8). In this study we use as input to
classification methods the six spectral bands 1-5 and 7.

In raw Landsat-7 images pixel values are digital
numbers (DN) ranging from 1 to 255 (8 bits per pixel).
Since these values are influenced by solar radiation [19], a
procedure of converting DNs to at-satellite reflectance
was applied according to [20]. In such a case pixel values
lie in range [0; 1].

Since in this study we examine methods of supervised
classification we need to provide so called ground truth
data (sample pixels) in order to estimate weights and
parameters of neural networks and statistical models.
Unfortunately, we didn’t have a possibility of gathering
corresponding independent field data. In this case we use
data provided by European CORINE project that aims at
land cover classification [21]. In particular, we use
CLC 2000 version of this project (Fig. 1, b).

Additionally, the following information was also used
to distinguish land cover classes on Landsat-7 image.

— Estimated Normalized Difference Vegetation Index
(NDVI):

NDVI=(ETM4-ETM3)/(ETM4+ETM3)
where ETM3 and ETM4 are at-satellite reflectance values
for spectral bands 3 and 4 respectively;

— Tasseled Cap transformation [19] that is based on
principal component analysis (PCA) algorithm [22], and
allows one to decorrelate components. Moreover, in
tasseled cap transformation first three major components
has the following physical meaning: brightness, greenness,
and wetness.

In this study eight target output classes were specified
(Table 1).

(b) CORINE data

Fig. 1. (a) Image acquwed by ET + sensor of Landsat 7 satelllte (spatial resolution: 30 m). Area covers south eastern part of Poland
that borders with Ukraine. (b) Data for the same area provided by CORINE project (spatial resolution: 100 m). The study area is
dominated by forests, arable lands, and pastures. © EEA, Copenhagen, 2000.



Table 1. Class titles, CORINE code levels, and number of
sample pixels for each class.*

# Class Title CORINE Number of
Code Level pixels
1 Broad-leaved forest 311 17890
2 Coniferous forest 312 20025
3 Mixed forest 313 10110
4 Non-irrigated arable land 211 25588
5 Pastures 231 9177
6 Inland waters 51x 7379
7 Artificial surfaces 1xx 12369
8  Open spaces with little or 33x 2799
no vegetation
Total 105337

*x symbol is used to denote lower level classes that cannot be
discriminated on Landsat-7 images. For example, it is hardly
possible to distinguish water courses (e.g. rivers) from water
bodies (e.g. lakes), or different types of artificial surfaces since
their spectral characteristics do not differ. For this purpose,
additional information should be provided.

V. RESULTS OF EXPERIMENTS

A. Performance Measures and Training and Testing
Protocols

For comparative analysis of neural networks and
statistical models for Landsat-7 images classification we
use the same measure and the same training and testing
sets. Performance of classification methods was evaluated
in terms of classification rate. Both overall classification
rate for all sample pixels and classification rate for each
class separately were estimated.

Training and testing was done using five-fold
cross-validation procedure [1, 23] as statistical design tool
for methods assessment. According to this procedure
available set of sample pixels is divided into five disjoint
subsets; i.e. each subset consists of 20% of data. Models
are trained on all subsets except for one, and classification
rate is estimated by testing it on subset left out. All
reported results reflect values averaged across 5
training/testing runs. So, this procedure produces robust
performance measures while ensuring that no test sample
pixels were ever used in training.

From table 1 it can be seen that number of sample
pixels among target classes varies considerably. For
example, there are 25588 sample pixels labeled
“Non-irrigated arable land”, and 7379 sample pixels
labeled “Inland waters”. In order for neural networks
models to prevent imbalances of exemplars, we copied
existing sample pixels for each class to be the same size.
Such procedure allows one to “generate” training sets of
the same size.

B. Input and Output Representation
Six channels from ETM+ sensor, namely 1-5 and 7,
were selected to form feature vector for each pixel.

Components of such vector represent at-satellite
reflectance values lying in the range [0; 1].

Considering output coding for neural networks models,
both MLP and ARTMAP have 8 output neurons
corresponding to 8 target classes. During training target
output is set to 1 for pixels belonging to such a class;

otherwise, they are set to 0.

C. Classification with MLP

Five-fold cross-validation procedure was repeated at
different MLP architectures: with 5, 15, 20, 25, 35, and 45
hidden neurons. Only one hidden layer was used in this
study. For MLPs training EDBD algorithm was used.
Training was stopped after 500 epochs. Save best mode
was also applied during training process. Within this
mode training and testing are sequentially applied to
neural network. After each test the current classification
rate is compared with previous results and neural network
is saved as the best one if current result is better than
previous.

In all simulations initial values for learning rate and
momentum factor in EDBD algorithm were set to 0.7 and
0.5 respectively.

Table 2 shows averaged classifications rates on testing
sets for different MLP architectures.

Table 2. Averaged cross-validation results for MLP trained
with EDBD algorithm.*

MLP Architecture

Classno. 6-5-8 6-15-8 6-20-8 6-25-8 6-35-8 6-45-8
1 97.63 98.78 98.99 99.02 99.15 98.97

2 80.95 83.57 83.99 8420 84.64 85.67

3 67.09 68.70 68.12 68.38 68.00 67.37

4 85.44 87.72 88.24 89.03 89.84 89.56

5 86.16 90.42 9155 90.41 91.01 9143

6 97.14 97.71 97.66 97.75 97.63 97.64

7 69.09 83.45 84.09 8399 8346 83.56

8 95.57 96.82 96.28 96.53  96.79  96.52
Total 84.88 88.40 88.62 88.68 88.81 88.85

* the best estimates are indicated in boldface type.

The best value of classification rate was obtained for
MLP with 45 hidden neurons.

D. Classification with ML

Mean vectors and covariance matrixes were estimated
for each class using each of five training sets. For this
purpose we use the following standard estimates

.1 & . 1 & 0 .
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where x/ is jth sample of ith class, and M; is number of
sample pixels in ith class.

Averaged classifications rates on testing sets for
Gaussian ML classifier are shown in Table 3.



Table 3. Averaged cross-validation results for ML classifier.

Class no.
1 98.73
2 83.68
3 67.68
4 89.66
5 92.82
6 96.57
7 82.18
8 96.75
Total 88.02

E. Classification with ARTMAP

Five-fold cross-validation procedure was repeated for
different vigilance parameters of ARTMAP network: 0.1,
0.2, 0.3, 0.5, and 0.95. The obtained results are shown in
Table 4.

Table 4. Averaged cross-validation results for ARTMAP
neural network.*

Vigilance parameters

Classno. 0.1 0.2 0.3 0.5 0.95
1 98.92 99.68 99.56 98.52 99.88

2 79.58 80.86 80.34 79.16 80.88

3 69.14 68.16 68.66 69.36 68.14

4 8150 8150 81.72 81.88 83.50

5 76.48 7426 75.34 7410 78.94

6 96.70 96.60 96.76 97.40 93.76

7 79.38 77.28 7832 77.12 76.78

8 96.42 9736 97.00 97.54 98.24
Total 83.68 83.80 83.74 8324 84.22

* the best estimates are indicated in boldface type.

The best value of classification rate was obtained for
ARTMAP with vigilance parameter set to 0.95.

F. Comparison of classification methods

The comparative analysis of best results obtained by
neural networks models with ML classifier show no
preferences of one method on others (Table 5).

The best overall classification rate of 88.85% (on all
sample pixels) was achieved by using MLP.

Considering classification rates obtained for classes
separately, different methods performed better on
different classes. For class no. 2, 6, and 7 MLP
outperformed ARTMAP and ML classifier. In turn,
ARTMAP neural network was better for classes 1, 3, 8,
and ML classifier was better for classes 4 and 5.

The worst performance of all classification methods
was for class no. 3, “Mixed forest” (maximum 68.14%).
This is due to the fact that mixed forests (class 3) consist
of both broad-leaved (class 1) and coniferous forests
(class 2), and its corresponding spectral properties mix up.

Table 5. Comparison of classification methods.*

Method
Class no. MLP ML ARTMAP
1 98.97 98.73 99.88
2 85.67 83.68 80.88
3 67.37 67.68 68.14
4 89.56 89.66 83.50
5 91.43 92.82 78.94
6 97.64 96.57 93.76
7 83.56 82.18 76.78
8 96.52 96.75 98.24
Total 88.85 88.02 84.22

* the best estimates are indicated in boldface type.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we examined different neural networks
models, namely MLP and ARTMAP networks, and
statistical approach, namely maximum likelihood method,
for classification of remote sensing images. For
comparative analysis of these methods data acquired by
ETM+ sensor of Landsat-7 satellite and land cover data
from European CORINE project were used. The best
overall classification rate for all classes (88.85%) was
achieved by using MLP. While considering classification
rates obtained for classes separately, different methods
performed better on different classes. This, probably, is
due to the complex topology of data that were used in this
paper, and, thus, for different classes different
classification methods are appropriate. The analysis of
available data represent separate task, and is not covered
in this article.

In order to improve performance of methods for remote
sensing image classification future works should be
directed to the use of modular neural networks and
committee machines. It envisages the use of different
models within single architecture (e.g. neural networks
with various parameters, or neural networks jointly with
statistical methods) allowing one to exploit advantages of
different classification methods.

ACKNOWLEDGEMENT

This research was jointly supported by the Science and
Technology Center in Ukraine (STCU) and the National
Academy of Sciences of Ukraine (NASU) within project
“GRID technologies for environmental monitoring using
satellite data”, no. 3872.

REFERENCES

[1]S. Haykin  (1999). “Neural Networks: a
comprehensive foundation”, Upper Saddle River, New
Jersey: Prentice Hall, 842 p.

[2] G.M. Foody, N.A. Campbell, N.M. Trodd, T.F. Wood
(1992). “Derivation and applications of probabilistic
measures of class membership from maximum



likelihood classification”, Photogramm. Eng. Remote.
Sens., 58(9), pp. 1335-1341.

[3] G.A. Carpenter, S. Grossberg, J.H. Reynolds (1991).
“ARTMAP: Supervised Real-Time Learning and
Classification of Nonstationary Data by a
Self-Organizing Neural Network”, Neural Networks,
Vol. 4, pp. 565-588.

[4] A.A. Minai, R.J. Williams (1990). “Back-propagation
heuristics: A study of the extended delta-bar-delta
algorithm”, IEEE International Joint Conference on
Neural Networks, 1990, vol. I, pp. 595-600.

[5] P.J. Werbos (1994). “The roots of backpropagation:
from ordered derivatives to neural networks and
political forecasting”, John Wiley & Sons, Inc., New
York, 319 p.

[6] G.A. Carpenter, S. Grossberg (1987). “ART 2: Stable
selforganization of pattern recognition codes for
analog input patterns”, Applied Optics, vol. 26,
pp. 4919-4930.

[7]1 NASA Landsat 7, http://landsat.gsfc.nasa.gov.

[8] J.A. Benediktsson, P.H.Swain, and O.K. Ersoy
(1990). “Neural Network Approaches versus
Statistical Methods in Classification of MultiSource
Remote sensing Data”, IEEE Trans. On Geoscience
and Remote Sensing, Vol. 28, no. 4, pp. 540-552.

[9] S.E. Decatur  (1989). “Applications of Neural
Networks to Terrain Classification," Proceedings of
the International Joint Conference on Neural
Networks, vol. 1, pp. 283-288.

[10] H. Bischof, W. Schneider, and A.J. Pinz (1992).
“Multispectral Classification of Landsat-Images
Using Neural Networks”, IEEE Trans. on Geoscience
and Remote Sensing, Vol. 30, no. 3, pp. 482-490.

[11] M.S. Dawson, and A.K. Fung (1993). “Neural
Networks and Their Applications to Parameter
Retrieval and Classification," IEEE Geoscience and
Remote Sensing Society Newsletter, pp. 6-14.

[12] F. Roli, S.B. Serpico, and G. Vernazza (1996).
“Neural Networks  for  Classification  of
Remotely-Sensed Images”, In C.H. Chen, “Fuzzy
Logic and Neural Networks Handbook”,
McGraw-Hills.

[13] G.A. Carpenter, S. Martens, O.J. Ogas (2005).
“Self-organizing information fusion and hierarchical
knowledge discovery: a new framework using
ARTMAP neural network”, Neural Networks, 18, pp.
287-295.

[14] G.A. Carpenter, S. Gopal, S. Macomber, S. Martens,
C.E. Woodcock (1999). “A Neural Network Method
for Mixture Estimation for Vegetation Mapping”,
Remote Sens. Environ, 70, pp. 138-152.

[15] J.N. Hwang, S.R. Lay, and R. Kiang (1993). “Robust
Construction Neural Networks for Classification of
Remotely Sensed Data”, Proceedings of World
Congress on Neural Networks, vol. 4, pp. 580-584.

[16] M. Kussul, A. Riznyk, E. Sadovaya, A. Sitchov, T.Q.
Chen (2002). “A visual solution to modular neural
network system development”, Proc. of the 2002
International Joint Conference on Neural Networks
(IJCNN'02), Honolulu, HI, USA, vol. 1, pp. 749-754.

[17] S. Martens (2005). “ClasserScript v1.1 User’s

Guide”, Technical Report CAS/CNS-TR-05-009,
51p.
[18] The Worldwide Reference System (WRS),

http://landsat.gsfc.nasa.gov/documentation/wrs.html.

[19] C. Huang, B. Wylie, L. Yang, C. Homer, G. Zylstra
(2002). “Derivation of a Tasseled Cap Transformation
Based on Landsat 7 At-Satellite Reflectance”,
International Journal of Remote Sensing, v. 23, no. 8,
pp. 1741-1748.

[20] Landsat-7  Science Data User's Handbook,
http://Itpwww.gsfc.nasa.gov/I AS/handbook/handbook
_toc.html.

[21] European Topic Centre on Terrestrial Environment,
http://terrestrial.eionet.eu.int/CLC2000.

[22] I.T. Jolliffe (1986). “Principal Component Analysis”,
New York: Springer-Verlag, 487 p.

[23] M. Stone (1974). “Cross-validatory choice and
assessment of statistical predictions”, Journal of the
Royal Statistical Society, vol. B36, pp. 111-133.



