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Abstract: It is interesting to notice that from “problem’s formulation” point of view “Industrial Computer Aided 
iagnosis” and “Biomedical Computer Aided Diagnosis” could be formulated as a same diagnosis riddle: “How point 
ut a correct diagnosis from a set of symptoms?”. The only difference between the two above-mentioned groups of 
roblems is the nature of the monitored (diagnosed) system: in the first group the monitored system is an artificial 
achinery (plant, industrial process, etc…), while in the second, the monitored system is a living body (animal or 
uman).One of the most appealing classes of approaches allowing handling the Computer Aided Diagnosis Systems’ 
esign in the frame of the aforementioned dual point of view is Soft-Computing based techniques, especially those 
ealing mainly with neural networks and fuzzy logic. In this article, we present two soft-computing based approaches 
ealing with CADS design. One aims designing a biomedical oriented CADS and the other sets sights on conceiving a 
ADS to overcome a real-world industrial quality control dilemma. The goal of the first system is to diagnose the 
uman’s auditory pathway’s health. The target of the second is to detect and diagnose the high tech optical devices’ 
efects. 

eywords – Computer Aided Diagnosis Systems (CADS), Soft-Computing, Artificial Intelligent systems, Industrial 
ADS applications, Biomedical CADS applications. 

1. INTRODUCTION 
A “Computer Aided Diagnosis System” (CADS) 
s basically one which is able to identify 
diagnose) the nature of a dysfunction by 
xamining the observed symptoms. The output of 
uch a system is called “diagnosis”, defined as 
nformation identifying the type of faulty 
ehavior. It may occur that diagnosis be 
omplemented by additional information (such as 
n explanation or a justification) related to the 
ointed out diagnosis [1]. In a consequent number 
f CADS applications, it is desirable not only to 
dentify the possible causes of the problem, but 
lso to suggest suitable remedies (systems capable 
f advising) or to give a confidence rate of the 
ossible causes’ identification.  
A Computer Aided Diagnosis System could be 
efined according to two different general points 
f view. The first one dissociates the faulty 
ehavior’s detection task from the diagnosis task. 

Thus in the frame of this point of view, a 
Computer Aided Diagnosis System requires three 
main stages: a first stage detecting the faulty 
behavior, a second stage classifying the faulty 
behavior and a last stage deciding the final 
diagnosis. While, the second point of view 
aggregates the detection and diagnosis tasks. 
According to this point of view, the pointed out 
diagnosis (information) includes the fact that the 
resulting diagnosis corresponds to a detected 
faulty behavior. According to this point of view, 
two stages are needed to achieve the diagnosis 
operation: a first stage identifying symptoms 
(classifying behavior, analyzing pertinent 
indicators, etc…) and a second deciding the 
appropriated diagnosis. Both of two above-
mentioned CADS may include (when it is 
required) a number of additional stages (mainly 
one or two) performing a number of preprocessing 
tasks such as data preparation (normalization, 



data’s adequate representation, etc…) or features’ 
extraction (indicators, etc…). 
Each of aforementioned frames corresponds to a 

number of advantages and disappoints. The main 
advantage of the CADS based on the first 
philosophy is to make available, independently 
from the resulted diagnosis, information on faulty 
healthy state of the monitored system. However, 
the need of a fault detection stage could be seen as 
a drawback making such CADS more costly to 
implement. The main advantage of the second 
slant comes from the fact that in such approaches 
(CADS) it is not necessary to detect the faulty 
behavior of the monitored system. The “healthy 
state” of the monitored system is considered as a 
possible pointed out diagnosis and thus a 
diagnosis stating any monitored system’s faulty 
behavior means the presence (detection) of the 
corresponding fault. However, its main drawback 
is related to more complex information matching 
(more complex faults’ models, more complex 
decision strategy, etc…).  
Over past decades, several matching, 

classification and decision support systems taking 
advantage from bio-inspired Artificial Intelligence 
issued techniques have been developed [2], [3]. 
Recently a number of diagnosis approaches based 
on such intelligent artificial systems have been 
developed for industrial ([1], [4] and [5]) or 
biomedicine related purposes ([6], [7], [8], [9], 
[10] and [11]). It is interesting to note that from 
the point of view of the problem formulation 
“Industrial Computer Aided Diagnosis” (ICAD) 
and “Biomedical Computer Aided Diagnosis” 
(BCAD) could be formulated as a same diagnosis 
problem: to point out a diagnosis based on a 
number of symptoms. The only difference 
between the two above-mentioned groups of 
problems is the nature of the monitored system: in 
the first group the monitored system is an artificial 
machinery (plant, industrial process, etc…), while 
in the second, the monitored system is an alive 
body (animal or human). 
One of the most used classes of approaches for 

feature identification, patterns’ matching, 
classification and decision-making is soft 
computing based approaches, especially those 
dealing mainly with neural networks and fuzzy 
logic ([1], [3], [4], [5], [6], [9], [10], [11], [12], 
[13]). More recently, a number of research works 
dealing with above-mentioned techniques leaded 
to a number of new soft-computing based 
solutions hybridizing those techniques aiming to 
solve real-world problems (complex systems’ 
modeling, multiple criteria decision-making, fine 
classification, and nonlinear functions 
approximation) [14], [15], [16], opening new 
perspectives in CADS area. 
In this article, we present two soft-computing 

based approaches dealing with CADS design. One 

aims designing a biomedical oriented CADS and 
the other sets sights on conceiving a CADS to 
overcome a real-world industrial quality control 
dilemma. The goal of the first system is to 
diagnose the human’s auditory pathway’s health. 
The target of the second is to detect and diagnose 
the high tech optical devices’ defects. 
The present paper is organized in following way: 

the next section will be dedicated to biomedical 
oriented CADS and related aspects. The first 
subsection of this section will introduce Auditory 
Brainstem Response (ABR) based clinical test. 
The second subsection of this second section will 
present the proposed CADS principle, its 
architecture and each of its three stages. The last 
sub-section of this section will give the obtained 
results. In section 3 of this paper we will present 
the industrial CADS and related investigations. 
The first sub-section of this section will introduce 
the problem to be solved, its industrial context and 
the proposed solution. The second sub-section 
will detailed the detection stage principle. The 
next sub-section will present pre-processing and 
feature extraction. Sub-section 4 will deal with an 
unsupervised learning based diagnosis issue. 
Finally, the last section will conclude the present 
article and discuss a number of perspectives. 

 
2. BIOMEDICINE ORIENTED HYBRID 

INTELLIGENT DIAGNOSIS APPROACH 
A wide class of medical diagnosis, as those 

performed by general practitioners in general 
medicine, is mainly based on deductive processes. 
The deductive processes involved in such medical 
diagnosis tasks are generally based on a number 
of symptoms leading to the issued diagnosis 
according to a deductive procedure as one of the 
following ones: 
If symptom “A” Then disease “D”  
If symptoms “A” And “B” And “C” And … 
Then disease “D” 
A number of works, over past decades, have 
suggested conventional “expert systems” as 
potential solution in CADS design for this class of 
medical diagnosis. 
However, there exist in biomedicine a large 

number of cases where symptoms are not directly 
(or easily) discernable. In such cases, often, 
diagnosis is performed on the basis of clinical 
tests’ results which are generally available either 
as signals (for example electroencephalograms 
[7], electrocardiograms [8], etc…) or as images 
(obtained, for example, from X-rays imagery, 
echo-graphical imagery, IRN imagery, etc…). If, 
from a very general point of view, the procedure 
performed by the specialist physician to point out 
the diagnosis remains somewhere a deductive 
process, it could no more be formulated in the 
frame of the previously mentioned deductive 



schemes. In fact, the process leading to the final 
diagnosis in this second category of biomedical 
cases looks more like a pattern recognition 
process than a conventional deductive flow. 
Concerning the CADS design relative to this 

second class of cases, the main difficulty remains 
the specialist physician reasoning flow’s modeling 
which on the one hand is based on the expert’s 
(specialist physician) deep experience, and on the 
other hand, takes advantage from complex 
(subjective, visual, etc…) information. 
The present section deals with the design of a 

computer aided diagnosis system able to assert 
auditory pathologies using results issued from the 
Auditory Brainstem Response (ABR) based 
clinical test. ABR based clinical test takes 
advantage from Brainstem Auditory Evoked 
Potentials (BAEP) signals, which convey 
information related to hearing and brain 
(neurological) functioning [6], [17], [18], [19], 
providing an effective measure of the integrity of 
the auditory pathway. Based on what has been 
mentioned previously (concerning difficulty 
inherent to the expert’s reasoning flow’s 
modeling), the approach we adopt aggregates the 
detection and diagnosis tasks.  
 
2.1. BEAP SIGNALS AND ABR BASED 

CLINICAL TEST 
When a sense organ is stimulated, it generates a 

string of complex electrical responses related to 
its neurophysiology. BAEP are electrical response 
caused by the brief stimulation of a sense system. 
The stimulus gives rise to the start of a string of 
action's potentials that can be recorded on the 
nerve's course, or from a distance of the activated 
structures. The ABR clinical test, based on BAEP, 
is performed as follows (see Fig. 1): the patient 
hears clicking noise or tone bursts through 
earphones. The use of auditory stimuli evokes an 
electrical response. In fact, the stimulus triggers a 
number of neurophysiology responses along the 
auditory pathway. An action potential is 
conducted along the eight nerve, the brainstem, 
and finally to the brain. A few times after the 
initial stimulation, the signal evokes a response in 
the area of brain where sounds are interpreted 
[20]. 

 

 
Fig. 1. General bloc diagram of ABR clinical test 

chain. 

 
Fig. 2. Examples of obtained TDC Surfaces showing 

a healthy (A) and an auditory disorder (B), 
respectively. 

Usually, the experts diagnose the pathology 
using a surface of 50 estimations called 
“Temporal Dynamic of the Cerebral” trunk (TDC) 
[20]. Figure 2 shows an example of TDC obtained 
for a healthy patient and a patient with harmful 
auditory disorder pathology, respectively. In 
general, for a healthy patient (normal audition), 
the ABR test leads to a regular TDC surface. 
However, it is not so easy to distinguish different 
TDC representations (surfaces) related to different 
type of pathologies. The results can vary for 
different test sessions for the same patient, 
because they depend on the person’s relaxation, 
the background, the test's conditions, the signal-
to-noise ratio, etc. Also, depending to the stage of 
auditory disorder, ABR test’s results for two 
patients with different pathologies (for example 
one healthy and the second unwell) could look 
very similar. However, the expert (specialist 
physician) constructs his (or her) diagnosis from a 
visual analysis of the above-described TDC 
surfaces. 
 

2.2. PROPOSED CADS APPROACH 
Taking into account difficulty of modeling the 

expert’s intellectual process leading to the final 
diagnosis, the suggestion is to design a CADS 
taking advantage of expert’s knowledge (e.g. to 
use soft-computing approaches in order to learn 
from expert). Also, taking into consideration the 
expert’s way to scrutinize the ABR clinical test’s 
results, we have opted for an image-like 
representation of the CADS’s input: the expert 
inspects TDC surfaces not as signals but looks at 
them as an image. 
So, conformably to what has been mentioned in 

section 1 of this paper, the proposed CADS 
includes three stages: pre-processing stage, 
classification stage and decision stage.  
The first stage converts the TDC surface to an 

image. The “Signal-To-Image” conversion is 
performed thanks to conventional threshold based 
interpolation techniques [21]. Fig. 3 depicts the 
bloc diagram of such transformation. As each 
BAEP signal is sampled and represented by 86 
points (values) and a TDC surface includes 50 
BEAP signals, consequently, each resulting image 
is formatted as a matrix of 50 rows and 86 



columns. However, a finer analysis of these data 
leads us to consider a matrix of reduced 
dimensions: 40 rows by 80 columns. In fact, a 
number of last rows and first columns include 
many zero values and/or very high values as 
shown in Fig. 4 (black parts left-down). Finally, 
the reduced image is spitted into 16 sub-images.  

 
Fig. 3. Bloc diagram of Signal-To-Image conversion. 

 
Fig. 4. Example of TDC surface’s image 

representation showing complete image (left) and 
reduced one (right), respectively. 

The classification stage is based on a multiple 
neural networks structure [8], [12], [8], [9], [22]. 
It includes two kind of neural classifiers operating 
in an independent way: MLP and RBF [3], [14], 
[23], [24] and [25], as shown in Fig. 5. In this 
approach, 16 local sub-images (S_I-1, ..., S_I-i, ..., 
S_I-16) of each TDC issued image are classified 
within three classes, representing each a possible 
pathological category: “Normal Category Patient” 
(NCP: corresponding to a healthy patient), “Retro-
cochlear Category Patient” (RCP: corresponding 
to a first possible pathological patient) and  “Edo-
cochlear Category Patient” (ECP: corresponding 
to a second possible pathological patient). The 
TDC image (e.g. all sub-images of a TDC issued 
image) is classified by both two kinds of the 
above-mentioned neural classifiers. 

 
Fig. 5. Synopsis of dual neural classification.  
The last stage is composed of two fuzzy 

decision-making stages: primary Fuzzy System 
(FS_1) and final Fuzzy System (FS_2). Fig 6 
shows the bloc diagram of the decision stage’s 
architecture. Primary and final fuzzy decision-

making stages consists of the Fuzzy System 1 
(FS_1) and Fuzzy System 2 (FS_2), respectively, 
see Fig. 2. These fuzzy decision-making systems 
are used to capture the decision-making behavior 
of a human expert while giving the appropriate 
diagnosis [2], [3], [29] and [30].  

 
Fig. 6. Synopsis of the hybrid fuzzy system based 

decision stage. 

Note that both of two fuzzy inferences of FS_1 
and FS_2 are Mamdani-like fuzzy inferences and 
are developed as detailed in [2], [3], [9], [26] and 
[27], with the simplification detailed in [28]. From 
this simplification, the fuzzy rule base of FS_1, 
which is built of 36 = 729 rules, will operate only 
with 26 = 64 rules in each inference. In the same 
way, the fuzzy rule base of FS_2, which is built of 
34 = 81 rules, will make in use only 24 = 16 rules 
in each inference. Input parameters of FS 1, issued 
from the two neural classifiers, are RC_MLP, 
EC_MLP, NC_MLP, RC_RBF, EC_RBF, and 
NC_RBF. Its outputs are PORC, POEC, and PONC. 
The diagnosis’ reliability obtained from FS_1 is 
reinforced (enhanced) using an additional 
parameter, called Auditory Threshold (AT). This 
parameter is exploited by FS_2 in order to 
generate the final diagnosis result. Input 
parameters of FS_2, issued from FS_1, are AT, 
PORC, POEC, and PONC and its outputs are FORC, 
FOEC, and FONC with their Confidence Index (CI). 
 

2.3. EXPERIMENTAL RESULTS 
The experimental results presented in this sub-

section have been obtained using a database 
containing data of 206 patients characterized by 
one of the three possible diagnoses (obtained from 
an expert). 206 images are built using this 
database leading to 38 images representing Retro-
Cochlear-Patients, 77 images representing Endo-
Cochlear-Patients, and 91 images representing 
Normal-Cochlear-Patients. 



Table 1. Fuzzy decision-making system FS_1. 

Results Learning Generalization (FS_1) 
RC 100 % 10.52 %  
EC 100 % 15.78 %  
NC 100 % 77.77 %  

Table 2. Fuzzy decision-making system FS_2. 

Results Learning Generalization (FS_2) 
RC 100 % 21.05 %  
EC 94.87 % 57.89 %  
NC 100 % 82.22 %  

 
Obtained results are summarized in tables 1 and 

2. Table 1 gives resulting pre-diagnosis performed 
by FS_1 decider. Table 2 gives final diagnosis 
results.  
 

3. INDUSTRIAL PRODUCTION 
ORIENTED INTELLIGENT CADS 

Fault diagnosis in industrial environment is a 
challenging but crucial task, since it ensures 
products’ nominal specification and 
manufacturing control. Concerning High-Tech 
optical industry, a major step for high-quality 
optical devices’ faults diagnosis concerns 
scratches and digs defects detection and 
characterization in such products. These kinds of 
aesthetic flaws, shaped during different 
manufacturing steps, could provoke harmful 
effects on optical devices’ functional specificities, 
as well as on their optical performances by 
generating undesirable scatter light, which could 
seriously damage the expected optical features. A 
reliable diagnosis of these defects becomes 
therefore a crucial task to ensure products’ 
nominal specification. Moreover, such diagnosis 
is strongly motivated by manufacturing process 
correction requirements in order to guarantee 
mass production quality with the aim of 
maintaining acceptable production yield. Figure 7 
gives an example of High-Tech optical products, 
showing four optical filters. 

 
Fig. 7. Example of High-Tech optical devices 

performing optical filtering (left) and the visual 
fault detection, performed by an expert. 

Unfortunately, detecting and measuring such 
defects is still a challenging problem in 
production conditions and the few available 
automatic control solutions remain ineffective. 
That’s why, in most of cases, the diagnosis is 
performed on the basis of a human expert based 

visual inspection of the whole production. 
However, this conventionally used solution 
suffers from several acute restrictions related to 
human operator’s intrinsic limitations (reduced 
sensitivity for very small defects, detection 
exhaustiveness alteration due to attentiveness 
shrinkage, operator’s tiredness and weariness due 
to repetitive nature of fault detection and fault 
diagnosis tasks). 
 

3.1. PROPOSED SOLUTION 
To construct an automatic diagnosis system, we 

propose an approach based on three main 
operations: detection, classification and decision. 
Our motivation to adopt the approach dissociating 
detection and diagnosis tasks is based on 
requirement relative to the frame of industrial 
production. In fact, two complementary options 
could de required in industrial production 
environment. The first is inherent to mass 
production where it is not always necessary to 
diagnose whole manufactured products during the 
production, but it is crucial to detect the presence 
of defects in order to state if the number of defects 
is conform to the process’s intrinsic limitations. 
However, at the same time, diagnosis ability could 
help to state (offline) if detected defects are due to 
intrinsic limitations of the used manufacturing 
process or a number of them correspond to 
different derivations. The second situation is 
specific to High-Tech products manufacturing 
requirements, where additionally to systematic 
defect detection it is crucial to state on nature of 
detected defects in order to reach high-quality 
specifications. 
 

3.2. DETECTION STAGE 
The detection stage is composed of two 

operations. The first operation is based on the 
Nomarski microscopy [29], [30], issued imaging 
(Nomarski microscope and a digital camera). The 
second operation incorporating the two following 
phases: 
• Pre-processing: Nomarski microscopy issued 

digital image transformation in order to 
reduce lighting heterogeneity influence and to 
enhance the aimed defects’ visibility,  

• Adaptive matching: adaptive process to match 
defects, 

is an image processing techniques based treatment 
of the Nomarski microscopy issued image in order 
to relieve defects’ presence exposure. Fig. 8 gives 
the bloc diagram of the detection stage. 
 

Nomarski 
Microscope 

Digital 
Camera 

Image 
Processing

Fig. 8. Bloc diagram of defects’ detection chain. 



Three main advantages distinguishing 
Nomarski microscopy (known also as 
“Differential Interference Contrast 
microscopy” [30], [31] and [32]) from other 
microscopy techniques, have motivated our 
preference for this imaging technique. The 
first of them is related to the higher sensitivity 
of this technique comparing to the other 
classical microscopy techniques (Dark Field, 
Bright Field [29]). Furthermore, the DIC 
microscopy is robust regarding lighting non-
homogeneity. Finally, this technology 
provides information relative to depth (3-th 
dimension) which could be exploited to typify 
roughness or defect’s depth. This last 
advantage offers precious additional 
potentiality to characterize scratches and digs 
flaws in high-tech optical devices. Therefore, 
Nomarski microscopy seems to be a suitable 
technique to detect surface imperfections. 
Issued images contain several items which 
have to be detected and then classified in 
order to discriminate between “false” defects 
(correctable defects) and “abiding” 
(permanent) ones. Indeed, because of 
industrial environment, a number of 
correctable defects (like dusts or cleaning 
marks) are usually present beside the potential 
“abiding” defects.  
In the pre-processing phase, as presented in [30] 

and [33], the intensity of every pixel in the image 
is modified according to the relation (1), where P 
(respectively P’) represents pixel’s intensity 
before (respectively after) the transformation. M 
and σ are the mean and the standard deviation of 
grey-level in a 5x5 neighborhood of considered 
pixel. 

σ+
=

M
PP'                              (1) 

 

 
Fig. 9. Example of pre-processing effects showing 

DIC microscopy issued defect’s image (left) and the 
same captured defect after pre-processing phase. 

The first consequence of the aforementioned 
transformation is to balance the image dynamic: 
lighting heterogeneities (due to non-uniform 
floodlighting) and local contrast modifications 
(due to focus and material thickness variations, or 
microscope optics imperfections) are corrected. Its 
second consequence is to enhance defects 
visibility in the processed image. Fig. 9 gives an 
example of a pre-processed DIC microscopy 

issued image, obtained conformably to the 
described transformation. 
In order to perform defects detection, an adaptive 

thresholding operation is performed, exploiting 
physical considerations. To determine the 
effective threshold, we propose a technique based 
on the estimation of the roughness appearance. In 
our technique, the image (obtained after the pre-
processing operation) is initially divided into a set 
of 8-by8 pixels images. Then the number of 8-by8 
images in which the weakest available intensity 
corresponds to the same grey-level is determined. 
The evolution of the shape (curve) of this umber 
versus grey-level values is then determined. 
Finally, the effective adaptive threshold T is 
experimentally set thanks to relation (2), where 
Max is the grey-level corresponding to the 
maximum of the curve, and H the WDMH (width 
of middle high) of the curve.  

 

2
HMAXT −=                              (2) 

 

 
Fig. 10. Example the curve expressing the number 

of 8-by8 images in which the weakest available 
intensity corresponds to the same grey-level. 

 
Fig. 11. Example detection stage output image 

obtained from the DIC microscopy issued defect’s 
image depicted in Fig. 9. 

Fig. 10 gives an example of such curve for the 
images depicted by Fig. 9. An example of defect 
detection (e.g. detection stage’s output image) is 
given in Fig. 11. It corresponds to resulted 
adaptive thresholding  of the image shown in Fig. 
9. The presented detection approach gives good 
and repetitive (robust) results, preserving 
sensitivity of DIC microscopy, since all of the 
defects deeper than roughness range are detected. 
Another interesting feature related to our approach 
is that the obtained curve is almost the same for 
any image. 



3.3. ITEMS IMAGES EXTRACTION 
The aim of this stage is to extract items 
images, taking into account DIC detector 
issued digital image, isolating different items. 
In shch way, an item (via its correponding 
image) will represent a pôtential defect to be 
diagnosed. To achieve this task, a new 
method is proposed, adding two new 
operations (phases) to the two previous ones 
(those described in detection stage): 
• Filtering and segmentation: noise removal and 

defects’ outlines characterization. 
• Defects’ images extraction: correct defect 

representation construction. 
The first operation consists of conventional 

filtering and morphological erosion 
transformation on image issued from the detection 
stage. It leads to a new image containing 
(representing) defects outlines. Filtering consists 
in replacing each pixel P by the nth pixel in the 
sorted list of all pixels in the m-square 
neighborhood of P. For little n values, it is almost 
equivalent to a morphological dilatation but it 
filters isolated white pixels corresponding to 
noise. An example of resulted image, obtained 
using the result shown in Fig. 11 is given in Fig. 
12. 

 
Fig. 12. Example of resulted image obtained after 
the “filtering-segmentation” operation performed 

on image depicted in Fig. 11. 

 
Fig. 13. Examples of four detected items’ images 

corresponding (from left to right) to “scratch-like”, 
“dig-like”, “dust-like” and “cleaning mark-mike” 

defects. 

Finally, images associated to all detected items 
are constructed performing the second operation. 
It is done considering a stripe of ten pixels around 
each “white” pixel of the detected item. Thus the 
obtained image gives an isolated (from other 
items) representation of the defect (e.g. depicts the 

defect in its immediate environment). Fig. 13 
gives four examples of detected items images 
using the aforementioned principles, performed on 
raw images of an optical device in industrial 
environment. It shows different characteristic 
items which could be found on such device. 
 

3.4. DIAGNOSIS STAGE 
The diagnosis is performed by “clustering” 

(classification) then by comparison to the defects’ 
categories’ representative “specimens” (decision). 
The classification task is achieved thanks to an 
unsupervised learning based neural network 
which is a Kohonen Self-Organizing Map (SOM) 
[34] and [35]. However, before SOM based 
clustering, an additional operation is required. 
This additional operation consists on extracting a 
set of homogenous features in order to construct 
an invariant (regarding translation and rotation) 
representation of SOM’s input vector. In fact, 
because of different sizes of items’ images and 
their relative positions (due to translation and 
rotation) it is necessary to have a “normalize” 
representation for SOM’s input patterns.  
For that, we propose to use “Fourier-Mellin” 

transformation as it provides invariant descriptors, 
which are considered to have good coding 
capacity in classification tasks [36], [37] and [38]. 
A set of associated features, invariant with regard 
to geometric transformations, are proposed in 
[39]. In order to calculate efficiently Fourier-
Mellin transform in discrete Cartesian 
coordinates, we perform the convolution of the 
image with an appropriate filters bench proposed 
in [42]. Finally, the extracted features have to be 
normalized. For this purpose we use the centring-
reducing transformation modifying each 
feature i  conformably to the relation (3), where 
M is the mean value of the feature  over the 
database and σ its standard deviation. 

F
iF

σ
MF

F i
i

−
=                              (3) 

 
3.5. EXPERIMENTAL SET-UP AND 

VALIDATION RESULTS 
Three experiments called A, B, C were carried 

out, using two kind of optical devices (products). 
Table 3 shows the different parameters 
corresponding to these experiments. It’s important 
to note that, in order to avoid false classes 
learning, items images depicting microscopic field 
boundaries or two (or more) different defects are 
discarded from used database. 
Using the above described experimental 

protocol, we have diagnosed detected defects 
relative each above-mentioned experiment. 
Figures 14, 15 and 16 show the lattice of neurons 
corresponding to the three experiments 



respectively. In these figures, the depicted defect 
for each node is chosen randomly among the 
examples of the database which are projected onto 
the node under consideration. The size of images 
is normalized, so the real scale is not respected. In 
the three cases, the similarities between adjacent 
nodes are apparent and some clusters of similar 
data are identified. Moreover, in major cases, 
database items projected in the same neurons have 
the same appearance. Such defects probably 
belong to the same class of defects. Thus, the 
performed clustering operation seems relevant. 
However, data projected onto neurons which are 
near “natural” class boundaries, are sometimes 
inhomogeneous. 

Table 3. Experimental conditions and parameters. 

Exp. 
Id. 

Optical 
device 

Id. 

Clering Number 
scanned 
Fields  

Number of 
items in 
learning 

SOM 
grid size

A 1 No 1178 3865 15 X 7 
B 2 No 605 1910 20 X 8 
C 2 Yes 529 1544 10 X 8 

 
Fig. 14. Representation of the Kohonen’s map 

corresponding to the experiment A. 

When observing obtained maps from 
experiments A and B, we notice the presence of 
clusters similar in nature. On the contrary, when 
comparing maps from experiments A and B with 
the result of the experiment C, we find that classes 
corresponding to big black items (see nodes 28, 
29, 43, 44 from map A and nodes 17, 18, 19, 37, 
38, 39 from map B) are absent in the third map. 
This is coherent with the fact that experiments A 
and B studied both non cleaned devices and 
therefore dealt with the same kind of defects, 
unlike experiment C. On the other hand, it implies 
that the mentioned defect classes would probably 

correspond to dusts. 

 
Fig. 15. Representation of the Kohonen’s map 

corresponding to the experiment B. 

 
Fig. 16. Representation of the Kohonen’s map 

corresponding to the experiment C. 

4. CONCLUSION 
Taking into consideration the fact that “Industrial 

Computer Aided Diagnosis” and “Biomedical 
Computer Aided Diagnosis” could be regarded as 
a same diagnosis riddle, we have presented two 
CADS, taking advantage from the most appealing 
abilities of ANN which are their “learning”, 
“generalization and for some of them  their “self-
organization” capabilities. Both of the two 
Computer Aided Diagnosis Systems operate on 
the basis of image-like information’s 
representation, covering a large number of real-
world applications either in biomedicine or in 
industry.  



Based on a neural classifiers’ fusion (involving 
two different kind of neural networks) and a 
cascaded fuzzy decision-making strategy, the 
biomedical oriented CADS has been applied to 
overcome the difficult challenge of human’s 
auditory disorders’ diagnosis. While the target of 
the second, based on combination of a defects’ 
detection stage and a Kohonen-SOM-like 
unsupervised ANN, was to detect and diagnose 
the defects in High-Tech optical devices in the 
frame of industrial production constraints. 
The obtained experimental validation results, 

carried out using real data, as well for the 
biomedical application as for the industrial 
request, show the promising potential of Soft-
Computing techniques in designing intelligent 
CADS.  
Further works, dealing with the present paper’s 

purposes, are already engaged in several 
directions. Part of them is oriented on mechanical 
faults detection and diagnosis in industrial power 
machines. Another slice of planed perspectives 
concerns other kinds of digital imaging based 
CADS applications in industry. Also, a part of 
perspectives launch new clinical applications. 
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