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Abstract: It is interesting to notice that from *““problem’s formulation” point of view ““Industrial Computer Aided
Diagnosis™ and “Biomedical Computer Aided Diagnosis’™ could be formulated as a same diagnosis riddle: “How point
out a correct diagnosis from a set of symptoms?”’. The only difference between the two above-mentioned groups of
problems is the nature of the monitored (diagnosed) system: in the first group the monitored system is an artificial
machinery (plant, industrial process, etc...), while in the second, the monitored system is a living body (animal or
human).One of the most appealing classes of approaches allowing handling the Computer Aided Diagnosis Systems’
design in the frame of the aforementioned dual point of view is Soft-Computing based techniques, especially those
dealing mainly with neural networks and fuzzy logic. In this article, we present two soft-computing based approaches
dealing with CADS design. One aims designing a biomedical oriented CADS and the other sets sights on conceiving a
CADS to overcome a real-world industrial quality control dilemma. The goal of the first system is to diagnose the
human’s auditory pathway’s health. The target of the second is to detect and diagnose the high tech optical devices’
defects.

Keywords — Computer Aided Diagnosis Systems (CADS), Soft-Computing, Artificial Intelligent systems, Industrial
CADS applications, Biomedical CADS applications.

1. INTRODUCTION Thus in the frame of this point of view, a
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behavior’s detection task from the diagnosis task. tasks such as data preparation (normalization,



data’s adequate representation, etc...) or features’
extraction (indicators, etc...).

Each of aforementioned frames corresponds to a
number of advantages and disappoints. The main
advantage of the CADS based on the first
philosophy is to make available, independently
from the resulted diagnosis, information on faulty
healthy state of the monitored system. However,
the need of a fault detection stage could be seen as
a drawback making such CADS more costly to
implement. The main advantage of the second
slant comes from the fact that in such approaches
(CADS) it is not necessary to detect the faulty
behavior of the monitored system. The “healthy
state” of the monitored system is considered as a
possible pointed out diagnosis and thus a
diagnosis stating any monitored system’s faulty
behavior means the presence (detection) of the
corresponding fault. However, its main drawback
is related to more complex information matching
(more complex faults’ models, more complex
decision strategy, etc...).

Over past decades, several matching,
classification and decision support systems taking
advantage from bio-inspired Artificial Intelligence
issued techniques have been developed [2], [3].
Recently a number of diagnosis approaches based
on such intelligent artificial systems have been
developed for industrial ([1], [4] and [5]) or
biomedicine related purposes ([6], [7], [8], [9],
[10] and [11]). It is interesting to note that from
the point of view of the problem formulation
“Industrial Computer Aided Diagnosis” (ICAD)
and “Biomedical Computer Aided Diagnosis”
(BCAD) could be formulated as a same diagnosis
problem: to point out a diagnosis based on a
number of symptoms. The only difference
between the two above-mentioned groups of
problems is the nature of the monitored system: in
the first group the monitored system is an artificial
machinery (plant, industrial process, etc...), while
in the second, the monitored system is an alive
body (animal or human).

One of the most used classes of approaches for
feature  identification, patterns’ matching,
classification and decision-making is soft
computing based approaches, especially those
dealing mainly with neural networks and fuzzy
logic ([1], [3], [4], [5], [6], [9], [10], [11], [12],
[13]). More recently, a number of research works
dealing with above-mentioned techniques leaded
to a number of new soft-computing based
solutions hybridizing those techniques aiming to
solve real-world problems (complex systems’
modeling, multiple criteria decision-making, fine
classification, and nonlinear functions
approximation) [14], [15], [16], opening new
perspectives in CADS area.

In this article, we present two soft-computing
based approaches dealing with CADS design. One

aims designing a biomedical oriented CADS and
the other sets sights on conceiving a CADS to
overcome a real-world industrial quality control
dilemma. The goal of the first system is to
diagnose the human’s auditory pathway’s health.
The target of the second is to detect and diagnose
the high tech optical devices’ defects.

The present paper is organized in following way:
the next section will be dedicated to biomedical
oriented CADS and related aspects. The first
subsection of this section will introduce Auditory
Brainstem Response (ABR) based clinical test.
The second subsection of this second section will
present the proposed CADS principle, its
architecture and each of its three stages. The last
sub-section of this section will give the obtained
results. In section 3 of this paper we will present
the industrial CADS and related investigations.
The first sub-section of this section will introduce
the problem to be solved, its industrial context and
the proposed solution. The second sub-section
will detailed the detection stage principle. The
next sub-section will present pre-processing and
feature extraction. Sub-section 4 will deal with an
unsupervised learning based diagnosis issue.
Finally, the last section will conclude the present
article and discuss a number of perspectives.

2. BIOMEDICINE ORIENTED HYBRID
INTELLIGENT DIAGNOSIS APPROACH

A wide class of medical diagnosis, as those
performed by general practitioners in general
medicine, is mainly based on deductive processes.
The deductive processes involved in such medical
diagnosis tasks are generally based on a number
of symptoms leading to the issued diagnosis
according to a deductive procedure as one of the
following ones:
If symptom “A” Then disease “D”
If symptoms “A” And “B” And “C” And ...
Then disease “D”
A number of works, over past decades, have
suggested conventional “expert systems” as
potential solution in CADS design for this class of
medical diagnosis.

However, there exist in biomedicine a large
number of cases where symptoms are not directly
(or easily) discernable. In such cases, often,
diagnosis is performed on the basis of clinical
tests’ results which are generally available either
as signals (for example electroencephalograms
[7], electrocardiograms [8], etc...) or as images
(obtained, for example, from X-rays imagery,
echo-graphical imagery, IRN imagery, etc...). If,
from a very general point of view, the procedure
performed by the specialist physician to point out
the diagnosis remains somewhere a deductive
process, it could no more be formulated in the
frame of the previously mentioned deductive



schemes. In fact, the process leading to the final
diagnosis in this second category of biomedical
cases looks more like a pattern recognition
process than a conventional deductive flow.

Concerning the CADS design relative to this
second class of cases, the main difficulty remains
the specialist physician reasoning flow’s modeling
which on the one hand is based on the expert’s
(specialist physician) deep experience, and on the
other hand, takes advantage from complex
(subjective, visual, etc...) information.

The present section deals with the design of a
computer aided diagnosis system able to assert
auditory pathologies using results issued from the
Auditory Brainstem Response (ABR) based
clinical test. ABR based clinical test takes
advantage from Brainstem Auditory Evoked
Potentials (BAEP) signals, which convey
information related to hearing and brain
(neurological) functioning [6], [17], [18], [19],
providing an effective measure of the integrity of
the auditory pathway. Based on what has been
mentioned previously (concerning difficulty
inherent to the expert’s reasoning flow’s
modeling), the approach we adopt aggregates the
detection and diagnosis tasks.

2.1. BEAP SIGNALS AND ABR BASED
CLINICAL TEST

When a sense organ is stimulated, it generates a
string of complex electrical responses related to
its neurophysiology. BAEP are electrical response
caused by the brief stimulation of a sense system.
The stimulus gives rise to the start of a string of
action's potentials that can be recorded on the
nerve's course, or from a distance of the activated
structures. The ABR clinical test, based on BAEP,
is performed as follows (see Fig. 1): the patient
hears clicking noise or tone bursts through
earphones. The use of auditory stimuli evokes an
electrical response. In fact, the stimulus triggers a
number of neurophysiology responses along the
auditory pathway. An action potential is
conducted along the eight nerve, the brainstem,
and finally to the brain. A few times after the
initial stimulation, the signal evokes a response in
the area of brain where sounds are interpreted
[20].
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Fig. 1. General bloc diagram of ABR clinical test
chain.
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Fig. 2. Examples of obtained TDC Surfaces showing
a healthy (A) and an auditory disorder (B),
respectively.

Usually, the experts diagnose the pathology
using a surface of 50 estimations called
“Temporal Dynamic of the Cerebral” trunk (TDC)
[20]. Figure 2 shows an example of TDC obtained
for a healthy patient and a patient with harmful
auditory disorder pathology, respectively. In
general, for a healthy patient (normal audition),
the ABR test leads to a regular TDC surface.
However, it is not so easy to distinguish different
TDC representations (surfaces) related to different
type of pathologies. The results can vary for
different test sessions for the same patient,
because they depend on the person’s relaxation,
the background, the test's conditions, the signal-
to-noise ratio, etc. Also, depending to the stage of
auditory disorder, ABR test’s results for two
patients with different pathologies (for example
one healthy and the second unwell) could look
very similar. However, the expert (specialist
physician) constructs his (or her) diagnosis from a
visual analysis of the above-described TDC
surfaces.

2.2. PROPOSED CADS APPROACH

Taking into account difficulty of modeling the
expert’s intellectual process leading to the final
diagnosis, the suggestion is to design a CADS
taking advantage of expert’s knowledge (e.g. to
use soft-computing approaches in order to learn
from expert). Also, taking into consideration the
expert’s way to scrutinize the ABR clinical test’s
results, we have opted for an image-like
representation of the CADS’s input: the expert
inspects TDC surfaces not as signals but looks at
them as an image.

So, conformably to what has been mentioned in
section 1 of this paper, the proposed CADS
includes three stages: pre-processing stage,
classification stage and decision stage.

The first stage converts the TDC surface to an
image. The “Signal-To-Image” conversion is
performed thanks to conventional threshold based
interpolation techniques [21]. Fig. 3 depicts the
bloc diagram of such transformation. As each
BAEP signal is sampled and represented by 86
points (values) and a TDC surface includes 50
BEAP signals, consequently, each resulting image
is formatted as a matrix of 50 rows and 86



columns. However, a finer analysis of these data
leads us to consider a matrix of reduced
dimensions: 40 rows by 80 columns. In fact, a
number of last rows and first columns include
many zero values and/or very high values as
shown in Fig. 4 (black parts left-down). Finally,
the reduced image is spitted into 16 sub-images.

lr.'.-:";" -
. &
__r'}}-‘ }f : Preprocessing
(i =8 [ Signal-to-Image
“,-"J i Converzion) :

Fig. 3. Bloc diagram of Signal-To-Image conversion.
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g. 4. Example of TDC surface’s |ma%
representatlon showing complete image (left) and
reduced one (right), respectively.

The classification stage is based on a multiple
neural networks structure [8], [12], [8], [9], [22].
It includes two kind of neural classifiers operating
in an independent way: MLP and RBF [3], [14],
[23], [24] and [25], as shown in Fig. 5. In this
approach, 16 local sub-images (S _I-1, ..., S I, ...,
S _1-16) of each TDC issued image are classified
within three classes, representing each a possible
pathological category: “Normal Category Patient”
(NCP: corresponding to a healthy patient), “Retro-
cochlear Category Patient” (RCP: corresponding
to a first possible pathological patient) and “Edo-
cochlear Category Patient” (ECP: corresponding
to a second possible pathological patient). The
TDC image (e.g. all sub-images of a TDC issued
image) is classified by both two kinds of the
above-mentioned neural classifiers.
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Fig. 5. Synopsis of dual neural classification.

The last stage is composed of two fuzzy
decision-making stages: primary Fuzzy System
(FS_1) and final Fuzzy System (FS_2). Fig 6
shows the bloc diagram of the decision stage’s
architecture. Primary and final fuzzy decision-

making stages consists of the Fuzzy System 1
(FS_1) and Fuzzy System 2 (FS_2), respectively,
see Fig. 2. These fuzzy decision-making systems
are used to capture the decision-making behavior
of a human expert while giving the appropriate
diagnosis [2], [3], [29] and [30].
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Fig. 6. Synopsis of the hybrid fuzzy system based
decision stage.

Note that both of two fuzzy inferences of FS 1
and FS_2 are Mamdani-like fuzzy inferences and
are developed as detailed in [2], [3], [9], [26] and
[27], with the simplification detailed in [28]. From
this s1mp11ﬁcat10n the fuzzy rule base of FS 1,
which is built of 3° = 729 rules, will operate only
with 2° = 64 rules in each 1nference In the same
way, the fuzzy rule base of FS_2, which is built of
3* = 81 rules, will make in use only 2* = 16 rules
in each inference. Input parameters of FS 1, issued
from the two neural classifiers, are RC _MLP,
EC MLP, NC_MLP, RC RBF, EC RBF, and
NC _RBF. Its outputs are POgc, POgc, and POxc.
The diagnosis’ reliability obtained from FS 1 is
reinforced (enhanced) wusing an additional
parameter, called Auditory Threshold (AT). This
parameter is exploited by FS 2 in order to
generate the final diagnosis result. Input
parameters of FS 2, issued from FS 1, are AT,
POgc, POgc, and POyc and its outputs are FOgc,
FOkgc, and FOyc with their Confidence Index (CI).

2.3. EXPERIMENTAL RESULTS

The experimental results presented in this sub-
section have been obtained using a database
containing data of 206 patients characterized by
one of the three possible diagnoses (obtained from
an expert). 206 images are built using this
database leading to 38 images representing Retro-
Cochlear-Patients, 77 images representing Endo-
Cochlear-Patients, and 91 images representing
Normal-Cochlear-Patients.



Table 1. Fuzzy decision-making system FS_1.

Results Learning Generalization (FS 1)
RC 100 % 10.52 %
EC 100 % 15.78 %
NC 100 % 7777 %

Table 2. Fuzzy decision-making system FS_2.

Results Learning Generalization (FS 2)
RC 100 % 21.05 %
EC 94.87 % 57.89 %
NC 100 % 82.22 %

Obtained results are summarized in tables 1 and
2. Table 1 gives resulting pre-diagnosis performed
by FS 1 decider. Table 2 gives final diagnosis
results.

3. INDUSTRIAL PRODUCTION
ORIENTED INTELLIGENT CADS

Fault diagnosis in industrial environment is a
challenging but crucial task, since it ensures
products’ nominal specification and
manufacturing control. Concerning High-Tech
optical industry, a major step for high-quality
optical devices’ faults diagnosis concerns
scratches and digs defects detection and
characterization in such products. These kinds of
aesthetic  flaws, shaped during different
manufacturing steps, could provoke harmful
effects on optical devices’ functional specificities,
as well as on their optical performances by
generating undesirable scatter light, which could
seriously damage the expected optical features. A
reliable diagnosis of these defects becomes
therefore a crucial task to ensure products’
nominal specification. Moreover, such diagnosis
is strongly motivated by manufacturing process
correction requirements in order to guarantee
mass production quality with the aim of
maintaining acceptable production yield. Figure 7
gives an example of High-Tech optical products,
showing four optical filters.
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Fi?ci 7. Example of High-Tech optical devices

performing optical filtering (left) and the visual

fault detection, performed by an expert.

Unfortunately, detecting and measuring such
defects is still a challenging problem in
production conditions and the few available
automatic control solutions remain ineffective.
That’s why, in most of cases, the diagnosis is
performed on the basis of a human expert based

visual inspection of the whole production.
However, this conventionally used solution
suffers from several acute restrictions related to
human operator’s intrinsic limitations (reduced
sensitivity for very small defects, detection
exhaustiveness alteration due to attentiveness
shrinkage, operator’s tiredness and weariness due
to repetitive nature of fault detection and fault
diagnosis tasks).

3.1. PROPOSED SOLUTION

To construct an automatic diagnosis system, we
propose an approach based on three main
operations: detection, classification and decision.
Our motivation to adopt the approach dissociating
detection and diagnosis tasks is based on
requirement relative to the frame of industrial
production. In fact, two complementary options
could de required in industrial production
environment. The first is inherent to mass
production where it is not always necessary to
diagnose whole manufactured products during the
production, but it is crucial to detect the presence
of defects in order to state if the number of defects
is conform to the process’s intrinsic limitations.
However, at the same time, diagnosis ability could
help to state (offline) if detected defects are due to
intrinsic limitations of the used manufacturing
process or a number of them correspond to
different derivations. The second situation is
specific to High-Tech products manufacturing
requirements, where additionally to systematic
defect detection it is crucial to state on nature of
detected defects in order to reach high-quality
specifications.

3.2. DETECTION STAGE

The detection stage is composed of two
operations. The first operation is based on the
Nomarski microscopy [29], [30], issued imaging
(Nomarski microscope and a digital camera). The
second operation incorporating the two following
phases:

e Pre-processing: Nomarski microscopy issued
digital image transformation in order to
reduce lighting heterogeneity influence and to
enhance the aimed defects’ visibility,

o Adaptive matching: adaptive process to match
defects,

is an image processing techniques based treatment
of the Nomarski microscopy issued image in order
to relieve defects’ presence exposure. Fig. 8 gives
the bloc diagram of the detection stage.

Nomarski Digital Image

Microscope [ Camera [==| Processing [==>

Fig. 8. Bloc diagram of defects’ detection chain.




Three main advantages distinguishing
Nomarski microscopy (known also as
“Differential Interference Contrast
microscopy” [30], [31] and [32]) from other
microscopy techniques, have motivated our
preference for this imaging technique. The
first of them is related to the higher sensitivity
of this technique comparing to the other
classical microscopy techniques (Dark Field,
Bright Field [29]). Furthermore, the DIC
microscopy is robust regarding lighting non-
homogeneity.  Finally, this technology
provides information relative to depth (3-th
dimension) which could be exploited to typify
roughness or defect’s depth. This last
advantage  offers  precious  additional
potentiality to characterize scratches and digs
flaws in high-tech optical devices. Therefore,
Nomarski microscopy seems to be a suitable
technique to detect surface imperfections.
Issued images contain several items which
have to be detected and then classified in
order to discriminate between “false” defects
(correctable  defects) and  “abiding”
(permanent) ones. Indeed, because of
industrial environment, a number of
correctable defects (like dusts or cleaning
marks) are usually present beside the potential
“abiding” defects.

In the pre-processing phase, as presented in [30]
and [33], the intensity of every pixel in the image
is modified according to the relation (1), where P
(respectively P’) represents pixel’s intensity
before (respectively after) the transformation. M
and o are the mean and the standard deviation of
grey-level in a 5x5 neighborhood of considered
pixel.

P'= P
M+o

l }f

Fig. 9. Example of pre-processing effects showin
DIC microscopy issued defect’s image (left) and the
same captured defect after pre-processing phase.

)

The first consequence of the aforementioned
transformation is to balance the image dynamic:
lighting heterogeneities (due to non-uniform
floodlighting) and local contrast modifications
(due to focus and material thickness variations, or
microscope optics imperfections) are corrected. Its
second consequence is to enhance defects
visibility in the processed image. Fig. 9 gives an
example of a pre-processed DIC microscopy

issued image, obtained conformably to the
described transformation.

In order to perform defects detection, an adaptive
thresholding operation is performed, exploiting
physical considerations. To determine the
effective threshold, we propose a technique based
on the estimation of the roughness appearance. In
our technique, the image (obtained after the pre-
processing operation) is initially divided into a set
of 8-by8 pixels images. Then the number of 8-by8
images in which the weakest available intensity
corresponds to the same grey-level is determined.
The evolution of the shape (curve) of this umber
versus grey-level values is then determined.
Finally, the effective adaptive threshold T is
experimentally set thanks to relation (2), where
Max 1is the grey-level corresponding to the
maximum of the curve, and H the WDMH (width
of middle high) of the curve.

H
T=MAX —— (2)
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Fig. 10. Example the curve expressing the number
of 8-by8 images in which the weakest available
intensity corresponds to the same grey-level.

Fig. 11. Examﬁle detection stage output image
obtained from the DIC microscopy issued defect’s
image depicted in Fig. 9.

Fig. 10 gives an example of such curve for the
images depicted by Fig. 9. An example of defect
detection (e.g. detection stage’s output image) is
given in Fig. 11. It corresponds to resulted
adaptive thresholding of the image shown in Fig.
9. The presented detection approach gives good
and repetitive (robust) results, preserving
sensitivity of DIC microscopy, since all of the
defects deeper than roughness range are detected.
Another interesting feature related to our approach
is that the obtained curve is almost the same for

any image.



3.3. ITEMS IMAGES EXTRACTION

The aim of this stage is to extract items
images, taking into account DIC detector
issued digital image, isolating different items.
In shch way, an item (via its correponding
image) will represent a potential defect to be
diagnosed. To achieve this task, a new
method is proposed, adding two new
operations (phases) to the two previous ones
(those described in detection stage):

e Filtering and segmentation: noise removal and

defects’ outlines characterization.
e Defects’ images extraction: correct defect
representation construction.

The first operation consists of conventional
filtering and morphological erosion
transformation on image issued from the detection
stage. It leads to a new image containing
(representmg) defects outlines. Flltermg consists
in replacing each pixel P by the n™ pixel in the
sorted list of all pixels in the m-square
neighborhood of P. For little n values, it is almost
equivalent to a morphological dilatation but it
filters isolated white pixels corresponding to
noise. An example of resulted image, obtained

using the result shown in Fig. 11 is given in Fig.
12.

Fig. 12. Example of resulted image obtained after
the “filtering-segmentation” operation performed
on image depicted in Fig. 11.
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Fig. 13. Examples of four detected items’ ima es
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Finally, images associated to all detected items
are constructed performing the second operation.
It is done considering a stripe of ten pixels around
each “white” pixel of the detected item. Thus the
obtained image gives an isolated (from other
items) representation of the defect (e.g. depicts the

defect in its immediate environment). Fig. 13
gives four examples of detected items images
using the aforementioned principles, performed on
raw images of an optical device in industrial
environment. It shows different characteristic
items which could be found on such device.

3.4. DIAGNOSIS STAGE

The diagnosis is performed by “clustering”
(classification) then by comparison to the defects’
categories’ representative “specimens” (decision).
The classification task is achieved thanks to an
unsupervised learning based neural network
which is a Kohonen Self-Organizing Map (SOM)
[34] and [35]. However, before SOM based
clustering, an additional operation is required.
This additional operation consists on extracting a
set of homogenous features in order to construct
an invariant (regarding translation and rotation)
representation of SOM’s input vector. In fact,
because of different sizes of items’ images and
their relative positions (due to translation and
rotation) it is necessary to have a “normalize”
representation for SOM’s input patterns.

For that, we propose to use “Fourier-Mellin”
transformation as it provides invariant descriptors,
which are considered to have good coding
capacity in classification tasks [36], [37] and [38].
A set of associated features, invariant with regard
to geometric transformations, are proposed in
[39]. In order to calculate efficiently Fourier-
Mellin  transform in  discrete  Cartesian
coordinates, we perform the convolution of the
image with an appropriate filters bench proposed
in [42]. Finally, the extracted features have to be
normalized. For this purpose we use the centring-
reducing  transformation = modifying  each
feature F; conformably to the relation (3), where
M is the mean value of the feature F, over the
database and o its standard deviation.

F = u 3)

i
(o3

3.5. EXPERIMENTAL SET-UP AND
VALIDATION RESULTS

Three experiments called A, B, C were carried
out, using two kind of optical devices (products).
Table 3 shows the different parameters
corresponding to these experiments. It’s important
to note that, in order to avoid false classes
learning, items images depicting microscopic field
boundaries or two (or more) different defects are
discarded from used database.

Using the above described experimental
protocol, we have diagnosed detected defects
relative each above-mentioned experiment.
Figures 14, 15 and 16 show the lattice of neurons
corresponding to the three experiments



respectively. In these figures, the depicted defect
for each node is chosen randomly among the
examples of the database which are projected onto
the node under consideration. The size of images
is normalized, so the real scale is not respected. In
the three cases, the similarities between adjacent
nodes are apparent and some clusters of similar
data are identified. Moreover, in major cases,
database items projected in the same neurons have
the same appearance. Such defects probably
belong to the same class of defects. Thus, the
performed clustering operation seems relevant.
However, data projected onto neurons which are
near “natural” class boundaries, are sometimes
inhomogeneous.

Table 3. Experimental conditions and parameters.

Exp. Optical Clering Number Number of SOM

Id. device scanned itemsin grid size
Id. Fields  learning

A 1 No 1178 3865 15X7

B 2 No 605 1910 20X 8

C 2 Yes 529 1544 10X 8
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Fig. 14. Representation of the Kohonen’s map
corresponding to the experiment A.

When  observing obtained maps from
experiments A and B, we notice the presence of
clusters similar in nature. On the contrary, when
comparing maps from experiments A and B with
the result of the experiment C, we find that classes
corresponding to big black items (see nodes 28,
29, 43, 44 from map A and nodes 17, 18, 19, 37,
38, 39 from map B) are absent in the third map.
This is coherent with the fact that experiments A
and B studied both non cleaned devices and
therefore dealt with the same kind of defects,
unlike experiment C. On the other hand, it implies
that the mentioned defect classes would probably

correspond to dusts.
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Fig. 15. Representation of the Kohonen’s map
corresponding to the experiment B.
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Fig. 16. Representation of the Kohonen’s map
corresponding to the experiment C.

4. CONCLUSION

Taking into consideration the fact that “Industrial
Computer Aided Diagnosis” and “Biomedical
Computer Aided Diagnosis” could be regarded as
a same diagnosis riddle, we have presented two
CADS, taking advantage from the most appealing
abilities of ANN which are their “learning”,
“generalization and for some of them their “self-
organization” capabilities. Both of the two
Computer Aided Diagnosis Systems operate on
the basis of image-like  information’s
representation, covering a large number of real-
world applications either in biomedicine or in
industry.



Based on a neural classifiers’ fusion (involving
two different kind of neural networks) and a
cascaded fuzzy decision-making strategy, the
biomedical oriented CADS has been applied to
overcome the difficult challenge of human’s
auditory disorders’ diagnosis. While the target of
the second, based on combination of a defects’
detection stage and a Kohonen-SOM-like
unsupervised ANN, was to detect and diagnose
the defects in High-Tech optical devices in the
frame of industrial production constraints.

The obtained experimental validation results,
carried out using real data, as well for the
biomedical application as for the industrial
request, show the promising potential of Soft-
Computing techniques in designing intelligent
CADS.

Further works, dealing with the present paper’s
purposes, are already engaged in several
directions. Part of them is oriented on mechanical
faults detection and diagnosis in industrial power
machines. Another slice of planed perspectives
concerns other kinds of digital imaging based
CADS applications in industry. Also, a part of
perspectives launch new clinical applications.
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