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1. INTRODUCTION

The parachute drop went smoothly ... slithering down the
chute and out into space ... Flick landed perfectly, with
her knees bent and her arms tucked into her sides as she
fell to the ground ... She folded her parachute into a neat
bundle, then set out to find the other Jackdaws. —
“Jackdaws" by Ken Follett.

Most banks nowadays facilitate their ATM
(automated teller machine) in which we may have a
personal account to which we can access with PIN-
code, usually four digits of decimal numeral. For
security reason, if we failed to enter the PIN
correctly more than three times in a row, the PIN
would loose its validity thereafter. Then what we are
curious is, "How many trials would be needed for
random challenges to reveal the secret PIN if an
infinite number of trials were permitted?" Let's
formalize this problem.

Problem 1 (Breaking a Pin)

Assuming p-bit octal' numeral is employed to
construct a PIN, only one out of those 8 possible
combinations is the secret PIN. No one except for
the owner of the PIN knows it. Then question is,
"How many average trials-and-errors will be needed
for a non-owner to know the PIN under a specific
strategy?"

"'You will see the reason why "octal” not "decimal” later
in the sub-section concerning "intron" in the section
EXPERIMENTS.

This might be reminiscent of the famous problem
called a-needle-in-a-haystack which was originally
proposed by Hinton & Nowlan in 1987 [1]. The
needle in the proposal was exactly the one
configuration of 20-bit binary string, that is, the
search space is made up of 2% points and only one
point is the needle to be searched for. No
information such as how close is a currently
searching point to the needle, or how likely is a
searching point to be the needle. See Figure 1.

Fig. 1 A fictitious sketch of fitness landscape of a
needle in a haystack. The haystack here is drawn as a
2-dimensional flat plane of fitness zero.

We assume that TCP connections to a computer
network are represented with n-dimensional vectors
and those represented by intrusions are like needles
among huge amount of normal transactions which
might look like a haystack or pastoral.

1. NETWORK INTRUSION
DETECTION

Those highly qualified hackers who provide security
services to companies during the daytime and then go
home at night to conduct totally illegal hacking are the
ones who are the most dangerous. — by Enis Senerdem
from Turkish Daily News on 29 March 2006.
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When we are to design a network intrusion
detection system, which is one of the hottest topics
these days, by means of so-called a soft computing
such as artificial immune system, fuzzy logic,
evolutionary  computations, neural networks,
whatever it might be, we need a set of sample data to
train the system and to test the system afterwards.

1.1 When a family of iris flower is normal then
are others abnormal? — Where is an outlier?

The Spearman's iris flower database’ is a
frequently used dataset in pattern recognition or
classification, data mining, etc. As such, there have
been fair amount of studies in which this iris flower
database is employed as a dataset to train and to test
the intrusion detection system.

The iris dataset is made up of a total of 150
samples consists of three species: setosa, versicolor
and virginica, each of which includes 50 samples.
Each sample is a four-dimensional vector
representing four attributes of the iris flower, that is,
sepal length, sepal width, petal length, and petal
width.

Let us take an example where this iris flower
dataset was employed. Castellano et al. [2] assumed
one family to be abnormal whilst the other two to be
normal. The whole dataset was divided into 10 parts
each of which has 15 samples uniformly drawn from
the three classes. The system is trained by the
remaining 135 samples. The originally picked up 15
samples are used to test the results. After this 10-
fold cross validation, the authors concluded that the
abnormal detection rate is 96% while the false alarm
rate is 0.6%. How nice, isn't it? In reality, however,
it is not so simple. It might not be difficult at all for
a hacker to find an unlearned region which could
work to invade the system.

We now look at the Figure 2 to see how the three
species are distributed in the whole search space.
This is depicted by the Sammon Mapping.

Sammon Mapping maps a set of points in a high-
dimensional space to the 2-dimensional space with
the distance relation being preserved as much as
possible, or equivalently, the distances in the n-
dimensional space are approximated by distances in
the 2-dimensional space with a minimal error.

Just a brief look at the figure reveals us that there
remains an enormously wide region of unlearned for
outliers.

? University of California Urvine Machine Learning
Repository. ics.uci.edu: pub/machine-learning-databases.

Fig. 2 A 2-dimensional visualization of iris flower data
by Sammon Mapping. Three different families of iris
flower each contains 50 samples are represented in the
figure with circles, triangles and squares.

1.2 Intrusion might look like a needle in a hay!

The other type of dataset, naturally more often
employed in the context of network intrusion, is the
KDD-cup-99 dataset which was prepared by MIT
Lincoln Laboratory as a dataset for the 1998
DARPA intrusion detection evaluation [3]. This
dataset has been, and still is going to be, a common
benchmark for evaluation of intrusion detection
techniques.

KDD dataset, beside Normal data, covers four
major categories of attacks: (i) Probing attacks
which attack by proving a vulnerability of the
network; (ii) Denial-of-Service (DoS) attacks which
try an invasion by denying legitimate requests to a
system; (iii) User-to-Root (U2R) attacks which tries
an unauthorized access to local super-user or root;
and (iv) Remote-to-Local (R2L) attacks which is an
unauthorized local access from a remote machine.
These four categories of attacks include a total of 32
different attack types.

The dataset consists of two sub-datasets. The one
is provided as training data and contains 4,898,430
records each of which is labeled as either normal, or
attack indicating one specific attack out of the 32
types’. The second is unlabeled and contains
311,029 records, which is provided as festing data.

What a huge dataset! In fact, the Sammon
Mapping we had tried in the iris dataset above
wouldn't work any more. Therefore, many have tried
various approaches to reduce the dimension. Let's
start our small literature survey with this topic of
dimension reduction.

Kuchimanchi et al. [4] used the principal
component analysis (PCA), and calculated the first

3 The labeled training dataset includes 972,780 Normals,
41,102 Probes, 3,883,370 DoSs, 52 U2Rs, and 1,126
R2Ls.

2



Author / Computing, 2000, Vol. 0, Issue 0, 1-12

most important 19 attributes’. Then they evaluated
the result of this dimension reduction by providing
both the original 41-dimensional data and those 19-
dimensional data reduced by PCA to a decision-tree-
classifier independently, comparing detection
accuracies and false positive rates’. They showed
detection accuracy and false positive rate were
99.92% and 0.26%, respectively, on the 19-
dimensional PCA data, while 99.94% and 0.23%,
respectively, on the original 41-dimensional data®.
What a successful result! However, is this reduced
dataset still very huge, is it not?.

Let's see one more example. Joshi et al. [5]
wrote, “Exploiting only 5 out of 41 attributes’ the
best results was 79% accuracy in correctly detecting
attacks, and 21% is accounted for false positive rate
plus false negative® rate.”” Though it might not be
so successful as the above result by Kuchimanchi et
al.,, if we consider 5 out of 41 attributes, it is
amazing. Wow!

Anyway, it is good to know we can reduce the
dimension of the original KDD-cup-99 dataset into
at least about half with the result remaining intact.

Then, our next interest will be, "Are all of the
attack types in the KDD-cup-99 dataset equally
willing to wait to be detected?" Some of the reports
were from this point of view. Let us name a few.

Pan et al. [6] exploited three-layer (70-14-6)
feed-forward neural network with a sigmoid transfer
function trained with back-propagation using scaled
conjugate gradient decent, to detect five typical
types of attacks — neptune, portsweep, satan,
buffer overflow, and guess passwd — as well as
normal samples.

Let's see what they observed. Authors wrote,
“The test result indicates that 99.6% of the normal
examples were recognized correctly, and for three
attacks of neptune, satan, and portsweep, we

* They are src_bytes, dst_bytes, duration, is_guest_login,
is_host_login, srv_diff host rate, diff srv_rate, service,
flag, protocol _type, num_root, hot, num_compromised,
dst_host same_srv_rate, dst_host_count, rerror_rate,
srv_count, and dst_host_srv_diff host_rate.

> LLe., recognizing attack as normal.

% This was not the main purpose of the paper. The authors
rather exploited the other methods of dimension reduction
such as neural-network-PCA or nonlinear-component-
analysis, expecting more efficiency and higher accuracy.
The evaluation was carried out not only by decision-tree
classifier but also by non-linear classifier.

"Le., src_bytes, dst_bytes, duration, is_host_login, and
is_guest login.

¥ Le., recognizing normal as attack.

? Most of the phrases cited in this article appeared
hereafter like ““...” are the ones paraphrased, more or less,
by the author of this article. As such, if there are some
incorrect expressions, it is the author of this article who is
responsible for, not the original authors.

obtained the average detect rate of 96.6% and the
false positive rate of 0.049%. However, for all the
five kinds of attacks, we only obtained the average
detect rate of 64.9% and the false positive rate of
26.7%. This is because all buffer overflow and
guess_passwd attacks failed to be classified by this
back-propagation neural network. Then we tried an
expert system, and found that buffer overflow and
guess_passwd attacks can be more accurately
detected by this rule-based detector than neural
network.” And then concluded, “The model based
on both neural network and expert system finally
achieved the average detection rate of 93.28% and
false positive rate of 0.2% for all of these five attack
types.”

We, however, would be rather more interested in
why this neural network failed to classify
buffer_overflow and guess passwd attacks, than the
performance improvement by using rule-based
detector.

Pan et al. reported yet another result in their
different article [7]. With the same architecture of
neural network and with the same target of five
attacks as above, they reported that correctly
predicted (normal, neptune, satan, portsweep,
buffer overflow, guess passwd) by this back-
propagation neural network was (73.3%, 99.2%,
94.6%, 94.2%, 0.0%, 0.0%). And concluded, "The
back-propagation  network can't detect the
buffer overflow and guess passwd attacks." This
sounds like a realistic assertion, and the one we
want'’.

Thus far, such more careful conclusions appear in
the recent literatures. For example, Stibor et al. [§]
wrote, “The real-valued negative selection with
variable-sized detectors has poor classification
performance on the high-dimensional KDD dataset.”

When this artificial immune system based
detector was proposed by Ji et al. [9], the result of
applying it to the iris dataset was not that bad. That
is, the correct detection rate of (setosa, versicolor,
virginica) was (99.98%, 85.95%, 81.87%), while
false alarm rates were all zero!

As another example of such implicit report of
failure, Dam et al. [10] claimed, "The evolutionary
classifier system, devised to make its performance
improved than the traditional one, resulted in the
detection rate of (95.7%, 49.1%, 93.0%, 8.5%,
3.9%) for (normal, DoS, Probe, U2R, R2L)."

Again, we are rather more interested in why
detection rate is so low for U2R and R2L than
whether result is satisfactory or not.

Finally, it would be interesting to take a look
what Sabhnani et al. [11] reported. See Table 1 to

' Again they reported a successful improvement of this
result by a hybridization with C4.5.
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have a bird's eye view of those results above.

Table 1 — Detection rate for 4 attack types each with

9 different machine learning techniques. (From
Sabhnani et al. [11]).
Probe | DoS | U2R | R2L
Multi-layer Perceptron 88.7 19721132 ]5.6
Gaussian Classifier 90.2 | 824|228 |9.6
K-mean Clustering 87.6 1 97.3]|29.8 |64
Nearest Cluster Algorithm | 88.8 | 97.1 | 2.2 | 3.4
Radial Basis Function 932 |73.0|6.1 |59
Leader Algorithm 83.8 972166 |1.0
Hyper-sphere Algorithm 84.8 1972183 |1.0
Fuzzy Art Map 772 197.0| 6.1 |3.7
C4.5 Decision Tree 80.8 1 97.0| 1.8 | 4.6

Also note that KDD-cup-99 winner's detection rate
for (Probe, DoS, U2R, and R2L) was (83.3%,
97.1%, 13.2%, 8.4%).

Our Conjecture

Here, we, conjecture that those sometimes observed
poor results are because some of the attack data are
like needles in a haystack of huge amount of normal
data. If we were able to fully visualize such large
size of normal samples together with a few data
picked up from abnormal samples, the latter might
look like a needle in a hay stack of the former, like
in Figure 3. Though we are not yet ready, we plan to
show a visualization of this assumption of us
elsewhere, to study this conjecture further in detail.
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Fig. 3 We conjecture that some attack data (filled
circles) are like needles in a hay of normal data (empty
circles). Plots in this figure are all fictitious.

To summerize this section, we ask the readers,
the following question.

Problem 2 (A Challenge in KDD-cup-99 dataset)

Design an intrusion detection system which has 41
inputs corresponding to attributes from KDD-cup-99
dataset, and 5 YES/NO outputs indicating that the
input is either normal, Probe, DoS, U2R, or R2L.
The question is, "Such design is possible or not?"

Also see Figure 4 to get an image of real
implementation by a neural network, as an example.
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pre-proccessed 41 attributes in KDD cup 1999 data set

Fig. 4 A simple architecture of neural network we
desire to design to classify KDD-cup-99 dataset.

3. EXPERIMENT

Flick remembered the legend of the Jackdaw of Rheims,
the bird that stole the bishop's ring. The monks couldn't
figure out who had taken it, so the bishop cursed the
unknown thief. Next thing they knew, the jackdaw
appeared all bedraggled, and they realized he was
suffering from the effects of curse, and must be the
culprit. Sure enough they found the ring in his nest. —
“Jackdaws” by Ken Follett.

Assuming our conjecture that real attack samples
are like needles in a haystack of normal samples, we
now look at how easy or difficult to find them.

Let's start with a random search. Note that some
proposed algorithms which were reported as success
actually were not good as asserted, and sometimes
found to be worse than a random search.

3.1 Random fall of parachutists

Algorithm 1 (Random Fall) (/) Create a p-bit octal
PIN at random. (2) Create randomly one 3p-bit of
binary string. (3) Translate the string into p-bit octal
code. (4) Check if the translated code matches the
PIN. (5) If matches, end the run. Otherwise go back
to 2.

Let us allow to use a metaphor here. We now
assume only one needle in a pastoral, and

4
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parachutists fall from the airplane in the sky to the
pastoral one by one, then our interest is on how
would it be likely for a parachutist to fall just on the
needle. This might be taken as a random search, and
will be our criterion of comparison hereafter.

Note that one parachutist is represented by our
genotypes of a 3p-digit binary strings. Let's take an
example of p=4. A genotype:

((100) (111) (000)(010))

maps into its phenotype (4 7 0 2).

At the start, one p-bit octal PIN is created which
we assume no one knows a priori. With p being
increasing from 2, we count the number of randomly
created genotypes until its phenotype strictly
matches to the hidden PIN. The average number,
during 1024 runs, of parachutists needed until we
found the parachutist who fell on the needle just by
chance, for p =2, 3, 4, 5, 6, 7 were, respectively,

(66, 512,3951, 32154, 254673, 2058527).

See Figure 5 below.

300,000

250,000 e
200,000
150,000

100,000

Number of Parachuters

50,000
°

oOLb———¢ o & o —0—O0 |

0 1 2 3 4 5 6 7 8 9

Number of Pins

Fig. 5 (a) Number of random creations of candidate
until the PIN is matched (filled circles), and (b) The
number when created candidate is allowed random
walks of 1000 steps (empty circles). Both are the
average of 1024 runs.

3.2 What if parachutists are allowed to walk after
fall?

Algorithm 2 (Exploration after Fall) (/) Create a
p-bit octal PIN at random. (2) Create randomly one
3p-bit of binary string. (3) Translate the string into
p-bit octal code. (4) Check if the translated code
matches the PIN. (5) If matches, end the run.
Otherwise give a mutation by flipping a bit chosen at

random'' with a probability of 1/3p until the
translation matches the PIN, or number of steps
exceeds 1000. (6) If still none has matched, then
repeat from 2.

What will happen if the fallen parachutist is
allowed to explore, say, 1000 random steps, around
the spot they fall? This might remind you of the
seminal experiment once made by Hinton & Nowlan
[1] who referred it to “lifetime learning — Baldwin
Effect,” though our parachutist in this paper ends her
life without creating a next generation. The results,
again over the average of 1024 runs, for p =4, 5, 6,
7, 8 were, respectively,

(5, 36, 308, 2436, 23087).

The results are depicted also in Figure 5 together
with the result of our random parachutists in the
previous sub-section. In both cases, we can see that
complexity to find the needle is an exponential
order. But look! How impressive an exploration-
after-fall improves the performance!

As you have probably noticed already, however,
it's not fair just to compare the number of
parachutists. The total number of points searched by
those walking parachutists is plotted as a function of
p in Figure 6. We can see that the result was rather
worse than our random parachutists, despite of its
superficial good looking of the result.

3.3 Neutral mutation

Algorithm 3 (Walk by Neutral Mutations) (/)
Create a PIN at random. (2) Create one genotype at
random. (3) Try point-wise mutation on the genotype
such that the result maps into the same phenotype as
the one before the mutation. (4) Assess all possible
single-mutation-neighbors of the new genotype to
determine whether any new phenotype is discovered.
(5) Step 3 to 4 are repeated untill the phenotype
matches the PIN, or untill a pre-fixed number of
steps is reached.

This is a paraphrase of the algorithm proposed by
Shipman et al. [12] who called the step 3 a neutral
mutation (Note that the mutation in step 4 is a
standard one). Its efficiency was studied in their
paper by applying it to a random Boolean network
and telecommunication networks. But why not more
simple example is to be explored, if it is to work
universally?

To apply this in our problem of searching for the
needle, that is, octal p-bit PIN, we design our

"' We will call this a “point-wise mutation” hereafter.
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Fig. 6 Average number of points explored by all the
randomly created candidates who are allowed further
random walks of 1000 steps until the needle is found.
Average are taken among 1024 runs.

genotype as 15p-bit binary string such that the
number-of-1 (mod 8) in each of those 15-digit blocks
in the string maps into one bit of the corresponding
octal code'. For example:

((100011000000100) (111111111111111)
(111110001101010))

maps into (4 7 1).

The average number, during 1024 runs, of
parachutists needed until we found the one who
firstly reached the needle for p = 2, 3, 4, 5, 6 were,
respectively,

(71728, 583593, 4930624, 36592634,
314817878).

3.4 Does neutral mutation on intron enhance
efficiency of search?

Algorithm 4 (Neutral Network) (/) Create a PIN
at random. (2) Create randomly an initial individual
which is considered to be the winner to the next
generation. (3) Carry out point-wise mutation on the
winning parent to generate 4 offspring. (4)
Construct a new generation with the winner and its
offspring. (5) Select a winner from the current
population using the following rules. (i) If any
offspring has a better fitness than the parent, the one
with highest fitness becomes the winner. (ii) If fitness
of all offspring have the same fitness as the parent,
one offspring is randomly selected, and if the parent-

12 A simple consideration might give us the idea that 7-bit
binary for each octal is enough. However, we
implemented in this way so that each octal from 0 to 7 are
created uniformly at random.

offspring pair has a Hamming distance within the
permitted range, the offspring becomes the winner,
otherwise the parent remains as the winner. (6) Back
to step 2 unless the maximum number of generations
reaches, or a solution is found.

The description of the algorithm above is a
paraphrase from Yu & Miller [13]. As for the
application of this algorithm, we had an interesting
discussion between Yu & Miller's paper “Finding
needles in haystack is not hard with neutrality”
(2002) vs. Collin's “Finding needles in haystack is
harder with neutrality” (2005).

What Yu & Miller [13] attacked as a type of a
needle in a haystack problem was to make a genetic
algorithm construct an even-n-parity logic circuit by
employing only XORs and Egs, not ANDs and ORs
and so on, which shows a peculiar fitness landscape.
The even-n-parity logic has n-bit binary inputs and if
and only if the number of “1” is even, it returns 1
and otherwise returns 0. Hence, we can evaluate the
fitness value of any one candidate of the solution, by
giving all the possible configurations of 0 and 1 and
counting how many correct outputs. Thus, from a
combinatorial point of view, we have 2" cases of
fitness values. In reality, however, we have only
three different values, that is, 2", 2" and 0. In other
words, the output is all correct, half correct, or not
correct at all. For example, candidates of even-3-
parity constructed only by XORs and EQs returns
either 8, 4 or 0 correct outputs for the eight possible
inputs (000), (001), (010), ..., (111).

Yu & Miller wrote, "In the case of random
creation of 4,000,000 candidates of even-12-parity,
the solution (fitness 4096) was never emerged, while
even-10-parity 100,000 random creations of
candidate yielded 540 solutions (fitness 1024). On
the other hand, when neutral mutation was applied
to the candidates of even-12-parity, the 48 out of
100 runs reached solution(s) with each run being
only within 10,000 iterations."

Collins argued back concluding, "Reported
success is due to a bias of the selection” [14]. In the
other Collin's work [15], it was analytically shown
that the number of possible candidates of even-12-
parity is 1.315x10'* in which number of real
solutions is 2.568x10"% claiming “Yu & Miller's
result is, therefore, worse than a possible random
search.”

Again what we want to emphasize here is, if the
assertion by Yu & Miller is universally true, it
would work in yet more principally simple
examples.

Before going further, let's see what is intron that
Yu & Miller assumed to play an important role in
their evolution. For example, take a look at a

6
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genotype representing an even-3-parity,
((EQ,A.B)(EQ,C,D)(XOR,1.E)EQ,F,G)(EQ,3,H))

where each gene which corresponds to one unit
constructs triples, with the 1st being which logic to
be used (EQ or XOR); and with the 2nd and 3rd
being connections to either one of the inputs or the
outputs of a previous unit. Note that the 2nd and 4th
genes in the above example do not contribute to
construct the phenotype since those two genes will
not be connected to any other unit, and hence are
called intron as a biological metaphor. Any mutation
on an intron has no effect on phenotype, and as
such, they are called neutral. The above genotype
can be interpreted as the phenotype shown in Figure
7.

unit-1 unit-3

Fig. 7 An example of phenotype of even-3-parity
constructed only by EQs and XORs.

Now we try to apply this to our finding PIN
problem. This time we use 4-digit binary, instead of
3-digit as before, to represent one octal numeral in
the candidate of PIN. Then translation is into
decimal, instead of octal, and when the translated
decimal is larger than seven we consider it an intron.
For example,

((0001)(1100)(0101)(0010)(0111))

is translated into (1, 5, 2, 7) since the second gene is
translated into 12 and supposed to be an intron.

The average number, during 1024 runs, of
parachutists needed to firstly find the needle for p =
2,3, 4,5 were, respectively,

(65, 488, 3751, 33710).

Alas, if we compare it with the above mentioned
result by the algorithm 1, we will see that this result
is almost same as our random parachutists.

Our Second Conjecture

We have no such algorithm that can more efficiently
look for a needle in a haystack than a random
search. No way to find needles in a pastoral.

4. DISCUSSION

As Laskov et al. [16] claimed in their paper,
“Labels can be extremely difficult or impossible to
obtain. Analysis of network traffic or audit logs is
very time-consuming and usually only a small
portion of the available data can be labeled.
Furthermore, in certain cases, for example at a
packet level, it may be impossible to unambiguously
assign a label to a data instance.” Authors further
wrote, “In a real application, one can never be sure
that a set of available labeled examples covers all
possible attacks. If a new attack appears, examples
of it may not have been seen in training data." Then
our next question is,

Problem 3 (Attacks by Mutants)

Pick up at random a set of n normal samples from
KDD-cup-99 dataset. All of those n samples are
given a point-wise mutation and taken as attack
data. Train your intrusion detection system using
half of the normal samples and half of the attack
samples (the number of both is n/2), then test the
system using the remaining samples. Can the system
detect those mutants as intrusion?

4.1 Can a sommelier be trained without bootlegs?

Though we have not remarked so far, there
remains further difficult issue, that is, "How the
system can learn only from normal data to detect
abnormal?" We usually have enormous amount of
normal data but we have no information about
coming attacks until it's too late.

Gomez et al. [17] claimed, “A new technique for
generating a set of fuzzy rules that can characterize
the nom-self (abnormal) space using only self
(normal) samples.” Their experiment employed 10%
dataset, also given as a part of KDD-cup-99 dataset,
which reduced the number of records into 10% of
the original ones. Further, they removed categorical
attributes and normalized these remaining 33
numerical attributes between 0 and 1 using the
maximum and minimum values found. Then 80% of
the normal samples were picked up at random for
training while the remaining 20% along with the
same number of abnormal samples were used for
testing. Gomez et al. designed the detector with what
they called an “immuno-fuzzy approach” and the
system they call an “evolving fuzzy rules detectors”
claiming, “It detects attacks with the detection rate
98.30% and false alarm rate 2.0%.” Really
satisfactory, if it's really true.

The report didn't mention about the categories of
attacks, which implies the reported success is an
average over all attack types. It seems to be too good
if we consider the results of the other not-so-happy
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reports mentioned above.

More important thing to notice here is the system
learned from "only with normal data” to establish
this success. It would be terrific if it was really true,
but we are fishy more or less.

This issue is something like we require a wine-
taster to recognize bootleg champagne by only
providing him/her plenty of real champagne to learn.
This issue is something like we require a wine-taster
to recognize bootleg champagne by only providing
him/her plenty of real champagne to learn"’.

Though this training-only-with-normal is our
ultimate goal, but not so simple to be realized. To
study how this is difficult, why not try the
following?

Problem 4 (Dummy Attacks)

(1) Prepare two sub-datasets from KDD-cup-1999
dataset. One is picked up from normal samples and
call it Dyorma. The other is from attack samples and
call it Duyaer- (2) Furthermore, randomly create an
attack dataset — dummy attacks, and call it D gmmy.
(3) Train your intrusion detection system only with
D orma. (4) Then, try two tests, one with only D uac,
and the other with only D gummy, avoiding any a priori
prediction.

4.2 Don't we expect the result a priori?

"Artificial immune system detects an attack by
computer viruses!" How fantastic it sounds. While
we wish it would work, we are afraid it might be just
a fantasy. So, we need a placebo experiment.

Of the 311,029 records in the test set of KDD-
cup-99, the rate of (Normal, Prove, DoS, U2R, R2L)
is (19.5%, 1.3%, 73.9%, 5.2%, 0.1%), respectively.
This suggests that even the always-return-U2R
strategy'® for instance, would result in the accurate
detection rate of (Normal, Probe, DoS, U2R, R2L) =
(0.0%, 0.0%, 0.0%, 5.2%, 0.0%). Or, the always-
return-a-random-output strategy’” would have quite
a high score to detect DoS attacks.

These two strategies above might be more
intelligent than some of the artificial intelligent
techniques so far proposed. Yes, rather than
ignorant.

We have to be careful, because we sometimes
tend to unconsciously pick up only a set of data that
will be suitable to draw our a priori expected

1 Or, in an opposite way. I usually enjoy Georgian
sparkling wine like once a week, but still a real
champagne would be able to pretend to be a Georgian one
to me.

' which returns U2R whatever the input is.

'3 which returns either Normal, Probe, DoS, U2R, or R2L
at random regardless of the input.

conclusion, if not intentionally at all.

In the way that just a powder-from-sugar
sometimes has a same effect as, or more efficient
than, a medicine under developing enough to cure a
disease for a group of innocent volunteers. Let's
conclude the discussion with the following final
question.

Problem 5 (Placebo Experiment)

(1) Create a simple device which randomly returns
either one of Normal, Prove, DoS, U2R, or R2L for
any input. (2) Prepare a test dataset including
enough amount of records uniformly from Normal,
Prove, DoS, UZR, and R2L. (3) Compare the
performances of the detector you designed with the
random-reply-machine created in step 1, feeding the
same dataset prepared in step 2.

5. CONCLUDING REMARKS

As we have described so far, KDD-cup-1999
intrusion detection dataset has 4,898,430 records in
the labeled dataset for fraining purposes of which
75.6111% are normal. On the other hand, we have
311,029 records in the unlabeled dataset for testing
purposes of which only 0.0733% are U2R, for
example. Under this situation, a likely interpretation
would be the U2R attack patterns are like needles in
a haystack of normal patterns when they undergo a
test, if we are not very lucky. Considering we have
not had so satisfactory results to detect U2R attacks,
we do not seem to be so lucky.

In addition, if we take it account that a hacker is a
person who is extremely good at finding a pattern
which is very close to the normal traffic, the point
that might be located by a hacker is not a randomly
located point.

It is said that we have two kind of intrusion
detection. One is called misuse detection which
recognizes known attack patterns. The other is called
anomaly detection which detects no-normal
unknown patterns. We are not interested in the
former. All we want is to detect unknown outliers.
And an outlier usually lies not far from normal but
very close to it. We could not be so optimistic.

As for using an artificial immune system, for
example, since that real sensational proposition in
1994 by Forrest, Perelsen et al. [18] that claimed,
"Negative selection of a metaphor of our real
biological immune system can detect anomaly as
non-self in computers,” we have had tremendously
lots of intelligent challenges for more than two
decades, but all in vain in a real sense. Still this topic
is not fruitful at all from a practical point of view, as
far as we know.

Probably the most intelligent way of detecting a
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network intrusion is to curse it and wait for the
effect of the curse.

Needless to say, however, this article is not to
negate the possibility, but we hope this will be a
serious challenge to intrusion detection community
to emerge real innovative ideas.
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