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1. INTRODUCTION 
The parachute drop went smoothly ... slithering down the 
chute and out into space ... Flick landed perfectly, with 
her knees bent and her arms tucked into her sides as she 
fell to the ground ... She folded her parachute into a neat 
bundle, then set out to find the other Jackdaws. ─ 
“Jackdaws'' by Ken Follett. 
 

 
Most banks nowadays facilitate their ATM 

(automated teller machine) in which we may have a 
personal account to which we can access with PIN-
code, usually four digits of decimal numeral. For 
security reason, if we failed to enter the PIN 
correctly more than three times in a row, the PIN 
would loose its validity thereafter. Then what we are 
curious is, "How many trials would be needed for 
random challenges to reveal the secret PIN if an 
infinite number of trials were permitted?" Let's 
formalize this problem. 

 
Problem 1 (Breaking a Pin) 
Assuming p-bit octal1 numeral is employed to 
construct a PIN, only one out of those 8p possible 
combinations is the secret PIN. No one except for 
the owner of the PIN knows it. Then question is, 
"How many average trials-and-errors will be needed 
for a non-owner to know the PIN under a specific 
strategy?" 

 

                                                 
1 You will see the reason why "octal" not "decimal" later 
in the sub-section concerning "intron" in the section 
EXPERIMENTS. 

This might be reminiscent of the famous problem 
called a-needle-in-a-haystack which was originally 
proposed by Hinton & Nowlan in 1987 [1]. The 
needle in the proposal was exactly the one 
configuration of 20-bit binary string, that is, the 
search space is made up of 220 points and only one 
point is the needle to be searched for. No 
information such as how close is a currently 
searching point to the needle, or how likely is a 
searching point to be the needle. See Figure 1. 
 

 
 

Fig. 1 A fictitious sketch of fitness landscape of a 
needle in a haystack. The haystack here is drawn as a 
2-dimensional flat plane of fitness zero. 

 
We assume that TCP connections to a computer 

network are represented with n-dimensional vectors 
and those represented by intrusions are like needles 
among huge amount of normal transactions which 
might look like a haystack or pastoral. 

 
1. NETWORK INTRUSION 

DETECTION 
Those highly qualified hackers who provide security 
services to companies during the daytime and then go 
home at night to conduct totally illegal hacking are the 
ones who are the most dangerous. – by Enis Senerdem 
from Turkish Daily News on 29 March 2006. 
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When we are to design a network intrusion 
detection system, which is one of the hottest topics 
these days, by means of so-called a soft computing 
such as artificial immune system, fuzzy logic, 
evolutionary computations, neural networks, 
whatever it might be, we need a set of sample data to 
train the system and to test the system afterwards. 

 
1.1 When a family of iris flower is normal then 
are others abnormal? ─ Where is an outlier? 
 

The Spearman's iris flower database2 is a 
frequently used dataset in pattern recognition or 
classification, data mining, etc. As such, there have 
been fair amount of studies in which this iris flower 
database is employed as a dataset to train and to test 
the intrusion detection system. 

The iris dataset is made up of a total of 150 
samples consists of three species: setosa, versicolor 
and virginica, each of which includes 50 samples. 
Each sample is a four-dimensional vector 
representing four attributes of the iris flower, that is, 
sepal length, sepal width, petal length, and petal 
width. 

Let us take an example where this iris flower 
dataset was employed. Castellano et al. [2] assumed 
one family to be abnormal whilst the other two to be 
normal. The whole dataset was divided into 10 parts 
each of which has 15 samples uniformly drawn from 
the three classes. The system is trained by the 
remaining 135 samples. The originally picked up 15 
samples are used to test the results. After this 10-
fold cross validation, the authors concluded that the  
abnormal detection rate is 96% while the false alarm 
rate is 0.6%. How nice, isn't it? In reality, however, 
it is not so simple. It might not be difficult at all for 
a hacker to find an unlearned region which could 
work to invade the system. 

We now look at the Figure 2 to see how the three 
species  are distributed in the whole search space. 
This is depicted by the Sammon Mapping.  

Sammon Mapping maps a set of points in a high-
dimensional space to the 2-dimensional space with 
the distance relation being preserved as much as 
possible, or equivalently, the distances in the n-
dimensional space are approximated by distances in 
the 2-dimensional space with a minimal error.  

Just a brief look at the figure reveals us that there 
remains an enormously wide region of unlearned for 
outliers. 

 
 

                                                 
2 University of California Urvine Machine Learning 
Repository. ics.uci.edu: pub/machine-learning-databases. 

 
Fig. 2 A 2-dimensional visualization of iris flower data 
by Sammon Mapping. Three different families of iris 
flower each contains 50 samples are represented in the 
figure with circles, triangles and squares. 

 
1.2 Intrusion might look like a needle in a hay! 
  

The other type of dataset, naturally more often 
employed in the context of network intrusion, is the 
KDD-cup-99 dataset which was prepared by MIT 
Lincoln Laboratory as a dataset for the 1998 
DARPA intrusion detection evaluation [3]. This 
dataset has been, and still is going to be,  a common 
benchmark for evaluation of intrusion detection 
techniques. 

KDD dataset, beside Normal data, covers four 
major categories of attacks: (i) Probing attacks 
which attack by proving a vulnerability of the 
network; (ii) Denial-of-Service (DoS) attacks which 
try an invasion by denying legitimate requests to a 
system; (iii) User-to-Root (U2R) attacks which tries 
an unauthorized access to local super-user or root; 
and (iv) Remote-to-Local (R2L) attacks which is an 
unauthorized local access from a remote machine. 
These four categories of attacks include a total of 32 
different attack types.  

The dataset consists of two sub-datasets. The one 
is provided as training data and contains 4,898,430 
records each of which is labeled as either normal, or 
attack indicating one specific attack out of the 32 
types3. The second is unlabeled and contains 
311,029 records, which is provided as testing data.  

What a huge dataset! In fact, the Sammon 
Mapping we had tried in the iris dataset above 
wouldn't work any more. Therefore, many have tried 
various approaches to reduce the dimension. Let's 
start our small literature survey with this topic of  
dimension reduction. 

Kuchimanchi et al. [4] used the principal 
component analysis (PCA), and calculated the first 

                                                 
3 The labeled training dataset includes 972,780 Normals, 
41,102 Probes, 3,883,370 DoSs, 52 U2Rs, and 1,126 
R2Ls. 
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most important 19 attributes4. Then they evaluated 
the result of this dimension reduction by providing 
both the original 41-dimensional data and those 19-
dimensional data reduced by PCA to a decision-tree-
classifier independently, comparing detection 
accuracies and false positive rates5. They showed 
detection accuracy and false positive rate were 
99.92% and 0.26%, respectively, on the 19-
dimensional PCA data, while 99.94% and 0.23%, 
respectively, on the original 41-dimensional data6. 
What a successful result! However, is this reduced 
dataset still very huge, is it not?. 

Let's see one more example. Joshi et al. [5] 
wrote, ”Exploiting only 5 out of 41 attributes7 the 
best results was 79% accuracy in correctly detecting 
attacks, and 21% is accounted for false positive rate 
plus false negative8 rate.”9 Though it might not be 
so successful as the above result by Kuchimanchi et 
al., if we consider 5 out of 41 attributes, it is 
amazing. Wow! 

Anyway, it is good to know we can reduce the 
dimension of the original KDD-cup-99 dataset into 
at least about half with the result remaining intact. 

Then, our next interest will be, "Are all of the 
attack types in the KDD-cup-99 dataset equally 
willing to wait to be detected?" Some of the reports 
were from this point of view. Let us name a few. 

Pan et al. [6] exploited three-layer (70-14-6) 
feed-forward neural network with a sigmoid transfer 
function trained with back-propagation using scaled 
conjugate gradient decent, to detect five typical 
types of attacks − neptune, portsweep, satan, 
buffer_overflow, and guess_passwd − as well as 
normal samples. 

Let's see what they observed. Authors wrote, 
“The test result indicates that 99.6% of the normal 
examples were recognized correctly, and for three 
attacks of neptune, satan, and portsweep, we 
                                                 
4 They are src_bytes, dst_bytes, duration, is_guest_login, 
is_host_login, srv_diff_host_rate, diff_srv_rate, service, 
flag, protocol_type, num_root, hot, num_compromised, 
dst_host_same_srv_rate, dst_host_count, rerror_rate, 
srv_count, and dst_host_srv_diff_host_rate. 
5 I.e., recognizing attack as normal. 
6 This was not the main purpose of the paper. The authors 
rather exploited the other methods of dimension reduction 
such as neural-network-PCA or nonlinear-component-
analysis, expecting more efficiency and higher accuracy. 
The evaluation was carried out not only by decision-tree 
classifier but also by non-linear classifier. 
7 I.e., src_bytes, dst_bytes, duration, is_host_login, and 
is_guest_login. 
8 I.e., recognizing normal as attack. 
9 Most of the phrases cited in this article appeared 
hereafter like “…” are the ones paraphrased, more or less, 
by the author of this article. As such, if there are some 
incorrect expressions, it is the author of this article who is 
responsible for, not the original authors. 

obtained the average detect rate of 96.6% and the 
false positive rate of 0.049%. However, for all the 
five kinds of attacks, we only obtained the average 
detect rate of 64.9% and the false positive rate of 
26.7%. This is because all buffer_overflow and 
guess_passwd attacks failed to be classified by this 
back-propagation neural network. Then we tried an 
expert system, and found that buffer_overflow and 
guess_passwd attacks can be more accurately 
detected by this rule-based detector than neural 
network.'' And then concluded, “The model based 
on both neural network and expert system finally 
achieved the average detection rate of 93.28% and 
false positive rate of 0.2% for all of these five attack 
types.” 

We, however, would be rather more interested in 
why this neural network failed to classify 
buffer_overflow and guess_passwd attacks, than the 
performance improvement by using rule-based 
detector. 

Pan et al. reported yet another result in their 
different article [7]. With the same architecture of 
neural network and with the same target of five 
attacks as above, they reported that correctly 
predicted (normal, neptune, satan, portsweep, 
buffer_overflow, guess_passwd) by this back-
propagation neural network was (73.3%, 99.2%, 
94.6%, 94.2%, 0.0%, 0.0%). And concluded, ”The 
back-propagation network can't detect the 
buffer_overflow and guess_passwd attacks.'' This 
sounds like a realistic assertion, and the one we 
want10. 

Thus far, such more careful conclusions appear in 
the recent literatures. For example, Stibor et al. [8] 
wrote, “The real-valued negative selection with 
variable-sized detectors has poor classification 
performance on the high-dimensional KDD dataset." 

When this artificial immune system based 
detector was proposed by Ji et al. [9], the result of 
applying it to the iris dataset was not that bad. That 
is, the correct detection rate of (setosa, versicolor, 
virginica) was (99.98%, 85.95%, 81.87%), while 
false alarm rates were all zero! 

As another example of  such implicit report of 
failure, Dam et al. [10] claimed, ”The evolutionary 
classifier system, devised to make its performance 
improved than the traditional one, resulted in the 
detection rate of (95.7%, 49.1%, 93.0%, 8.5%, 
3.9%) for (normal, DoS, Probe, U2R, R2L).'' 

Again, we are rather more interested in why 
detection rate is so low for U2R and R2L than 
whether result is satisfactory or not. 

Finally, it would be interesting to take a look 
what Sabhnani et al. [11] reported. See Table 1 to 

                                                 
10 Again they reported a successful improvement of this 
result by a hybridization with C4.5. 
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have a bird's eye view of those results above. 
 
Table 1 ─ Detection rate for 4 attack types each with 
9 different machine learning techniques. (From 
Sabhnani et al. [11]). 
 
 Probe DoS U2R R2L 
Multi-layer Perceptron 88.7 97.2 13.2 5.6 
Gaussian Classifier 90.2 82.4 22.8 9.6 
K-mean Clustering 87.6 97.3 29.8 6.4 
Nearest Cluster Algorithm 88.8 97.1 2.2 3.4 
Radial Basis Function 93.2 73.0 6.1 5.9 
Leader Algorithm 83.8  97.2 6.6 1.0 
Hyper-sphere Algorithm 84.8 97.2 8.3 1.0 
Fuzzy Art Map 77.2  97.0 6.1 3.7 
C4.5 Decision Tree 80.8 97.0 1.8 4.6 

 
 
Also note that KDD-cup-99 winner's detection rate 
for (Probe, DoS, U2R, and R2L) was (83.3%, 
97.1%, 13.2%, 8.4%). 

 
Our Conjecture 
Here, we, conjecture that those sometimes observed 
poor results are because some of the attack data are 
like needles in a haystack of huge amount of normal 
data. If we were able to fully visualize such large 
size of normal samples together with a few data 
picked up from abnormal samples, the latter might 
look like a needle in a hay stack of the former, like 
in Figure 3. Though we are not yet ready, we plan to 
show a visualization of this assumption of us 
elsewhere, to study this conjecture further in detail. 
 
 

 

 
Fig. 3 We conjecture that some attack data (filled 
circles) are like needles in a hay of normal data (empty 
circles). Plots in this figure are all fictitious. 

 
To summerize this section, we ask the readers, 

the following question. 
 
 

Problem 2 (A Challenge in KDD-cup-99 dataset) 

Design an intrusion detection system which has 41 
inputs corresponding to attributes from KDD-cup-99 
dataset, and 5 YES/NO outputs indicating that the 
input is either normal, Probe, DoS, U2R, or R2L. 
The question is, "Such design is possible or not?" 

 
Also see Figure 4 to get an image of real 
implementation by a neural network, as an example. 
 

 

 
 

Fig. 4 A simple architecture of neural network we 
desire to design to classify KDD-cup-99 dataset. 

 
3. EXPERIMENT 

 
Flick remembered the legend of the Jackdaw of Rheims, 
the bird that stole the bishop's ring. The monks couldn't 
figure out who had taken it, so the bishop cursed the 
unknown thief. Next thing they knew, the jackdaw 
appeared all bedraggled, and they realized he was 
suffering from the effects of curse, and must be the 
culprit. Sure enough they found the ring in his nest. ─ 
“Jackdaws” by Ken Follett. 

 
Assuming our conjecture that real attack samples 

are like needles in a haystack of normal samples, we 
now look at how easy or difficult to find them.  

Let's start with a random search. Note that some 
proposed algorithms which were reported as success 
actually were not good as asserted, and sometimes 
found to be worse than a random search. 

 
 
3.1 Random fall of parachutists 

 
Algorithm 1 (Random Fall) (1) Create a p-bit octal 
PIN at random. (2) Create randomly one 3p-bit of 
binary string. (3) Translate the string into p-bit octal 
code. (4) Check if the translated code matches the 
PIN. (5) If matches, end the run. Otherwise go back 
to 2. 

 
Let us allow to use a metaphor here. We now 

assume only one needle in a pastoral, and 
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parachutists fall from the airplane in the sky to the 
pastoral one by one, then our interest is on how 
would it be likely for a parachutist to fall just on the 
needle. This might be taken as a random search, and 
will be our criterion of comparison hereafter. 

Note that one parachutist is represented by our 
genotypes of a 3p-digit binary strings. Let's take an 
example of p=4. A genotype: 
 

((100) (111) (000)(010)) 
 

maps into its phenotype (4 7 0 2). 
At the start, one p-bit octal PIN is created which 

we assume no one knows a priori. With p being 
increasing from 2, we count the number of randomly 
created genotypes until its phenotype strictly 
matches to the hidden PIN. The average number, 
during 1024 runs, of parachutists needed until we 
found the parachutist who fell on the needle just by 
chance, for p = 2, 3, 4, 5, 6, 7 were, respectively, 

 
(66, 512, 3951, 32154, 254673, 2058527). 

 
See Figure 5 below. 

 
 
 

 
 

Fig. 5 (a) Number of random creations of candidate 
until the PIN is matched (filled circles), and (b) The 
number when created candidate is allowed random 
walks of 1000 steps (empty circles). Both are the 
average of 1024 runs. 

3.2 What if parachutists are allowed to walk after 
fall? 
 
Algorithm 2 (Exploration after Fall)  (1) Create a 
p-bit octal PIN at random. (2) Create randomly one 
3p-bit of binary string. (3) Translate the string into 
p-bit octal code. (4) Check if the translated code 
matches the PIN. (5) If matches, end the run. 
Otherwise give a mutation by flipping a bit chosen at 

random11 with a probability of 1/3p until the 
translation matches the PIN, or number of steps 
exceeds 1000. (6) If still none has matched, then 
repeat from 2. 
 

What will happen if the fallen parachutist is 
allowed to explore, say, 1000 random steps, around 
the spot they fall? This might remind you of the 
seminal experiment once made by Hinton & Nowlan 
[1] who referred it to “lifetime learning − Baldwin 
Effect,” though our parachutist in this paper ends her 
life without creating a next generation. The results, 
again over the average of 1024 runs, for p = 4, 5, 6, 
7, 8 were, respectively, 

 
(5, 36, 308, 2436, 23087). 

 
The results are depicted also in Figure 5 together 

with the result of our random parachutists in the 
previous sub-section. In both cases, we can see that 
complexity to find the needle is an exponential 
order. But look! How impressive an exploration-
after-fall improves the performance!  

As you have probably noticed already, however, 
it's not fair just to compare the number of 
parachutists. The total number of points searched by 
those walking parachutists is plotted as a function of 
p in Figure 6. We can see that the result was rather 
worse than our random parachutists, despite of its 
superficial good looking of the result. 
 
 
3.3 Neutral mutation 

 
Algorithm 3 (Walk by Neutral Mutations) (1) 
Create a PIN at random. (2) Create one genotype at 
random. (3) Try point-wise mutation on the genotype 
such that the result maps into the same phenotype as 
the one before the mutation. (4) Assess all possible 
single-mutation-neighbors of the new genotype to 
determine whether any new phenotype is discovered. 
(5) Step 3 to 4 are repeated untill the phenotype 
matches the PIN, or untill a pre-fixed number of 
steps is reached. 
 

This is a paraphrase of the algorithm proposed by 
Shipman et al. [12] who called the step 3 a neutral 
mutation (Note that the mutation in step 4 is a 
standard one). Its efficiency was studied in their 
paper by applying it to a random Boolean network 
and telecommunication networks. But why not more 
simple example is to be explored, if it is to work 
universally? 
      To apply this in our problem of searching for the 
needle, that is, octal p-bit PIN, we design our  
                                                 
11 We will call this a “point-wise mutation” hereafter. 
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Fig. 6 Average number of points explored by all the 
randomly created candidates who are allowed further 
random walks of 1000 steps until the needle is found. 
Average are taken among 1024 runs. 

 
genotype as 15p-bit binary string such that the 
number-of-1 (mod 8) in each of those 15-digit blocks 
in the string maps into one bit of the corresponding 
octal code12. For example: 

 
((100011000000100) (111111111111111)    

(111110001101010)) 
 

maps into (4 7 1). 
The average number, during 1024 runs, of 

parachutists needed until we found the one who 
firstly reached the needle for p = 2, 3, 4, 5, 6 were, 
respectively, 

 
(71728, 583593, 4930624, 36592634, 

314817878). 
 
 
3.4 Does neutral mutation on intron enhance 
efficiency of search? 

 
Algorithm 4 (Neutral Network) (1) Create a PIN 
at random. (2) Create randomly an initial individual 
which is considered to be the winner to the next 
generation. (3) Carry out point-wise mutation on the 
winning parent to generate 4 offspring. (4) 
Construct a new generation with the winner and its 
offspring. (5) Select a winner from the current 
population using the following rules. (i)  If any 
offspring has a better fitness than the parent, the one 
with highest fitness becomes the winner. (ii) If fitness 
of all offspring have the same fitness as the parent, 
one offspring is randomly selected, and if the parent-
                                                 
12 A simple consideration might give us the idea that 7-bit 
binary for each octal is enough. However, we 
implemented in this way so that each octal from 0 to 7 are 
created uniformly at random. 

offspring pair has a Hamming distance within the 
permitted range, the offspring becomes the winner, 
otherwise the parent remains as the winner. (6) Back 
to step 2 unless the maximum number of generations 
reaches, or a solution is found. 
 

The description of the  algorithm above is a 
paraphrase from Yu & Miller [13]. As for the 
application of this algorithm, we had an interesting 
discussion between Yu & Miller's paper “Finding 
needles in haystack is not hard with neutrality” 
(2002) vs. Collin's “Finding needles in haystack is 
harder with neutrality” (2005). 

What Yu & Miller [13] attacked as a type of a 
needle in a haystack problem was to make a genetic 
algorithm construct an even-n-parity logic circuit by 
employing only XORs and Eqs, not ANDs and ORs 
and so on, which shows a peculiar fitness landscape. 
The even-n-parity logic has n-bit binary inputs and if 
and only if the number of “1” is even, it returns 1 
and otherwise returns 0. Hence, we can evaluate the 
fitness value of any one candidate of the solution, by 
giving all the possible configurations of 0 and 1 and 
counting how many correct outputs. Thus, from a 
combinatorial point of view, we have 2n cases of 
fitness values. In reality, however, we have only 
three different values, that is, 2n, 2n-1 and 0. In other 
words, the output is all correct, half correct, or not 
correct at all. For example, candidates of even-3-
parity constructed only by XORs and EQs returns 
either 8, 4 or 0 correct outputs for the eight possible 
inputs (000), (001), (010), ..., (111). 
 

Yu & Miller wrote, "In the case of random 
creation of 4,000,000 candidates of even-12-parity, 
the solution (fitness 4096) was never emerged, while 
even-10-parity 100,000 random creations of 
candidate yielded 540 solutions (fitness 1024). On 
the other hand, when neutral mutation was applied 
to the candidates of even-12-parity, the 48 out of 
100 runs reached solution(s) with each run being 
only within 10,000 iterations." 

Collins argued back concluding, "Reported 
success is due to a bias of the selection" [14]. In the 
other Collin's work [15], it was analytically shown 
that the number of possible candidates of even-12-
parity is 1.315×10139 in which number of real 
solutions is 2.568×10132, claiming “Yu & Miller's 
result is, therefore, worse than a possible random 
search." 

Again what we want to emphasize here is, if the 
assertion by Yu & Miller is universally true, it 
would work in yet more principally simple 
examples. 

Before going further, let's see what is intron that 
Yu & Miller assumed to play an important role in 
their evolution. For example, take a look at a 
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genotype representing an even-3-parity, 
 
((EQ,A,B)(EQ,C,D)(XOR,1,E)(EQ,F,G)(EQ,3,H)) 
 

where each gene which corresponds to one unit 
constructs triples, with the 1st being which logic to 
be used (EQ or XOR); and with the 2nd and 3rd 
being connections to either one of the inputs or the 
outputs of a previous unit. Note that the 2nd and 4th 
genes in the above example do not contribute to 
construct the phenotype since those two genes will 
not be connected to any other unit, and hence are 
called intron as a biological metaphor. Any mutation 
on an intron has no effect on phenotype, and as 
such, they are called neutral. The above genotype 
can be interpreted as the phenotype shown in Figure 
7. 

 
 

 
 

Fig. 7 An example of phenotype of even-3-parity 
constructed only by EQs and XORs. 

 
 
Now we try to apply this to our finding PIN 

problem. This time we use 4-digit binary, instead of 
3-digit as before, to represent one octal numeral in 
the candidate of PIN. Then translation is into 
decimal, instead of octal, and when the translated 
decimal is larger than seven we consider it an intron. 
For example, 

 
((0001)(1100)(0101)(0010)(0111)) 

 
is translated into (1, 5, 2, 7) since the second gene is 
translated into 12 and supposed to be an  intron. 

The average number, during 1024 runs, of 
parachutists needed to firstly find the needle for p = 
2, 3, 4, 5 were, respectively, 

 
(65, 488, 3751, 33710). 

 
Alas, if we compare it with the above mentioned 
result by the algorithm 1, we will see that this result 
is almost same as our random parachutists. 

 
Our Second Conjecture 
We have no such algorithm that can more efficiently 
look for a needle in a haystack than a random 
search. No way to find needles in a pastoral. 

 
 

4. DISCUSSION 
As Laskov et al. [16] claimed in their paper, 

”Labels can be extremely difficult or impossible to 
obtain. Analysis of network traffic or audit logs is 
very time-consuming and usually only a small 
portion of the available data can be labeled. 
Furthermore, in certain cases, for example at a 
packet level, it may be impossible to unambiguously 
assign a label to a data instance.” Authors further 
wrote, “In a real application, one can never be sure 
that a set of available labeled examples covers all 
possible attacks. If a new attack appears, examples 
of it may not have been seen in training data.'' Then 
our next question is, 

 
Problem 3 (Attacks by Mutants)  
Pick up at random a set of n normal samples from 
KDD-cup-99 dataset. All of those n samples are 
given a point-wise mutation and taken as attack 
data. Train your intrusion detection system using 
half of the normal samples and half of the attack 
samples (the number of both is n/2), then test the 
system using the remaining samples. Can the system 
detect those mutants as intrusion? 

 
4.1 Can a sommelier be trained without bootlegs? 

 
Though we have not remarked so far, there 

remains further difficult issue, that is, "How the 
system can learn only from normal data to detect 
abnormal?" We usually have enormous amount of 
normal data but we have no information about 
coming attacks until it's too late. 

Gomez et al. [17] claimed, “A new technique for 
generating a set of fuzzy rules that can characterize 
the non-self (abnormal) space using only self 
(normal) samples.'' Their experiment employed 10% 
dataset, also given as a part of KDD-cup-99 dataset, 
which reduced the number of records into 10% of 
the original ones. Further, they removed categorical 
attributes and normalized these remaining 33 
numerical attributes between 0 and 1 using the 
maximum and minimum values found. Then 80% of 
the normal samples were picked up at random for 
training while the remaining 20% along with the 
same number of abnormal samples were used for 
testing. Gomez et al. designed the detector with what 
they called an  “immuno-fuzzy approach” and the 
system they call an “evolving fuzzy rules detectors” 
claiming, “It detects attacks with the detection rate 
98.30% and false alarm rate 2.0%.” Really 
satisfactory, if it's really true. 

The report didn't mention about the categories of 
attacks, which implies the reported success is an 
average over all attack types. It seems to be too good 
if we consider the results of the other not-so-happy 
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reports mentioned above. 
More important thing to notice here is the system 

learned from "only with normal data" to establish 
this success. It would be terrific if it was really true, 
but we are fishy more or less. 

This issue is something like we require a wine-
taster to recognize bootleg champagne by only 
providing him/her plenty of real champagne to learn. 
This issue is something like we require a wine-taster 
to recognize bootleg champagne by only providing 
him/her plenty of real champagne to learn13. 

Though this training-only-with-normal is our 
ultimate goal, but not so simple to be realized. To 
study how this is difficult, why not try the 
following? 

 
Problem 4 (Dummy Attacks)  
(1) Prepare two sub-datasets from KDD-cup-1999 
dataset. One is picked up from normal samples and 
call it  Dnormal. The other is from  attack samples and 
call it Dattack. (2) Furthermore, randomly create an 
attack dataset − dummy attacks, and call it Ddummy. 
(3) Train your intrusion detection system only with 
D normal. (4) Then, try two tests, one with only Dattack, 
and the other with only Ddummy, avoiding any a priori 
prediction. 
 
4.2 Don't we expect the result a priori? 

 
"Artificial immune system detects an attack by 

computer viruses!" How fantastic it sounds. While 
we wish it would work, we are afraid it might be just 
a fantasy. So, we need a placebo experiment. 

Of the 311,029 records in the test set of KDD-
cup-99, the rate of (Normal, Prove, DoS, U2R, R2L) 
is (19.5%, 1.3%, 73.9%, 5.2%, 0.1%), respectively. 
This suggests that even the always-return-U2R 
strategy14 for instance, would result in the accurate 
detection rate of (Normal, Probe, DoS, U2R, R2L) = 
(0.0%, 0.0%, 0.0%, 5.2%, 0.0%). Or, the always-
return-a-random-output strategy15 would have quite 
a high score to detect DoS attacks. 

These two strategies above might be more 
intelligent than some of the artificial intelligent 
techniques so far proposed. Yes, rather than  
ignorant. 

We have to be careful, because we sometimes 
tend to unconsciously pick up only a set of data that 
will be suitable to draw our a priori expected 

                                                 
13 Or, in an opposite way. I usually enjoy Georgian 
sparkling wine like once a week, but still a real 
champagne would be able to pretend to be a Georgian one 
to me. 
14 which returns U2R whatever the input is. 
15 which returns either Normal, Probe, DoS, U2R, or R2L 
at random regardless of the input. 

conclusion, if not intentionally at all. 
In the way that just a powder-from-sugar 

sometimes has a same effect as, or more efficient 
than, a medicine under developing enough to cure a 
disease for a group of innocent volunteers. Let's 
conclude the discussion with the following final 
question. 

 
Problem 5 (Placebo Experiment)  
(1) Create a simple device which randomly returns 
either one of Normal, Prove, DoS, U2R, or R2L for 
any input. (2) Prepare a test dataset including 
enough amount of records uniformly from Normal, 
Prove, DoS, U2R, and R2L. (3) Compare the 
performances of the detector you designed with the 
random-reply-machine created in step 1, feeding the 
same dataset prepared in step 2. 

 
 

5. CONCLUDING REMARKS 
As we have described so far, KDD-cup-1999 

intrusion detection dataset has 4,898,430 records in 
the labeled dataset for training purposes of which 
75.6111% are normal. On the other hand, we have 
311,029 records in the unlabeled dataset for testing 
purposes of which only 0.0733% are U2R, for 
example. Under this situation, a likely interpretation 
would be the U2R attack patterns are like needles in 
a haystack of normal patterns when they undergo a 
test, if we are not very lucky. Considering we have 
not had so satisfactory results to detect U2R attacks, 
we do not seem to be so lucky. 

In addition, if we take it account that a hacker is a 
person who is extremely good at finding a pattern 
which is very close to the normal traffic, the point 
that might be located by a hacker is not a randomly 
located point. 

It is said that we have two kind of intrusion 
detection. One is called misuse detection which 
recognizes known attack patterns. The other is called 
anomaly detection which detects no-normal 
unknown patterns. We are not interested in the 
former. All we want is to detect unknown outliers. 
And an outlier usually lies not far from normal but 
very close to it. We could not be so optimistic. 

As for using an artificial immune system, for 
example, since that real sensational proposition in 
1994 by Forrest, Perelsen et al. [18] that claimed, 
"Negative selection of a metaphor of our real 
biological immune system can detect anomaly as 
non-self in computers," we have had tremendously  
lots of intelligent challenges for more than two 
decades, but all in vain in a real sense. Still this topic 
is not fruitful at all from a practical point of view, as 
far as we know. 

Probably the most intelligent way of detecting a 
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network intrusion is to curse it and wait for the 
effect of the curse. 

Needless to say, however, this article is not to 
negate the possibility, but we hope this will be a 
serious challenge to intrusion detection community 
to emerge real innovative ideas. 
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