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Abstract: In this paper, I cover in more detail two specific applications where Computational Intelligence systems have
been used in industry. In particular, 1 consider the problems of path optimization through an inhomogeneous road
network, and data analysis for financial applications. This paper will deal with several important questions about the
applicability of those techniques in real-world scenarios, and will show how some of these issues have been directly

addressed in order to create value for our business partners.
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1. INTRODUCTION

Computational Intelligence techniques have
existed for several decades, but are only now being
seriously applied to real-world industrial problems.
In previous work [1], I have given a general
overview of a number of projects in progress in this
area. In this paper, I will expand on some of those,
giving a more detailed analysis of technologies in
development.

Computational Intelligence techniques are
usually conceptually straightforward, with very little
or no complicated analysis required before applying
them to an industrial problem. However, the skill
involved in applying these techniques accurately lies
in knowing which techniques are suitable for which
problem, and how can one tune and optimise the
algorithms used in order to avoid the issue of
suboptimal or misleading performance.

So the skill in applying Natural Computation
(NC) algorithms lies not in extended mathematical
analysis, nor in exceptional programming expertise,
but rather in the thorough understanding of one’s
problem space; in the intuitive comprehension of the
inherent drawbacks and dangers of stochastic,
population-based search; and in the perception
necessary to recognise and diagnose potential
systematic errors.

In this paper, I assume a basic understanding of
NC techniques, including a familiarity with the
concept of population-based stochastic search, and
the components of a standard genetic algorithm. I
will also assume some understanding of the

problems to which we are applying these techniques,
as these have been introduced in the previous paper
in this series [1].

In section 2, I will cover once more the question
of salting truck routing optimisation, which has
direct applications in the field of route optimisation
and constrained search. The third section will revisit
the problem of data mining for financial analysis,
which covers issues of data bias, incompleteness and
efficient choice of representation. Section four
summarises and concludes.

2. ROUTE OPTIMISATION FOR SALTING
TRUCKS

In the first paper in this series [1], I introduced
the issue of Capacitated Arc Routing within the
optimization of routes through real-world transport
networks. Our partners, Entice Technology Ltd.,
have developed an advanced prediction model to
calculate road surface temperature based on climate
models and geographical data, together with
meteorological data gathered in real time from the
government.

Our task was to design a system which took these
data directly from their prediction model, and
merged them with existing map data, available from
the government transport authorities, in order to
create the most efficient routes for salting trucks
through this complex, constrained network.

Conventional route optimization techniques, for
example A-star [2,3], rely on a depth-first search
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through the available nodes which, as the network
complexity increased, rapidly becomes prohibitive.
In fact, the general family of these problems, known
as the ‘Travelling Salesman Problem’ (TSP), belong
to the class of NP-hard problems. That is to say,
there is no known deterministic polynomial-time
algorithm for solving these problems in a provably
optimal manner. All solutions are non-
deterministically polynomial at best in the number of
nodes in the network under consideration and,
perhaps more importantly, any problem in the class
NP can be transformed in polynomial time into an
instance of the TSP. This means that an efficient
solution to the TSP would have important
implications throughout computer science.

Analytical solutions, such as A-star and more
specific solutions to the example of a closed loop
path, such as ‘cutting planes’ [4] provide some
powerful approaches to this problem. However,
they are still NP in complexity, and are based on
very fragile mathematics, which become completely
invalidated by even the most trivial of constraints.

Real world problems very rarely (perhaps never)
conform to clean, uncomplicated mathematics. For
this reason, analytical solutions are rarely the best
option for complex problems, especially those where
constraints are likely to be difficult to translate into a
tractable, analytical form.

Travelling Salesman problems may be formalized
using a series of definitions. Firstly, we have a set E
of edges, of cardinality N. These edges join together
vertices (about which we are not concerned at this
time). The edges have an associated cost, with the
cost for edge ‘n’ denoted as C,, in terms of distance
and therefore time required to travel along them
(which is expected to be proportional to the
distance). We have a set T of trucks, with
cardinality K, each of which has a maximum work
capacity. The capacity for truck ‘i’ is denoted P;.
Often these capacities are the same, though here we
consider the potential for variability.

In the conventional TSP formulation, we must
visit a set of vertices once and once only each. In
this particular salting truck application, we are
concerned with visiting a set of edges, not the
vertices, but the problem is directly equivalent.

Each truck then must visit an ordered list of
edges, giving a total complexity (summing over
trucks ‘i’ and edges ‘n’):

Cost = iiAan (1)
i=] n=l

Here, the function A, gives a value of 1 if truck
‘1’ visits edge ‘n’, and a zero otherwise. This sum is
only valid if the following constraint holds:

<R @

That is to say, no truck exceeds its maximum
capacity. So far, we are only considering capacity as
a general ‘ability to work’, supposing that a truck
can travel a certain distance before having to stop,
for whatever reason.

So far we have not considered any obligations on
the edges which need to be salted, which would of
course provide a further constraint.

Evolutionary framework

The TSP is tackled using an evolutionary
algorithm with a number of important variations.
Evolutionary algorithms are population-based
techniques consisting of a population of encoded
potential solutions, and three major functional
components, namely selection, mutation and
Crossover.

An individual in the TSP is encoded as a vector
of points, representing the order in which a certain
set of destinations is to be visited. In this vector,
technically a permutation of the available vertices,
each value must appear exactly once and once only.
This causes problems later when we consider the
three evolutionary operators and how they may be
applied to an order-based individual.

Selection is usually based on a ‘fitness function’,
measuring the accuracy with which any individual
solves a given problem. In this case, the fitness
function is obvious, being a descending measure of
the total cost of traversing the links given, with
lower numbers being superior.

Mutation is the process by which candidate
solutions are slightly altered in order to introduce
new information in the population of individuals
(which can be though of as our gene pool, or space
of potential solution elements). For a route, this is
not a difficult proposition, with several simple
mutations conventionally used:

e Swap mutation: Swap the position of two
randomly chosen elements in the genome

e Permutation mutation: Choose a short
subsection of the genome, and permute the
order of the elements within that subsection.

e Optimisation mutation: Choose a short
subsection of the genome, and exhaustively
search for the optimum (i.e. the shortest)
permutation of the elements in this section.

Crossover is the process by which candidate
‘parent’ individuals are merged together to create
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new individuals for the next generation.
Conventionally, when dealing with individuals
represented as vectors of values, it is straightforward
simply to perform an N-point crossover, where the
components of the resultant ‘child’ vectors are taken
from each parent, alternating in sections between
arbitrarily chosen loci.

However, for the TSP, this approach cannot be
used as it may lead to ‘illegal’ solutions. For
example, given the two (legal) tour vectors
(1,2,3,4,5,6) and (6,5,4,3,2,1), a one-point crossover
after the third digit would produce the two ‘children’
(1,2,3,3,2,1) and (6,5,4,4,5,6). These were produced
by taking the first half of one wvector and
concatenating onto it the second half of the other
vector. These offspring are both ‘illegal’ because
they visit certain destinations more than once, and
others not at all.

We can define various order-based crossover
operators for the TSP, of which the simplest is
perhaps to consider neighbours in each string and,
starting with a random point, choose subsequent
points at random (without replacement) from the
pool of (yet unused) neighbours to that point from
the parent genomes. In the case where there is no
available subsequent point, a new (yet unused) point
is chosen at random and the algorithm continues.

These steps outline a methodology by which the
TSP may be solved using an evolutionary algorithm.
However, the challenges are twofold, concerning not
only the internal workings of the (analytically
simple) theoretical TSP, but also dealing with the
extra constraints that inevitably arise from a real-
world application.

Real World Constraints

The challenge in this problem is in designing a
route for a variable number of trucks to follow, in a
timely and efficient manner. That efficiency is in
terms of distance travelled, grit spread, and time
taken to cover a sufficient fraction of the road
network. There are a number of strong constraints
on the road network, that we can denote more
formally in the following (non-exhaustive) list:

Trucks only have a certain maximum fuel and
grit load. So far we have only considered one
single potential capacity for each truck, analogous
to a fuel supply. However, in reality we must
consider two separate costs for each edge, namely
the amount of grit required for each edge, and the
amount of fuel required in order to traverse it.
Hence we can introduce a new capacity S; as the
maximum salt capacity that each truck is able to
provide.

Certain roads will have more severe ice cover
than others. This means that the cost of salting a
road is not uniquely proportional to the length of
that road. Or, to put this another way, the two costs
(fuel vs. grit) are not directly proportional. In
addition, some roads are steep, meaning that it is far
easier for a truck to navigate them in one direction
than in the other, suggesting that the cost matrix in
this case should by asymmetric. That is to say
Cnas) # Cuia) 1n general, where A and B are the
two vertices spanning this edge.

We may have to retrace our steps over already-
salted routes. In this case, we obviously don’t
need to deposit salt a second time, so we need to
consider which edges have already been salted
(either by ourselves or by another truck).

One issue here is that of potential synchronicity.
For example, the trucks will be operating in parallel,
so we would need to consider, when truck A passes
over edge X, whether or not truck B has already
passed that way first, or whether truck B will arrive
later. This depends on the sum of the costs to each
of these trucks of the routes that they traverse before
arriving at edge X.

In practice, we can ignore the effects of
synchronicity here because we have no problem with
two trucks occupying the same edge simultaneously,
and the efficiency of the evolutionary algorithm we
are to apply will penalize solutions for which two
different trucks both salt the same edge.

Some roads only allow traffic to move in one
direction. We mentioned the possibility of an
asymmetric cost matrix for steep roads, but another
situation in which this could cause problems in
when a road only permits traffic in one direction, in
which case we have two options:

Our first option is to alter our algorithm
fundamentally so as to forbid the generation of
solutions which incorporate travelling down a one-
way road.

The second, more attractive, and far simpler
solution is to alter the costs for one-way roads so
that the cost for traversing it in the opposite direction
is extremely high. This way, the core algorithm will
remain unaltered, and will prune out any individuals
which attempt to traverse a ‘backwards’ link
automatically.

Some roads are more vital than others. Not only
will some roads have more severe ice cover, and
therefore necessitate more salt, and will require a
more urgent treatment, but also some roads are
intrinsically more important than others. For
example, major inter-city highways are more
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important than small residential streets.

Therefore there is an innate hierarchy in terms of
the importance of each road. So we can define not
only a cost function (as above), but also a benefit
function, which measures how effectively we have
salted the required roads. This seemingly
straightforward constraint expands this problem to a
multi-criterion optimization problem in which we
have more than one goal which we need to trade-off
against each other.

For example, for some governments, money may be
tight, necessitating a more frugal approach to
salting. One solution to this issue is to linearly
combine the two objectives together with user-
defined weights which quantify the degree of
importance assigned to each objective. Another
way to proceed is to investigate the family of multi-
objective evolutionary algorithms such as SPEA,
SPEA2 or similar [5,6] which allow a family of
solutions to be evolved for a multi-objective
problem, retaining an archive of optimally-diverse
non-dominated solutions. That is, solutions which,
when arranged in a partial ordering based on all
fitness measures, are not absolutely inferior to any
other solution. A formal treatment of this class of
algorithms is beyond the scope of this paper.

Different roads have different speed limits. This
means that the mapping from edge length to edge
cost is further complicated. In addition, the speed
limit for a road might depend on whether a salting
truck has already covered that particular road,
hinting that our fitness calculation is going to have
to consider some level of chronology of the parallel
salting operations.

Some roads are too narrow for the trucks to pass
through. This means that certain potential routes
are not feasible. The options here are to remove
those edges from the network entirely, or simply to
assign them extremely high costs. The latter is
generally preferable, as it solves the problem with
no complexities.

The trucks are not homogeneous. This is an
important constraint, which implies several
alterations need to be made to our algorithm.
Firstly, trucks have varying capacities, which means
that the value of P; is not generally the same for any
pair of trucks. This also goes for our second
capacity value, related to the volume of salt that
each truck carries, denoted as S; (see above).

The fact that trucks are not the same means that the
cost function of each edge will also depend on the
truck traversing it. For example, some trucks will be

too wide to traverse narrow country lanes, and may
not have the necessary power to climb steep slopes.
Some junctions may be impossible for larger trucks.
So our cost function for each edge, C,, now
becomes two cost functions, based on the fuel and
salt costs respectively, and each of these varies with
truck number ‘i’. So we have:

C,i = Fuel cost for truck ‘i’ to traverse edge ‘n’.
L,; = Salt cost for truck ‘i’ to traverse edge ‘n’.

Note that each edge is now effectively a pair of
edges, as we have to specify different costs from the
two different directions. Therefore, the (directed)
edge joining nodes A and B will not be the same as
the edge joining nodes B and A. This cost matrix,
giving the cost of traversing the edge between any
two points, is now asymmetric, and three-
dimensional (in order to accommodate variation by
truck number). It is also sparse (in general, most
points are not connected).

The updated constraints, after modifying equation
(2), are shown below:

N

Vi’Z(Ani +5nix:ni < PI (3)

n=1

N
VisZAni Ly <5 (4)

n=l1

Where here we have also defined &, as the
number of times truck ‘i’ must visit edge ‘n’ without
depositing salt. This allows us to deal with potential
routes where a truck must return to its depot along
roads it has already salted, or which have been salted
by other trucks. Allowing routes to overlap is a very
useful strategy, as it enormously simplifies the
network required. In fact, in most cases it is
absolutely necessary, especially if many trucks all
depart from and return to the same depot.

Proposed Fitness Components

A proposed route must optimise most of the
objectives that we have already mentioned. This
gives us a convenient way to define our fitness
function, F, for this constrained version of the TSP
as a modification of equation (1):

K N

F= ZZAni (Cni + I—ni)_i_é‘niCni )
i=] n=1
However, at this mathematical

point our
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treatment begins to break down as we consider the
more hazily-defined objectives that we must now
introduce into this formulation.

Minimise the total journey length, and thus
minimize fuel cost. This has already been included
into the above formula (5) as the sum of the
components of the summation involving the fuel
cost of an individual edge for a specified truck, C,;.

Minimise the total journey time, and this grit the
roads as quickly as possible.  We haven’t
specifically considered journey time yet, given that
the cost C,; only tells us the fuel cost of traversing
edge ‘n’ with truck ‘i’. This may not be directly
proportional to the time it takes to do so. For
example, on roads where the speed limit is very
slow, the fuel efficiency will be lower. We could
introduce a further matrix here specifying the time
cost for traversing edge ‘n’ with truck ‘i’. However,
we must also realize that this will, of course, depend
on whether that edge has already been salted. So
this takes us back to the point raised earlier about
synchronicity of traversing edges that must be
visited by two or more different trucks.

Clearly, it is becoming very difficult to insert this
term into our well-behaved analytical fitness
function, though this is not at all a problem for
evolutionary computation. We can add in any term
we wish into a fitness function, even if it involves
complex calculations such as that described above.

Maximise the speed with which major roads are
covered. As we mentioned earlier, some roads are
more important than others, so we might want to
reward any solution that approaches those roads
earlier in the route in order to get them cleared as
soon as possible. This can be done by adding in a
scaled reward function into our fitness function,
based on the importance of roads (which would be
manually assigned) and the delay before which they
are serviced.

Maximise the coverage of roads with the most
severe ice risk, whilst minimizing the coverage
of roads with lower risk. We have been given a
series of surface temperature predictions from our
partner company, which must also be added into this
fitness function at this point. This can be done by
biasing the importance of roads based on how likely
they are to be icy.

One can also introduce the concept of obligatory
edges — that is to say, edges which must be salted at
some point. This can be done either formally (by
prohibiting the production of any potential solution

which doesn’t cover all required edges). Or, far
more clearly and simply, by increasing the
importance of those edges by a large amount and
penalizing heavily individuals which do not
satisfactorily cover every single one.

Further details on our own approach to this problem
can be found in our earlier review paper [1] and in
papers by colleagues and collaborators [7,8,9,10].

3. STOCK FILTERING USING
EVOLUTIONARY TECHNIQUES

In collaboration with the Investor’s Chronicle
(IC) magazine, Financial Times group, UK.

The Challenge

The problem formulation was introduced in my
earlier paper [1]. In this paper, I will cover more of
the algorithms involved in the analysis of financial
data.

The main problem in the domain of financial
analysis is in obtaining a sufficient data set. That is
to say, we require a data set that is both unbiased
and complete.

The problem with bias is a difficult one. For
example, when selecting companies that exist in the
top indexes today, such as the FTSE-100 in London,
one is already selecting for companies with a past
record of success. One is also skewing the analysis
towards companies which have a large market
capitalisation, and therefore companies within
certain sectors. The FTSE-100, for example, is
heavily biased towards energy stocks and banking.

However, in most cases, what we are interested
in is not the absolute gain in a company’s net
enterprise value (EV), but rather the percentage
gain, and how this is reflected in the stock price.
Therefore, the absolute value of a company is of
little interest, with the caveat that it must be large
enough for its bid-offer spread (the gap between
buying and selling prices for the stock) not to swamp
any plausible gains, and also for a sufficient value of
stock to be available.

Because of this goal, and also because of the
limitations of efficiently-analysed companies (see
‘Efficient Market Hypothesis’ below), most of the
work presented in this paper concerns a complete
listing of all companies listed on the London Stock
Exchange (LSE), limited only by a minimum market
capitalisation of £10m, and a maximum bid-offer
spread of 10% of the median share price.

In terms of completeness, our main problem is a
pre-processing one. Not only are data predictably
incomplete, due to the regular intrusion of public
holidays and substantial political events (e.g.
terrorist attacks, war etc.) but they are also rendered
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incomplete by financial forces specific to each
company.

Firstly, companies merge and de-merge, which
complicates the data enormously. One must learn
how to deal with such instances either by slicing the
data at the point of merger, or else by ignoring the
companies involved entirely. Often the latter is the
best course of action, as mergers predictably cause
abnormal stock behaviour that is perhaps not
characteristic of the trends that we are trying to
extract.

Secondly, companies start trading at different
times. Some temporarily de-list from the stock
exchange, and some permanently de-list or go
bankrupt. This means that, for many companies, the
time range over which we have satisfactory data
varies.

Thirdly, companies often perform stock splits or
consolidations, where the number of shares and the
price per share are altered in a consistent way. For
example, if a company issues one million shares at
one pound each, and then the company’s market
capitalisation reaches 50 million pounds, the shares
will now be worth 50 pounds each. It would be wise
for that company to split its shares so that an
individual share is not so valuable. The company
could perform a 100:1 share split, increasing the
number of issued shares to 100 million, and reducing
the price-per-share by a factor of 100 to £0.50 to
compensate. This would show up on the share price
register as a sudden drop in share price of 100 times,
but the market capitalisation of the company would
remain constant.

One way to deal with this problem is to consider
the market capitalisation itself, instead of the
individual share price. The problem here is that
market capitalisation data are generally harder to
find than individual share prices. This problem is
usually straightforward to correct for directly in the
data, by matching sudden large price changes with
news items from archived regulatory news
announcements.

The Efficient Markets Hypothesis

The Efficient Markets Hypothesis (EMH) states
that stock market prices already factor in all the
available information about any stock at any time.
Because of this, it is claimed that it is impossible to
make any justifiable prediction about the future price
movements of any stock without possessing
information which has not yet been disclosed to the
market as a whole.

Because of this, the majority of analytical work
within major banks does not focus on spotting mid-
to long-term trading opportunities, but rather on
analysis of risk profiles, and also in micro-trading

with a sub-second temporal resolution. These are
beyond the scope of this paper.

However, the EMH is on shaky theoretical
ground. The larger a company, the more analysts
will be watching it in general. Large investment
banks are only primarily interested in companies in
which they can gain a sufficient shareholding to
make a measurable absolute increase to their
turnover. A bank worth £50Bn is unlikely to
consider it worthwhile analyzing a textiles
manufacturer worth only £10m, of which only a few
tens of thousands of pounds worth of shares will be
freely available at any one time.

This tends to suggest that the EMH will apply
more accurately to larger companies, whereas within
the ranks of smaller companies should lie a larger
number of insufficiently-well analyzed companies
which may give far greater possible returns.

Indeed, work by several researchers including
Tsang et al. [11] shows that arbitrage opportunities
do exist within the LSE, showing that the markets
are still not completely efficient, even within the
arena of exclusively large companies.

Long-Term Systematic Variation

Of fundamental interest in a study of
computational intelligence applications within
financial data mining is the simple underlying
assumption that markets behave in a reasonably
consistent, stable manner, even when given the
effects of changing social, economic and
technological influences.

Data mining, in the form covered here, concerns
learning patterns from large volumes of past data,
and using that knowledge to inform decisions about
the future. For this to be a valid approach, one
assumes that patterns detected in the past are
relevant to the future.

This question reduces to two fundamental issues,
both of which are worthy of further discussion.

Firstly, to what degree is trading behaviour
affected by predictable underlying human
psychology and solid mathematical techniques?

This is an important question, as it not only
covers the question of applying predictive models
trained on historic data to present and future market
states, but it also applies to transferring extensively
trained models amongst different stock exchanges.

If the behaviour of a market is largely dependent
on the transient social and psychological whims of
its traders, then one might expect that models trained
on a British financial dataset may not apply in the
US or Germany, for example. However, if that
behaviour were based on solid, underlying
mathematics and psychology (such as innate fears
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and desires, which might be reasonably assumed to
remain constant between nations) then we would
expect that models trained at a different time or
location may be applicable globally.

This also gives us an interesting avenue for study
as nowadays, with the world of Internet investment,
it is becoming more straightforward to invest in
diverse markets around the world. Does this imply
that the behaviour of all markets will become more
uniform? To what degree do the underlying
economic mechanisms in each country (tax rates,
regulations, employment law) affect the stock prices,
and to what extent are they affected by human social
and psychological differences?

I believe that this is an open question, and an
extremely interesting one which merits much further
study.

Secondly, are data mining methods learning
real knowledge that depends on human trading
behaviour, or are they merely learning to predict
patterns in arbitrary time series?

This is an important question, as it affects our
likelihood to trust models generated from a data
mining process. Is it relevant that markets work in a
different way in Germany and Japan to Britain and
the US? Can we still predict what the share price is
going to do in each case purely based on solid
signal-processing techniques? It may be that the
underlying political, economic and sociological
factors in each of these different countries do indeed
alter the way company prices respond to
expectations, but that may be inconsequential when
one comes to predict those same price movements.

An analogy: If we were to analyse two dancers
with completely different styles such as ballet and
rock, we would agree that their movements are
totally different, driven by different desires and
portraying a different underlying scheme and
psychology. However, if they were both to execute
a jump in their routine, we could still predict when
they would land. This is because we are trying to
predict something based on the law of gravity — a
law external to the superficialities of their unique
dancing styles.

To return to the world of financial analysis, we
could agree that companies in Britain may behave
differently from companies in Japan, and even that
banks might behave differently from software
companies, but certain underlying economic laws
still apply, such as those of supply and demand.

Genetic Programming for Stock Filtering

As explained in the first paper in this series [1],
the technique of Genetic Programming (GP) is ideal
for classification learning tasks such as stock

filtering or individual stock analysis. Genetic
Programs (GPs) are tree-based functional models
which can be evolved in a standard evolutionary
algorithm just as we can manipulate a vector of
integers, or a bit-string.

Stock filtering involves reducing a large number
of stocks in a statistically reliable way down to a far
smaller subset which is expected to be likely to
perform above average.

Stock filters, or ‘screens’, have been in existence
for many years, and are usually based on solid
economic rationalisation rather than anything from
quantitative data mining. Examples are those
screens by Benjamin Graham [12] designed to short-
list stocks deemed safe and reliable for the risk-
averse investor.

Genetic programming offers a powerful way to
automate generation of stock screens using a blind,
supervised technique that has no prior knowledge of
investment techniques, and works purely from the
data. One would expect that such a process could
help derive investment strategies that are both
reliable and accurate, possibly finding relationships
that would be too counterintuitive for a human ever
to investigate.

A detailed background to genetic programming
can be found elsewhere, especially in Koza’s
foundational book [13]. Here, I want to discuss
some of the potential pitfalls with this technique
when applied to such a complex data mining
problem. These issues generally fall into two
separate categories, namely those concerning the
fitness function, and those concerning the space
complexity and the issue of diversity to avoid
suboptimal maxima in the fitness landscape.

Fitness function issues are always a problem in
any canonical genetic algorithm (GA). It is
important that one chooses a fitness function that is
accurately aligned with the outcomes that one
wishes to obtain. Evolutionary algorithms will
always find a way to exploit any poorly-considered
fitness function in order to fulfil it to the letter, but
with a potential solution tat does not achieve what
you actually desire.

For example, a fitness function that measures,
and aims to minimise, the number of trading errors
placed by an automatic trader would be trivially
satisfied by a trader that makes no trades
whatsoever. Similarly, a fitness function that aims
to spot the highest-gain stocks with great certainty
would simply invest in all stocks, blindly, therefore
guaranteeing success.

It should be clear that both of these scenarios,
though literally fulfilling the fitness function exactly,
are functionally useless in any trading environment.

So how does one specify a fitness function that
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will drive evolved solutions towards ends that are
actually valuable to the user? One possibility is to
create a fitness function as a simulation. That is to
say, start with a pot of money on day one, and
follow exactly what your evolved individual says to
do for (say) one year, and tally up the total value of
your portfolio at the end. This, as it turns out, is a
rather useful way to proceed, though the main
problem is that it learns very little when faced with a
monotonically increasing or decreasing index. One
must also remember to factor in trading costs and
bid-offer spread into the simulation, in order to
discourage rash buying and selling over short
timescales.

One further implementation problem with this
scenario is that the GP individual will usually not be
able to give a degree of confidence in its prediction.
So when a GP says ‘buy’, one must decide what this
is to mean, in terms of the simulation. For example,
one could implement a standard iterative scenario,
where ‘buy’ means ‘buy one unit’ (provided you
have enough spare cash) and ‘sell” means ‘sell one
unit’ (provided you own some).

The GP would be trained to give one numerical
outcome which would imply ‘buy’ if the value is
positive, and ‘sell’ if the wvalue is negative.
Alternatively, one could implement a three-signal
scenario where GP values within a certain tolerance
of zero are treated as ‘neutral’ or ‘no-operation
(NOP)’ signals.

The drawback of these simple strategies is that
they are unable to take advantage of epochs in which
a rapid sale or purchase of a large number of shares
is clearly indicated, such as directly before an
imminent market crash.

An extension to this two-signal (buy/sell) or
three-signal (buy/neutral/sell) strategy is a five-
signal strategy in which some degree of severity is
offered by the GP. In this case, in addition to the
three signals explained above, signals of high
absolute magnitude would imply that the maximum
possible quantity should be sold or bought. This
leads to a S5-signal (buy-all/buy-one/neutral/sell-
one/sell-all) strategy. In an extension, one could
design a scheme where the quantity to buy or sell is
proportional to the output of the GP.

The main drawback of this method is simply that
the GP is encouraged to act severely, very rarely
taking the cautious route. For example, if a positive
gain can be achieved by playing cautiously, then a
far greater positive gain can be achieved by trading
on the same occasions, but more recklessly. The
problem here being that the GP may well take
advantage of an excellent buying opportunity early
on, and then find a superior one without an
intervening selling opportunity, and be unable to
take advantage of it. This can be partly moderated

by the introduction of checks allowing only a
maximum value of shares to be traded on any one
day, but this strategy too is not without drawbacks.

Further strategies, each with their advantages and
disadvantages, have been investigated. The
conclusion is that it is very difficult to specify an
accurate fitness function which will drive the
evolution of an ideal GP solution. As in so many
other data mining applications, the conscientious
researcher is encouraged to test any proposed
algorithm on a wide variety of unseen data before
claiming wildly favourable results.

The fitness landscape in most real world
problems is a great deal more complex than in
simple, analytical test problems. Share-price data are
by no means an exception to this rule. One of the
major problems is that a lot of naive methods work
reasonably well, and this means that the fitness
landscape is littered with a large number of
suboptimal maxima.

Another problem is simply that the fraction of the
available solution space that is valuable is actually
extremely tiny: most possible filters are average or
worse. A random filter is likely to (approximately)
find companies that track the index. So
differentiating between poor, average and good
filters is not straightforward. The dynamic range is
not very large (a few percentage points is a big
improvement in finance) and the fraction we’re
looking for is tiny. As opposed to the previous
example of route optimisation where the difference
between a poor and a good route is very clear and
substantial.

All these points mean that the power of
evolutionary computation — monotonically urging
the population of filters towards greater and greater
fitness — is substantially reduced. Without a clear
and sharp fitness gradient, evolutionary search
becomes far more stochastic in nature.

Given all these caveats, it is surprising that a GP
approach to stock filters works at all. However,
moderately successful GP filters can be evolved in a
relatively short time, and they tend to select
companies which are not, at first glance at least,
unreasonable. Overwhelmingly, these filters pick
out companies with high recent relative strength
(that is, substantial share price growth relative to the
index) and a sensible PE ratio (indicating that the
stock is relatively cheap compared to its earnings
potential).

This technique, known as momentum investing,
tends to be successful primarily in bull markets —
where the share prices are, on the whole, moving
upwards. However, it is a generally applicable
algorithm, making sound investment sense in a
variety of economic climates.

8
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Evolutionary Conjunctive Rules Algorithm

One of the drawbacks of GP is that, because of its
great flexibility and ability to model such a complex
family of functions, it is unfortunately a very slow
algorithm, attempting to cover an enormous,
heavily-exponential search space. It is also very
susceptible to suboptimal local maxima, becoming
stuck in areas of solution space that are not close to
optimal globally.

In order to deal with this issue, and thanks to the
‘no free lunch’ theorem[14,15], we can gain speed
and reliability only at the cost of losing one of GPs
virtues, namely its extraordinary flexibility. One
such compromise is achieved by using Evolutionary
Conjunctive Rules (ECR).

ECR involves evolving a set of rules which are
joined by ‘AND’ statements. Companies matching
all of these rules with no exceptions, are allowed to
pass the filter. All others are rejected. Shorter and
more economical rule sets are preferred.

The genome encoding such rule sets is a variable
length hierarchical genome, consisting of one or
more rule entities. Each rule consists of a rule type
(‘greater than’, ‘less than’, ‘equals’ etc.), a variable
on which this rule applies, and a comparison value.
In some cases, two values are required. For example,
for the rule ‘X < variable < Y”.

In addition to a genotype-phenotype encoding,
the three obligatory components of an evolutionary
algorithm, as before, are selection, mutation and
Crossover.

Mutations are defined straightforwardly. A
mutation can entire delete an existing rule entity (if
there exists currently more than one), add a new one
(generated randomly) or alter an existing one.
Alterations are applied to any of the variables in
each rule entity, either altering the rule type, the
variable to which it is applied, or the comparison
value(s).

Crossover is also reasonably straightforward. As
the ordering of the rules does not matter, then one
can simply take two parents and retain each of their
component rules with 50% probability. Some
degree of mutation can, and should, also be applied
during the crossover. This tends to produce
offspring with a length (number of rules) equal to
the average of the two parents, with a maximum
length equal to the sum of the parents’ lengths.
There is a possibility of rejecting all of the parents’
rules, in which case one could randomly select one
of the parents’ component rules to retain.

Selection is based on the standard tournament
selection technique, with a fitness derived from the
accuracy of the rule set when analysed on historical
data. This accuracy can consist of several

components, and it makes sense to include at
minimum the following;:

e A weighted ‘error’ count, including false
and true positives, together with false and
true  negatives, differently  weighted.
Generally in financial applications (in
contrast with, for example, medical
applications), a false positive is far worse
than a false negative. These weights can be
tuned to suit the preferences of an individual
investor, essentially quantifying his or her
desired risk profile.

e A measure of the efficiency of the rule set,
penalising the fitness for each extra rule
required, and for unnecessarily large bounds
on each rule entity. This is necessary to
keep the search space tight, and to reduce
unnecessary genome bloat.

e A scaled fitness, considering errors more
influential if they apply to companies whose
stock movements were more drastic during
the training period.

Addendum: Work in Progress

There are many potential extensions to this work.
Most interestingly, the potential to analyze how
predictive models for company success vary across
sector type. For example, would a model trained for
financial service providers also work on automotive
companies? This reduces once more to the same
question of the universality of predictive models
across varying scenarios.

As another interesting extension, it may be
possible to introduce extra information from
different data streams into the predictive model. For
example, textual news sources and company results.
Also, the performance of other companies in the
same sector or market.

The potential for analyzing textual information is
exciting. The main drawback of the stock filtering
methods described above is that they cannot possibly
take into account that which they do not know, such
as news stories or global economic trends. We aimed
to add into our models measures of external
economic factors such as interest rates and inflation,
though it would be possible to derive far more
measures if we were to analyze news stories in more
depth. For example, oil stocks seem to move in
correlation with the degree of political instability in
the world, especially in the Middle East.

In addition to global economic factors, analysis
of text would also allow us to incorporate into our
analysis a number of factors specific to the
companies under scrutiny, for example share
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purchases or sales made by company directors.

4. CONCLUSION

In this paper I have covered in more detail a
selection of algorithms from the field of
Computational Intelligence, which are being used
with great success in industrial applications.

Specifically, I have covered algorithms for the
optimisation of complex routing problems, with real
world constraints. I have also discussed algorithms
for analysis of financial data, mentioning two by
name: Genetic Programming (GP) and Evolutionary
Conjunctive Rules (ECR) techniques.

I have covered, in each case, a discussion of the
pitfalls inherent in these techniques, together with
suggested methods for dealing with these potential
problems.

The field of Computational Intelligence is
becoming increasingly popular within industry as a
large number of difficult, computationally intensive
problems present themselves and human intuition is
no longer sufficient to comprehend or resolve such
complex situations manually.

Computational Intelligence techniques give us
the ability to solve these problems in reasonable
time, with a minimum of human specialist expertise
or technical analysis. They are also extremely
flexible, allowing us to apply them to real world
problems including difficult constraints, with only
minor modifications.
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