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Abstract: Failure analysis and prevention are important to all of the engineering disciplines, especially for the
aerospace industry. Aircraft accidents are remembered by the public because of the unusually high loss of life and
broad extent of damage. In this paper, the artificial neural network (ANN) technique for the data processing of on-line
fatigue crack growth monitoring is proposed after analyzing the general technique for fatigue crack growth data. A
model for predicting the fatigue crack growth by ANN is presented, which does not need all kinds of materials and
environment parameters, and only needs to measure the relation between a (length of crack) and N (cyclic times of
loading) in-service. The feasibility of this model was verified by some examples. It makes up the inadequacy of data
processing for current technique and on-line monitoring. Hence it has definite realistic meaning for engineering

application.

Keywords: Artificial neural network, Fatigue crack growth; On-line monitoring.

1. INTRODUCTION

In spite of decades of investigation, fatigue
response of materials is yet to be fully understood.
This is partially due to the complexity of loading at
which two or more loading axes fluctuate with time.
Examples of structures experiencing such complex
loadings are automobile, aircraft, off-shores,
railways and nuclear plants. Fluctuations of stress
and/or strains are difficult to avoid in many practical
engineering situations and are very important in
design against fatigue failure. There is a worldwide
need to rehabilitate civil infrastructure. New
materials and methods are being broadly
investigated to alleviate current problems and
provide better and more reliable future services.

While most industrial failures involve fatigue, the
assessment of the fatigue reliability of industrial
components being subjected to various dynamic
loading situations is one of the most difficult
engineering problems. This is because material
degradation processes due to fatigue depend upon
material characteristics, component geometry,
loading history and environmental conditions.

Fatigue is one of the most important problems of
aircraft arising from their nature as multiple-
component structures, subjected to random dynamic
loads. The analysis of fatigue crack growth is one of
the most important tasks in the design and life

prediction of aircraft fatigue-sensitive structures (for
instance, wing, fuselage) and their components (for
instance, aileron or balancing flap as part of the
wing panel, stringer, etc.).

An example of in-service cracking from B727
aircraft (year of manufacture 1981; flight hours not
available; flight cycles 39,523) [1] is given on Fig.1.
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Fig. 1 — Example of in-service cracking
from B727 aircraft.

A test program carried out at DSTO in the early
1970s involved the full-scale testing of a Mirage
wing. Final failure and collapse of the wing occurred
after 32,372 flights (31,230 simulated test flights
plus 1142 pre-test equivalent flights) at a blind hole
in the AU4SG aluminum alloy lower boom of the
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main spar. This crack surface was measured using
QF [2]. A simple crack prediction was also carried
out using a Paris growth law together with a look-up
table of da/dN data and cycle-by-cycle addition,
although with no retardation or closure allowances.
The two curves are presented in Fig. 2. As can be
seen the measured growth appears to be exponential,
while the handbook solution is not. A picture of the
fracture surface is also included. The hole from
which the crack initiated was about 10 mm in
diameter.
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Fig. 2 — Crack growth in Mirage 1110
full-scale fatigue test wing.

Fatigue is a mechanism of crack growth. Fatigue
cracks occur by cyclic loading under lower stress
condition than the maximum allowable stress. The
fatigue lifetime prediction of materials subject to
fatigue crack propagation and the calculation of
defect tolerance are related with the relationship
between the crack’s growth rate per cycle (da/dN)
and the stress intensity factor range AK (Fig. 3).

0.01

0.001

0.0001

1E-5 |

da/dN (mm/cycle)

1E-6 -

1E-7 | &

{Regionl :

1E-8 :

! n 10
AK (MPa.m)

Region II Région II|I

Fig. 3 — Result of the fatigue crack growth experiment
on a aluminum alloy.

The fatigue crack growing process is classified in
three regions according to the change of fatigue

crack growth rate, da/dN (Fig. 3, where the result of
the fatigue crack growth experiment on a aluminum
alloy obtained by [3] is presented).

Region I is a state of crack initiation. The value
of the stress intensity factor (K) is as low as the
fatigue threshold (Ky), and the crack growth rate is
very slow.

In region II, the crack growth rate increases
according to the crack length. The crack growth
condition in region II is the so-called stable crack
growth.

In region III, the crack-growth rate quickly
increases and failure of the material occurs. It is
called unstable crack growth.

The boundary between regions II and III is the
transition point (Kt,) [4], and the stress intensity
factor at failure is known as the fracture toughness
(Ko).

The stress intensity factor defines the amplitude
of the crack tip singularity and is a function of the
applied nominal stress (o), the crack length (@), and
a geometric function (F) [5]:

K = Fona. (1)

In region I, in order to characterize the time-to-
crack initiation (TTCI), X, it may be used the
following probability density functions (PDF) [6]:

¢ Gaussian PDF:
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where 1 and o are the location and scale parameters,
respectively;
e 2 parameters lognormal PDF:
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where o and ¢ are the shape and scale parameters,
respectively.
® 3 parameters lognormal PDF:
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where o, & and y are the shape, scale and threshold
parameters, respectively;
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e 2 parameters Weibull PDF:
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where £ and ¢ are the scale and shape parameters,
respectively;
e 3 parameters Weibull PDF:

wy(x) =%(%J exp —[%J ,

XZ]/,IB>O,§>O,]/E(—OO,OO), (6)

where f o and y are the scale, shape and threshold
parameters, respectively.

From an engineering standpoint, crack initiation
is considered to be one of the two major periods (I
and II) in the fatigue life of a component or
structure. The period of crack initiation or the time-
to-crack initiation (TTCI) is defined as the time in
cycles or flights or flight hours it takes for a non-
detectable crack from the beginning of fatigue
loading to grow to a reference crack size a°. The
reference-crack-size is commonly selected on the
basis of a detectable crack by the nondestructive
inspection (NDI) technique. The TTCI distribution is
physically observable and can be obtain by
experiments and tests results. Fatigue crack initiation
and early crack growth in a SENT specimen tested
with the Fokker 100 Reduced Basic (RB) gust
spectrum [7] is shown in Fig. 4. The spacings of the
bands on the fracture surface above the fatigue
origin correspond to blocks of 5000 flights.

fatigue origin

Fig. 4 — Fatigue crack initiation and early crack
growth in a SENT specimen.

In region II stable fatigue crack growth
conditions prevail and the fatigue crack growth rate
(FCGR) is given by the well-known Paris-Erdogan
relation [8-10]. In this region, generally, the Paris—
Erdogan formula:

da
— =C(AK)"
dN C(AK) 2

is used to analyze fatigue crack growth process data
and predict remaining life, where da/dN is the crack
growth per cycle, a is the crack length, N is the
number of loading cycles, AK is the stress intensity
range, and C and m are material constants that are
determined experimentally.

In the linear region II (see Fig. 3), the Paris-
Erdogan Equation (7) is used as follows. Integrating

for-fode
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N—~Ny

aC
CF’”(AO')’”E’”/Z(I - ’ZJ{

Thus, the crack growth equation representing the
solution of the differential equation for the Paris-
Erdogan law is given by

where

g=CF"(Ac)"z"'*, b=m/2. (11)
It should be remarked that (10) could be obtained
immediately from the Paris—Erdogan law written in

the form:

da(N)

oy dla (M7,

(12)

in which ¢ and b are parameters depending on
loading spectra, structural/material properties, etc.
The initial crack size, ay, is usually either found
by inspection (in this case, a;=a°) or a reasonable
minimum size of crack is assumed for the analysis
(in this case, a is approximately between 0.02 and
0.05 mm that was found through quantitative
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fractography for typical aircraft metallic materials

[11]).

The critical crack size, a., is found from:

2
_1 ( K, J
a, =— ,
m\ Fo,,.

where K. is the critical value of stress intensity, K,

which at the point of fracture is known as fracture

toughness. When the combination of stress and

crack size reach the fracture toughness of the

material, failure occurs. Knowing the fracture

toughness, K., of the material, we can use the stress

intensity solution (67) to determine the critical crack

length a. (if we know the stress level G), or the stress

level om.x (if we know the crack size a). For

example, progression of small crack growth with
cycling is shown in Fig. 5.

(13)
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Fig. 5 — Progression of small crack growth
with cycling.

The traditional analytical method of engineering
fracture mechanics (EFM) usually assumes that
crack size, stress level, material property and crack
growth rate, etc. are all deterministic values which
will lead to conservative or very conservative
outcomes. However, according to  many
experimental results and field data, even in well-
controlled laboratory conditions, crack growth

results wusually show a considerable statistical
variability (as shown in Fig. 6).

There are many factors influencing fatigue crack
growth, including random material inhomogeneities,
loading frequency, stress ratio, loading waveform,
geometric size of components and specimens,
composition, concentration and temperature of
environment mediums, metallurgical composition
and heat treatment of materials and many other
factors.

From experimental investigations [12-13], fatigue
crack growth appears as a process with random
properties. These random properties seem to vary
both (1) from specimen to specimen and (2) during
crack growth.
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Fig. 6 — Fatigue crack propagation curves.

A great number of stochastic models that account
for the random behavior have been proposed. They
are based either on suitable “randomized” empirical
crack growth laws or on data fitting [14-15]. There
are several randomizations possible: g could be a
random variable and b a constant; b could be a
random variable and ¢ a function of b; or both ¢ and
b could be random variables. This approach to the
probabilistic modelling of material inhomogeneity
captures the first type of inhomogeneous behavior,
but not the second. A second probabilistic approach
is to let the coefficients of the growth law be
constants, but allow the fatigue crack growth rate to
randomly deviate from the growth law from point to
point along the crack path. This approach captures
the second type of inhomogeneous behavior, but not
the first. Models based on stochastic differential
equations, in fact, are suited to account for this type
of variability. E.g. Tsurui et al. [16] and Tang and
Spencer [17] proposed crack growth equations with
a time-correlated stochastic process. A model with a
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jump process has been introduced by Lin ef al. [18].
As the correlation should rather be attributed to the
spatial dimension, Ortiz and Kiremidjian [19]
proposed a model, where the correlation of the
stochastic process depends on the crack length.
Markov chain models [20] reflect the fact that the
load process is often discretized into independent
events. They can be directly fitted to experimental
data. However, this makes predictions for other load
conditions or geometrical configurations a difficult
task. This problem can be circumvented by using a
suitable stochastic crack growth model for the
determination of the transition probabilities [21]. A
combination of the two approaches described above
allows one to capture both types of inhomogeneous
behavior.

The aircraft industry has leaded the effort to
understand and predict fatigue crack growth. They
have developed the safe-life or fail-safe design
approach. In this method, a component is designed
in a way that if a crack forms, it will not grow to a
critical size between specified inspection intervals.
Thus, by knowing the material growth rate
characteristics and with regular inspections, a
cracked component may be kept in service for an
extended wuseful life. This concept is shown
schematically in Fig. 7.
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Fig. 7 — Extended service life of a cracked component.

It should be noted that it is very difficult to
analyze and predict fatigue life of different fatigue
structures under various surroundings. Even if a
suitable formula can be applied, the calculated result
will be conservative for its generality.

In this paper, the authors attempt to forecast what
will happen to the structure according to the current
work condition, and to predict the fatigue life of
structures during the continuous learning process by
ANN technique.

In recent years, an artificial neural network
(ANN) has emerged as a new branch of computing,
which tries to mimic the structure and operations of

biological neural systems. An ANN is able to learn
by example and does not have to know the theory
behind a phenomenon. This quality is useful to
describe problems where the relationships of inputs
and outputs are not clear enough or the solutions are
not easily formulated in a short time.

Pidaparti and Palakal [22] developed an ANN
model to represent the fatigue crack growth behavior
under spectrum loading. The inputs were
information about the features in the spectrum
loading and crack growth behavior, and the output
was the corresponding loading cycles. A material
parameter network for modified Paris Law was also
developed in their study.

Haque and Sudhakar [23] described an ANN
model to analyze corrosion fatigue crack growth rate
in dual phase steel. The inputs were the stress
intensity factor range, AK, and volume percent of
martensite content and outputs were crack growth
rate. Six groups of da/dN versus AK relationship
corresponding to different martensite contents were
trained, and the neural network (NN) analysis
provided a good match with the experimental data.

Aymerich and Serra [24] used a neural network
to predict fatigue strength of a graphite-peek
composite with 63% of fiber content. The input
parameters were the number of cycles at failure and
the stacking sequence of the laminate. The neural
network used showed the capability of predicting
fatigue life for laminated composites.

Lee et al. [25] investigated the feasibility of using
ANN to predict fatigue lives of five carbon and one
glass fiber-reinforced laminates. A three-parameter
Weibull distribution was used to estimate the
number of cycles for various levels of failure
probability from experimental data. The peak stress,
minimum stress and the failure probability level
were the most appropriate inputs from the root-
mean-square trials. They applied ANN to train
fatigue data for four CFRP systems to predict the
response of HTA/982. The results showed the log-
life was well within the normal experimental spread
of data for composite materials.

Artymiak et al. [26] applied ANN to estimate
finite life fatigue strength and fatigue limit. The
notch factor, tensile strength, yield strength and
nominal stress were employed as input parameters.
The output parameter was the endurable number of
load cycles. The results showed that NN was capable
of describing the expected S—N curve.

Pleune and Chopra [27] studied the effect of light
water reactor coolant environments on fatigue
resistance of plain carbon steel and low alloy steel
using ANN. The authors showed that ANN had a
great potential of predicting environmentally
influenced fatigue. The ANN output of the effects of
sulfur content, strain rate and temperature on the
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fatigue lives in air showed good agreement with the
statistical model.

Venkatesh and Rack [28] developed an ANN for
predicting the elevated temperature creep fatigue
behavior of Ni-based alloy INCONEL 690. Five
extrinsic parameters (strain range, tensile strain rate,
compressive strain rate, tensile hold time, and
compressive hold time) and one intrinsic parameter
(grain size) were training inputs. Fatigue life defined
by complete fracture of the specimen was the
predicted output. Close agreement between
experimental and predicted life for the test points
was observed with the NN approach.

Fujii et al. [29] used a Bayesian NN for analysis
of fatigue crack growth rate of nickel-based super-
alloys. The database consisted of 1894 combinations
of fatigue crack growth and 51 inputs. The output
was the logarithm of fatigue crack growth rate. A
group of seven of the best models showed minimum
test error and provided a close agreement with
experimental data. This NN method demonstrated
the ability of revealing new phenomena in cases
where experiments cannot be designed to study each
variable in isolation.

Biddlecome et al. [30] developed an optimization
based NN method to predict fatigue crack growth
and fatigue life for multiple site damage panels. In
the NN optimization each neuron represented a hole
and contained pertinent information relevant to
existing crack conditions. As the crack extended, the
neuron gained energy. A set of energy functions was
developed to define how the neurons gain energy as
the system begins to converge to an optimal
solution. The proposed NN was able to detect a
panel failure and provide the path of crack
propagation.

Kang and Song [31] determined the -crack
opening load the input of 100 data points of the
differential displacement signal on the loading stage.
The accuracy and precision of the prediction of
crack opening point by the NN were estimated for
42 different cases, and the results were in good
agreement with experiments.

Al-Addaf and El Kadi [32] used ANN to predict
fatigue life of unidirectional glass fiber/epoxy
composite laminates with a range of fiber orientation
angles under various loading conditions. The best set
of inputs was the fiber orientation angle, stress ratio
and maximum stress. The data points for different
fiber orientation angles and load ratios were
tested. Although a small number of experimental
data points were used for training, the results were
comparable to other current methods for fatigue life
prediction.

Han et al. [33] discussed an ANN method aided
by a special learning set to calculate the fatigue life
of flawed structures. The input data included

dimensions of the fracture section, defect
information and stress value. The learning results
from calculated fatigue life of the back propagation
(BP) network alone and from BP network with a
special learning set were compared with the
experimental fatigue life. The results showed the
feasibility of a NN in treating fatigue life calculation
problems of flawed structures both for the special
learning set and normal learning set.

Choi et al. [34] presented models to predict the
fatigue damage growth in notched composite
laminates using an ANN, which was found to work
better than the Power Law model as a predictive tool
for split growth. ANN models showed the ability to
capture more of the nonlinear characteristics. The
linear cumulative damage rule worked well when
combined with ANN models.

Smith et al. [35] explored the use of the ANN to
predict the plate end debonding in FRP-plated RC
beams. The ANN trained with existing data showed
relatively accurate predictions, and indicated
capability to be applied in parametric study and
structural design to provide new insights and
predictions.

In this paper, a model for predicting the fatigue
crack growth by ANN is presented, which does not
need all kinds of materials and environment
parameters, and only needs to measure the relation
between a (length of crack) and N (cyclic times of
loading) in-service. The feasibility of this model was
verified by some examples. It makes up the
inadequacy of data processing for current technique
and on-line monitoring. Hence it has definite
realistic meaning for engineering application.

2. ARTIFICIAL NEURAL NETWORKS

An ANN can be considered as a black box that
has the capacity to predict an output pattern when it
recognizes a given input pattern [36].

The neural network must first be “trained” by
processing a large number of input patterns and
evaluating the output that resulted from each input
pattern. Once trained, the neural network is able to
recognize similarities when presented with a new
input pattern, and is able to predict an output pattern.

Neural networks are based on models of
biological neurons and form a parallel information
processing array based on a network of
interconnected artificial neurons (also called cells,
units, nodes, or processing elements). The function
of artificial neurons is similar to that of real neurons:
they are able to communicate by sending signals to
each other over a large number of biased or
weighted connections. Each of these neurons has an
associated transfer function which describes how the
weighted sum of its inputs is converted to an output.
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Computational models of a neural network try to
emulate the physiology of real neurons. There are
two principal functions for artificial neural networks.
One is the input-output mapping or feature
extraction. The other is pattern association or
generalization. The mapping of input and output
patterns is estimated or learned by the neural
network with a representative sample of input and
output patterns. The generalization of the neural
network is an output pattern in response to an input
pattern, based on the network memories that
function like the human brain. Therefore, a neural
network can learn patterns from a sample data set
and determine the class of new data based on
previous knowledge.

Differing types of neural networks have evolved
based on the neuron arrangement, their
interconnections and training paradigm used. There
are adaptive resonance theory, back-propagation,
Boltzmann network, Hopfield network, general
regression, learning vector quantization, modular
neural network, neocognitron, probabilistic neural
network, and so on. In general, the neural networks
are trained either supervised or unsupervised
learning paradigms. In the supervised learning case,
the network is presented with pre-selected signals
defining the various classes and is trained to
recognize them. Back-propagation, Boltzmann, and
Hopfield networks are prominent examples under
this category. Neocognitron and adaptive resonance
theory networks fall under the second category. The
unsupervised learning algorithms are often used in
pattern recognition applications. Patterns are
recognized by the neural nets based on the features
present in them.

Among the various types of neural networks, the
multi-layer perceptron trained with the back-
propagation algorithm (back-propagation neural
network) has been proved to be most useful in
engineering applications [37-45]. Thus back-
propagation neural network is wused in this
application study. The back-propagation network is
given its name due to the way that it learns by back
propagating the errors in the direction from output
neurons to input neurons.

The structure of a single artificial neuron is
shown in Fig. 8 The weighted sum of input
components are calculated as

(14)

where S; is the weighted sum of the jth neuron for
the input received from the preceding layer with n
neurons, wy is the weight between the jth neuron and
the ith neuron in the preceding layer, x; is the output

of the ith neuron in the preceding layer, and 6, is the
intrinsic threshold that can be treated as an
individual weight with a negative sign. Once the
weighted sum §; is computed, the output of the jth
neuron y; is calculated with a sigmoid function as
follows:

1
=f(§)=——, 15
y;=f(S)) L+ exp(7S) (15)
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Fig. 8 — Schematic structure of an artificial
neuron with input units.

where 771s a constant used to control the slope of the
semi-linear region. The sigmoid nonlinearity
activates in every layer except the input layer.

The multi-layer perceptron network comprises an
input layer, an output layer and a number of hidden
layers. The presence of hidden layers allows the
network to represent and compute more complicated
associations between patterns. Many researchers
proved that the multi-layer perceptron with three
layers can perform arbitrarily complex classi.cation
while the complexity is dependent on the number of
neurons in the hidden layer. The number of neurons
in each layer may vary dependent on the problem.
The basic structure of a feed-forward, back-
propagation network based on the multi-layer
perceptron is shown in Fig. 9. Propagation takes
place from input layer to the output layer. There is
no connectivity between neurons in a layer. This
type of neural network is trained using a process of
supervised learning in which the network is
presented with a series of matched input and output
patterns and the connection strengths or weights of
the connections automatically adjusted to decrease
the difference between the actual and desired
outputs. A gradient search technique is used to
minimize a cost function which is equal to the mean
square difference between the desired and the actual
network outputs. The training of the network is
carried out through a large number of training sets
and training cycles (epochs). The criterion for
convergence is determined by the root mean square
error which adds up the squares of the errors for
each neuron in the output layer, divides by the
number of neurons in the output layer to obtain an
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average, and then takes the square root of that
average. The root mean square error is expressed as

(16)

ERms =

where d; and y; are the desired and actual output
values for ith output neuron, and m is the number of
neurons in the output layer.

Hidden layer Output layer

Input layer

Fig. 9 — A typical multi-layer
percetron neural network.

3. DEVELOPMENT OF AN ANN MODEL

Under a given working condition and loading, the
data monitoring for the given equipment without
affecting its normal work is called on-line
monitoring. Of all factors that affect corrosion
fatigue crack growth, the one by one corresponding
relation of @ and N is the main display of fatigue life
(a indicates the length of crack, N indicates the
cyclic times of loading or action cycle of
equipment).

After lots of simulation and calculation, the
authors adopted the three-layer back-propagation
neural network as the model in this paper. There is
one input element whose input value is the real
length of crack growth and one output element
whose output value is the cyclic times of loading.

It only needs five or six data to construct the
normal model. We should get a measure value
continuously to build a predicting model for on-line
monitoring, that is to say, new data should be taken
as the reference point. If there are £—1 data to build a
predicting model at the beginning, we can predict
the kth and its following data. When we get the kth
data and incorporate it into the original set as new
information, we should delete old information and
always keep k—1 data points to construct a predicting
model for the next step. That is to say every data set
learns a part of @ ~ N curve similarly.

The interval between two data should not be too
long, if not, the precision and safety will not be
guaranteed.

The three-layer back-propagation neural network
was constructed using MATLAB software [46].

In this study, the fatigue crack growth data were
divided into two groups, a training set and a test set.
The training set of the fatigue crack growth data was
used to train the network and the trained ANN was
evaluated with the test set, exclusively. The
performance of the trained ANN was tested by
evaluating the coefficient of determination (R%),
standard error of calibration (SEC), standard error of
prediction (SEP), and bias [47].

The coefficient of determination, R?, is used to
measure the closeness of fit and can be defined as:

z (y - ypredi(:ted)2

R*=1- ,
Z(y_ymean)2

(17)

where y is the actual measured value, Vprediced 1S the
predicted value by the trained ANN and pyean 1S the
mean of the y values. Clearly, the coefficient of
determination is a reasonable measure of the
closeness of fit of the trained ANN, since it equals
the proportion of the total variation in the dependent
variable, in this study the number of cycles that is
explained by the trained ANN. The coefficient of
determination cannot be greater than 1. A perfect fit
would result in R*=1, a very good fit near 1, and a
poor fit would be near 0.

The SEC measures the scatter of the actual
measured values ()) about the values calculated by
the trained ANN (Vpredgiced) and can be defined as
[47]:

_ 5 /2
SEC _ |:Z (y ypredicteld) } , (1 8)
n—p-—

where 7 is the number of data and p is the number of
variables.

The trained ANN was then used to predict the
number of loading cycles using the measured data
that were not used in training the ANN.

The bias and SEP represent the mean and
standard deviation of the differences between the
actual measured values of the number of loading
cycles and the predicted values of number of loading
cycles, and are given by the following equations
[48]:

bias =

Z (y - ypredicted)2

n

(19)
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SEP = z [(y — ypredictedl) - biaS]z
n —

(20)

4. EXAMPLE

The material used for the present example was
OCr18Ni9 austenitic stainless steel. Center crack
tension specimens were machined for tests. Cyclic
loading with sinusoidal waveforms at 5 Hz was used
in tests. The pre-made crack length was 7.0 mm.
Crack growing length was monitored by microscope.

The testing results are shown in Table 1. Initial
five couples of crack length and cyclic times of
loading were selected in table as primary data sets
before predicting the next. But only the next N is
better-estimated value, and its follows only can be
for reference.

Table 1. Data of specimen

a N N Absolute
(mm) (test) (prediction) error
7.000 0 - _
7.810 6080 - -
8.570 11520 - -
9.330 16580 - -
10.05 20680 - -
10.58 23680 23715 35 ‘
11.14 26540 25845 695 ‘
11.88 29480 28323 1157 ‘
12.60 32500 30910 1590 ‘
13.20 34760 33543 1217 ‘

It will be noted that N (prediction) is the value
predicted by the forward five data sets.

From Table 1 we can see that the absolute error is
in the normal region with the stochastic of fatigue
problem. The feasibility is shown with better
calculating result.

The behavior of fatigue crack growth can be
divided into two stages: stable crack growth stage
and accelerating crack growth stage. To avoid
damage to the testing machine caused by specimens
fracturing, the upper tests were all stopped in the
stable crack growth stage. According to the form of
a~N curve, we can judge whether the crack state is
in accelerating growth stage or not by the following
criterion: when continuous several estimated values
are clearly bigger than measure values. This means

the crack in the component may have been in
accelerating stage. Its physical meaning is that the
slope of the estimated curve is clearly a lot bigger
than that of real curve (Fig. 10). This is an alarm for
the supervisors that the component will possibly
fracture, and some protective measures should be
taken.

NA
s
pst </ P22
P Iz
7
_ (.
- ! |
A
Y | |
7, i l -—- Test slope
A H
i ! : Predict slope
7 I |
| |
| |
I | -

a(mm)

Fig. 10 — Phisical meaning of the criterion.

Using on-line data processing method the risk of
equipment damage before reaching its design life is
cut down, and it is a good monitoring method for
extending in-service equipment, too. So material
behaviors are brought into full play. It makes up for
the inadequacy of causing material waste by
considering safety factor in design.

Applying ANN technique to predict the fatigue
life of structures, complex calculation of AK and
determination of the constant C, m are omitted,
environment factor need not be thought about, and
Paris formula need not be revised and integrated. All
these make the predicting method simple. It
especially fits for engineering application.

ANN technique for data processing uses only one
characteristic parameter. It does not consider the
effect of the other parameters, in fact, the effect of
all parameters were included in a~.N relation. So
this method focuses on certain specimens,
eliminating the effect of other cases for estimating
the result.

With the different effect of the changeable
surroundings to the same component, the stable
crack growth rate will change relevantly. So the
constants C and m in Pairs formula should often
change, which makes Pairs formula difficult to
predict the correct remaining life. But they have the
same loss-stability criterion to judge whether the
crack is in accelerating growth stage or not by ANN
technique. However, model of ANN can follow the
change, and make the right prediction. So this
technique is especially fit for on-line fatigue crack
growth monitoring.
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5. CONCLUSION

High levels of uncertainty in current fatigue-life
prediction techniques, and the often-catastrophic
nature of fatigue failure, drive the continuing effort
to develop techniques for detecting and
characterizing fatigue damage. In this paper, an
ANN technique for data processing of on-line
fatigue crack growth monitoring was developed,
which has a clear criterion and makes users employ
it easily without enough special knowledge. This
indicates that the proposed method has the potential
for practical application in more complicated
problems. But as an engineering technique it should
be further tested and verified in factories.
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