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Abstract

Mathematical neuroscience studies the fundamental principles of information process-

ing that has realized in the brain through long history of evolution. We use simple and

tractable models of neural networks and establish rigorous mathematical theories to study

the performances of the models. This reveals the secrets why the brain works well by using

a large number of stochastically fluctuating neurons and parallel dynamics of mutual inter-

actions. We give a number of examples of mathematical neuroscience approaches, including

statistical neurodynamics, associative memory, neural field theory and dynamics of learning

in a hierarchical system including singularity.

1 Introduction

The brain is a very complex system consisting of a huge number of neurons. It forms a system

composed of complicated networks, storing information as memories and processing information

to make decision. One may say that it is a most sophisticated system that the nature has ever

created. There are many approaches of research to the brain.

Brain science searches for the mechanisms and functions of the brain. Researchers study,

from the microscopic point of view, the role of genes and proteins to understand the structure

and function of neurons by using the techniques of molecular biology. They also use molecular

imaging techniques. They search for the molecular mechanisms of synapses and their plastic

changes. Systems neuroscientists observe the activities of neurons of behaving animals to study

how information is represented in the brain and how it is processed.
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Recent developments of measurement technology makes it possible to observe the activities

of a human brain by using fMRI, PET, NIRS, EEG, MEG and even multi-electrodes. Cognitive

neuroscience makes use of these new technologies. Computational neuroscience builds models

of neural networks and studies their behaviors by theory or computer simulations. Researchers

try to build realistic models by taking experimental details into account, so that they can

explain the behaviors of actual networks by theory. See, for example, Dayan and Abott, 2001.

The brain is an organ which a living animal is equipped with for information processing. A

living object is material, but is special in the sense that it has an ability of self-reproduction.

It has emerged through the long history of evolution. Information, expressed in terms of

DNA molecules, is necessary for this. Hence, a living object keeps information in material.

Further, the brain processes information in the environment and decides actions. Higher-order

information processing ability as well as structured memory are necessary for this purpose.

The brain has been developed through long years of evolution, and it processes information

in neuronal networks. Material has become to be able to keep information and to process it.

From this point of view, one may say that information utilizes material to develop itself. The

brain sits at the cross point of material and information. It is important to study the material

basis of the brain. At the same time, it is necessary to study the principles of information

which have realized in material.

Computational neuroscience builds realistic models as faithful to experimental details as

possible. This is necessary for explaining actual processes taking place in the brain. The results

can then be compared with experimental findings. This is the orthodox way of theory.

However, there would be another approach. The principles of brain information processing

are obviously very different from those of computers. Information is distributed over a huge

number of neurons and processed by their dynamic interactions. We need to understand

the principles which guarantee efficient, reliable and swift information processing in such a

distributed system with dynamic interactions. The nature has found such principles through

long years of evolution and the brain is a realization of the principles.

We need abstract models of neural networks in order to reveal the principles of parallel and
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dynamic information processing, which are simple enough to be able to analyze their capabilities

deeply. Mathematical neuroscience is an area that studies the possibilities, limitations and

performances of information processing by using distributed parallel dynamics (Amari, 1990).

It aims at establishing mathematical theories, where models are as simple as possible so long as

they do not miss essential features. The nature has realized these principles by using realistic

neurons, so that the brain is far more complex than the mathematical models, but they share

common principles. If we understand such principles, we can then proceed further to search

for realistic models and to find evidences of realization of such principles in the brain.

The present paper shows examples of mathematical neurosciences and its methods briefly.

2 Statistical Neurodynamics (1): Simple Random Networks

Let us consider a very simple model of mathematical neuron, called the McCulloch-Pitts neuron.

Let us further consider a network composed of n neurons, and let xi(t), · · · , xn(t) be the outputs

of neurons at discrete time t. We assume that their values are 1 or −1, representing firing or

non-firing of the neurons. Neuron i receives inputs from other neurons, which are x1(t −

1), · · · , xn(t − 1). Let wij be the connection weight from neuron j to neuron i. We neglect the

threshold term for simplicity and also external inputs. Then, the state of each neuron changes

over time as

xi(t) = sgn

∑
j

wijxj(t − 1)

 , (1)

where sgn is the signature function,

sgn(u) =


1, u ≥ 0,

−1, u < 0.
(2)

Let us use abbreviated notations: We use vector

x(t) = [x1(t) · · ·xn(t)] (3)

for the state of the network at time t, matrix W = (wij) for connections, and TW for state

transition operator which is nonlinear, so that (1) is rewritten as

x(t) = TW x(t − 1). (4)
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We study the dynamics (4) described by the state transition operator TW .

The properties of TW obviously depends on the matrix W . Statistical neurodynamics

(Amari, 1971; Amari, 1974; Amari, Yoshida and Kanatani, 1977) assumes that W is randomly

generated from a probability distribution p(W ), and searches for the properties that hold

for almost all networks having W generated subject to p(W ) when n is large. We give two

examples.

When wij are iid (identical and independently distributed) random variables subject to a

distribution p(w), it is easy to apply the central limit theorem and the law of large numbers,

when n is large. Here, we assume that p(w) is the Gaussian distribution with mean w̄/
√

n

and variance σ2
w. We can easily treat a general distribution by a similar method. What

are common aspects of dynamics of these networks? To answer this question, we introduce

macroscopic variables. The first one is the activity level (Amari, 1971),

X(x) =
1
n

∑
xi. (5)

Then, the macroscopic variable at time t is

X(t) =
1
n

∑
xi(t) (6)

and we have a macroscopic state transition law of X, if we could find a function F which

satisfies

X(t) = F {X(t − 1)} . (7)

We search for such a function F . To this end, we use the fact that, for a given non-random

x1, · · · , xn,

ui =
∑
j

wijxj (8)

are independently and identically distributed Gaussian random variables with mean and vari-

ance,

E [ui] =
√

nw̄X, V [ui] = nσ2. (9)

Hence, by the law of large numbers, we have

F (X) = Prob {ui > 0} − Prob {ui < 0} . (10)
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This is calculated as

F (X) = Φ
(

w̄X

σ

)
, (11)

where

Φ(u) =
1√
2π

∫ u

−u
exp

{
− t2

2

}
dt. (12)

It is easy to prove that, given x(0) at time 0 of which macroscopic variable X(0) is given

by

X(0) =
1
n

∑
xi(0), (13)

the next macroscopic variable X(1) is

X(1) =
1
n

∑
xi(1) = F {X(0)} (14)

with a probability close to 1 for almost all randomly generated networks as n tends to infinity.

However, there is difficulty for proving that

X(2) = F {X(1)} , (15)

or more generally

X(t) = F {X(t − 1)} . (16)

This is because, even we show, for a fixed x,

X ′ = X (TW x) = F (X(x)) , (17)

this does not automatically guarantees that

X ′′ = X (TW TW x) = F {F (X)} . (18)

In order to derive (15) or (17), we used the fact that wij are independent. However when we

calculate (18) by using TW TW x, the two operators are no more independent. In other words,

when we evaluate

vi(t) =
∑

wijxj(t), (19)

xj(t) are no more constants but depend on W . Therefore, when we deal with a macroscopic

dynamics of a random networks, we need to verify if the macroscopic equation of type (18) is
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valid or not. Computer stimulants show that the marcoscopie dynamics (16) holds. This is

discussed in Rozonoer (1969, A, B, C) and Amari et al. Amari (1974), Amari et al (1977). Its

theoretical justification is still an unsolved problem.

We can extend the macroscopic dynamics to a network consisting of a number of subnet-

works, each of which consists of random networks of different types of neurons. The macroscopic

variables are then X = (X1, · · ·Xm), each Xα, α = 1, · · · ,m, denoting the macroscopic activity

of subnetwork α. We have the following macroscopic equation

Xα(t + 1) = Φ
(∑

w̄αβXβ

σα

)
. (20)

We can prove that these dynamical equations show monostable, multistable, oscillatory and

chaotic behaviors depending on the probability distributions of w
(α)
ij within a subnetwork and

of w
(αβ)
ij across subnetworks (Amari, 1971, 1972A).

It is interesting to search for other types of macroscopic variables. Let us study the stability

of the state transition TW of a simple random network. Assume that microscopic state x is

mapped to y by TW

y′ = TW x. (21)

When x is disturbed and changes to x′, how much change is caused in the resultant output

y′ = TW x′? This is the problem of stability of TW . We introduce the Hamming distance of

two microscopic states

D(x,x′) =
1
2n

∑ ∣∣xi − x′
i

∣∣ (22)

to show their difference. The problem is to find the relation

D′ = K(D) (23)

where

D′ = D
(
TW x, TW x′) . (24)

We can obtain this relation explicitly when w̄ = 0 and σ2 = 1. The answer given by Amari

(1974) is

K(D) =
2
π

sin−1
√

D (25)
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The state transition of a random network has a very specific property: When D is small,

K(D) ≈ 2
π

√
D. (26)

Since the derivative of K(D) at D = 0 is infinity, this means that a small deviation is enlarged

extraordinary. So this type of network is convenient for checking small deviations of inputs,

since the difference is expanded in the outputs.

If the macroscopic dynamics

Dt+1 = K (Dt) (27)

holds for two serieses xt = T t
W x0 and x′

t = T t
W x′

0 and

Dt = D
(
xt, x

′
t

)
, (28)

we can study the state transition diagram of a random network. Since the number of states

is 2n, we have a state-transition graph having 2n nodes which correspond to 2n x’s. From

each node x, there emerges one branch and its destination is TW x. Hence, the graph has

2n directed branches. The state transition graph is highly different from the random state

transition graph where the state transition branches are randomly assigned to each node.

First, a random neural network has the small-world property, where a small number of nodes

monopolize branch outlets. Let pi be the probability that a node has i ancestors,

pi = Prob
{∣∣∣T−1

W x
∣∣∣ = i

}
. (29)

Then, the distribution is subject to the power law

pi ∝
1

i3−α
, (30)

for some 0 < α < 1. See Amari (1974). The small-world network has a number of interesting

properties, and one of them is that the transient period of dynamics is very short, and the

dynamics of

x(t + 1) = TW x(t) (31)

converges quickly to its attractor states.
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3 Statistical Neurodynamics (2): Associative Memory

The conventional model of associative memory networks can also be analyzed by statistical

neurodynamics. See Amari (1972B), Hopfield (1982) and many others. But it has quite different

behaviors from the previous random networks, because the connections wij are random but

not independent. Memorized patterns in this network are represented by the states x which

satisfy

TW x = x. (32)

Let ξ1, · · · , ξm be m patterns to be memorized in a network such that they are attractors of

the dynamics

TW ξα = ξα, α = 1, · · · ,m. (33)

Starting at any initial state x0, it is expected that the state reaches one of the memorized

pattern ξα by the state transition, finding a memorized pattern. When these patterns are

generated randomly, we compose the connection matrix in such a way that

wij =
1
m

∑
ξαiξαj (34)

This is a standard way of associative memory. When these patterns are orthogonal, it is easy

to see that the patterns are attractors, satisfying

TW ξα = sgn

 1
m

∑
β

ξα

(
ξα · ξβ

) = ξα. (35)

When ξ′α’s are randomly generated subject to independent and identical probabilities with

Prob {ξαi = 1} = Prob {ξαi = −1} = 1/2, they are asymptotically orthogonal.

The connection weight matrix W is random, but the component wij are not independent,

because they are composed of (34). The law of stability is interesting in this case. The statistical

analysis shows that

D′ = K(D), K(D) = 1 − 1
2
Φ

{
−(1 − 2D)n

m

}
. (36)

Therefore, when D is small, D = K(D) is nearly equal to 0. Hence the state transition of

recalling a memorized pattern is very stable. It is interesting to show that the state transition
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graph of an associative memory model has a fractal structure (Amari and Maginu, 1988). Here

the basin of attractor has very complicated strange boundaries.

4 Pattern Dynamics in Neural Field

A neural field is a continuous version of neural networks, where neurons are located in a 2-

dimensional field like cortices. A neural field consists of layers including different types of

neurons. We give a general equation describing the dynamics of excitation in the field,

∂ui(r, t)
∂t

= −ui(r, t) +
∑ ∫

wij
(
r, r′) f

{
uj

(
r′, t

)}
dr′ + Ii(r, t). (37)

Here, r = (r1, r2) is coordinates of the field, denoting the locations of neurons, ui(r, t) is the

average membrane potential of neurons at location r in the i-th layer at time t,

zi(r, t) = f [ui(r, t)] (38)

is the output of neurons whose average membrane potential is ui and f is called the activation

function. The functions wij (r, r′) are connection weights from the neurons at location r′ in

the j-th layer to the neurons at location r in the i-th layer. Ii(r, t) are external inputs to the

neurons of i-th layer at position r at time t minus threshold.

This types of dynamics was proposed by Willson and Cown (1973). A simplified version of

neural field used by Amari (1977) is a one-dimensional field of one layer, where the activation

function is the step function

f(u) =


1, u ≥ 0,

0, u < 0,
(39)

and the connection weight function is homogeneous and isotropic, having lateral-inhibition

type,

w
(
r, r′

)
= w

(∣∣r − r′
∣∣) , (40)

that is, w(r) is positive when r is small and negative otherwise.

Given initial stimuli, we study how an initial excitation pattern u(r, 0) develops in the

dynamics. When u(r) > 0 holds in a region R of the field, neurons in the region are excited,
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z(r) = 1, r ∈ R. We call such a region an excited region, that is a region

R = {r|u(r) > 0} . (41)

When an excited region is an interval R = (a1, a2), it is called a localized excitation pattern or

a bump. We first focus on the dynamics of localized excitation patterns.

Let us consider the case where I is constant over the field. In order to analyze how the

excited interval develops over time, we remark its boundaries a1 and a2. They change over

time so that we write a1(t) and a2(t) for the boundaries of the excited interval at time t. The

boundaries satisfy

u {a1(t), t} = u {a2(t), t} = 0 (42)

at t. After a short time dt, the boundaries change and they satisfy

u {ai(t + dt), t + dt} = 0, i = 1, 2. (43)

We have, by Taylor expansion,

∂u (ai, t)
∂t

+
∂u (ai, t)

∂r

dai

dt
= 0. (44)

The time derivative of u (ai, t) satisfies (37), and the integration part is written as

∫
w

(
r − r′

)
f

{
u

(
r′, t

)}
dr′ =

∫ a2

a1

w
(
r − r′

)
dr′, (45)

since the activation function is 1 in the excited interval (a1, a2) and 0 otherwise. We define the

integration of the connection function by

W (r) =
∫ r

0
w(s)ds. (46)

Then, we have ∫ a2

a1

w
(
a2 − r′

)
dr′ = W (a2 − a1) . (47)

We put the derivatives of the waveform of pattern u(r, t) at the boundaries,

c1 =
∂u (r1, t)

∂r
, c2 = −∂u (r2, t)

∂t
. (48)
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Taking these into account, we have the equations describing the dynamics of the boundary

points,
dri(t)

dt
= − 1

ci
W (r2 − r1) + I, i = 1, 2. (49)

Let

a(t) = a2(t) − a1(t), (50)

which is the length of the excited interval. It develops as

da(t)
dt

=
1
c
{W (a) + I} . (51)

The equilibrium a is the solution of

W (a) + I = 0. (52)

Its stability is analyzed (Amari, 1977), and we have the following results:

When

W (a) + I = 0 (53)

has a solution, it is an equilibrium of the length of an excited region. It is stable when

w(a) > 0 (54)

is satisfied.

We show that, under a certain condition, we can find a stable equilibrium solution. The

field can retain a local excitation pattern without further inputs in such a case. Since the

field is homogeneous, such a pattern can exist at any position. Hence the field has an infinite

number of attractors (stable equilibrium solutions), which is called a line attractor (Seung,

1988). Assume that an initial stimulus arrives at around position b. The stimulus may be

very noisy, distributed around b. Initial excitations are arisen at around b and smoothed by

the dynamic interactions in the field. Even after the stimulus disappears, a local excitation

pattern remains stably at the position b when the field admits a local excitation pattern. Hence,

this mechanism can be used as a working memory. Such a mechanism is believed to be used

in memorizing input patterns and processing them. One example is a neural field detecting
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orientations of input bars and keeping the orientations for processing them further. The neural

field theory explains the mechanism of the tuning curve in the visual cortex.

More general neural fields give richer behaviors (Ermentrout and Cowan, 1979). See review

paper by Coombes and Owen, 2005. When a field consists of an excitatory and inhibitory

layers, the field admits a stable travelling region. Its velocity can be controlled by stimuli given

outside so that such phenomena will be useful for dynamic information processing.

A two-dimensional neural field has much richer properties. See, for example, Coombes and

Owen, 2005. First, it possesses a localized excitation pattern or a bump as well. The stability

analysis of the two-dimensional bump was given in a Japanese book in 1978 (Amari), and later

proved by some others recently. It also has interesting static patterns consisting of a number

of bumps or of a ring shape. Their dynamic behaviors are much more interesting. It has an

expanding ring pattern, spiral pattern, breathing pattern and others. It is shown recently that

it has also moving bumps. The collision of moving bumps shows very interesting dynamical

behaviors.

The neural field model is an important component of computational neuroscience. More-

over, there are lots of applications of dynamic neural field theory to psychological phenomena

and robot navigation.

5 Dynamics of Learning in Multilayer Perceptron and Gaussian

Mixture

We study the dynamical properties of on-line learning in a hierarchical system such as multilayer

perceptrons and Gaussian mixture radial basis systems. It is known that the behavior of

a student system trained by using examples given by the teacher system converges to the

optimal value, although one cannot avoid a local optimum. However, it is also known that the

dynamics of such a learning system suffers from the so-called plateau phenomenon, that the

trajectory of learning is attracted to a plateau which is not optimal. It takes long time for the

system to get rid of such a plateau. The present section analyzes the dynamical behavior of

on-line learning in the neighborhood of a plateau, based on Wei et al. 2008, Wei and Amari,
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2008, Cousseau, Ozeki and Amari, 2008.

Plateaus are given rise to by singularities of the parameter space on which learning takes

place. This is caused by the symmetric structure of a hierarchical system and we cannot avoid

them (Amari, Park and Ozeki, 2006).

Let us consider a function

y = k(x), (55)

where x is an n-dimensional vector x = (x1 · · ·xn) and y is a scalar. We assume that x is

an input to a system and y is its output. In order to realize this function, we use a family of

functions

F = {f(x, θ)} (56)

parameterized by

θ = (θ1 · · · θn) . (57)

Our problem is to estimate θ from a series of input-output examples D = {(x1, y1) , · · · , (xN , yN )}

which we call the training examples. Here, xt is generated subject to a probability distribution

q(x) each time independently, and yt is the output assumed to be generate by

yt = k(xt) + nt, (58)

that is, yt is the output from the true system contaminated by noise nt subject to the standard

Gaussian distribution. We assume it is subject to N(0, 1) without loss of generality, by rescaling

y dividing it by the standard deviation of the noise.

When the true function k(x) from which the training examples are generated belongs to F ,

k(x) = f (x,θ∗) , (59)

the problem is to estimate the true value θ∗ from the training examples. When k(x) does

not belong to F , we search for the parameter θ∗ by which k(x) is approximated optimally by

f (x,θ∗). Hence, this is a regression problem for the data D.

We use an on-line learning approach such that an estimator θt at time t is modified to θt+1

by using a new example xt, yt at each discrete time t, t = 1 2, · · ·. This is a method of sequential
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estimation or regression, called on-line learning. The rule of modifying the parameter is written

as

θt+1 = θt − ηg (xt, yt,θt) (60)

by using an adequate function g. Here, η is called a learning constant, which may depend on

t. We study the properties of dynamics of the above on-line learning method.

We consider the following two types of the parametric families of functions as F . One is

multilayer perceptrons, written as

f(x, θ) =
m∑

j=1

vjϕ

(
n∑

i=1

wjixi

)
. (61)

Here, the system consists of two layers. The first is the hidden layer and the output of the j-th

hidden neuron is a nonlinear function of weighted sum of inputs x,

zj = ϕ

(∑
i

wjixi

)
= ϕ (wj · x) , (62)

where ϕ is a sigmoidal function and and we use

ϕ(u) =
1√
2π

∫ u

−∞
exp

{
−1

2
s2

}
ds, (63)

as an example. The second layer consists of a single neuron, called the output neuron and the

output is a linear summation of the outputs of the hidden neurons,

z = f(x, θ) =
∑

vjzj . (64)

The parameters to be estimated are

θ = (v1, · · · , vm ; w11, · · · , wmn) . (65)

The second example uses Gaussian radial basis functions given by

f(x, θ) =
∑

vjψ (x − wj) (66)

where

ψ(x) =
1√
2π

n exp

{
−|x|2

2

}
(67)
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is the Gaussian function. This is similar to the first system of multilayer perceptrons. The

parameters to be estimated are

θ = (u1, · · · , vm ; w1, · · · , wm) . (68)

We use the stochastic gradient learning method, minimizing a cost function each time.

Here, the cost function l(x, y,θ) is given by a half of the square of the difference of the actual

output y and the hypothetical output f(x, θ) which the system with parameter θ emits for

given input x. This is easily calculated for given parameter θ when an input-output example

(x, y) is given,

l(x, y, θ) =
1
2
{y − f(x,θ)}2 . (69)

The difference is called the error function,

e (x, y, θ) = y − f(x, θ). (70)

The true system of emitting y can be described by a conditional probability distribution of

emitting y from f(x, θ) with additive noise n (58). Then, the conditional probability distribu-

tion of y under the condition that input x is given is

p(y|x, θ) =
1√
2π

exp
[
−1

2
{y − f(x, θ)}2

]
(71)

when the parameter is θ. The cost function (69) is interpreted as the negative of log likelihood

l(x, y, θ) = − log p (y|x, θ) . (72)

Hence, minimizing the cost function is equivalent to maximizing the log likelihood. This gives

the maximum likelihood estimator.

The dynamics of the stochastic gradient on-line learning method is written as

g(x, y, θ) = ∇l (x, y, θ) = −e (x, y, θ)∇f(x, y, θ) (73)

where ∇ is the gradient with respect to θ,

∇ =
(

∂

∂θ1
· · · ∂

∂θn

)
. (74)
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In order to analyze the behavior of dynamics of on-line learning, we use the average learning

equation

θt+1 = θt − η 〈∇l(x, y, θ)〉 (75)

where < > denotes the average over all possible input x by using the probability distribution

(72). We further use the continuous time approximation, and analyze the continuous time

average learning equation,
dθ(t)

dt
= −〈∇l(x, y, θ)〉 . (76)

Let S = {θ} be the parameter space. When

f (x, θ1) ̸= f (x, θ2) for θ1 ̸= θ2 (77)

holds, the system is identifiable, because only one θ corresponds to a function f(x, θ). However,

when there exist at least two points for which

f (x, θ1) = f (x, θ2) , θ1 ̸= θ2 (78)

holds, the system is not identifiable. Let R(θ) be a subset of S in which all the output function

is identical,

f(x,θ) = f
(
x, θ′) , θ′ ∈ R(θ). (79)

Then, the all parameter points θ′ in R(θ) are equivalent from the point of view of the input-

output behavior. There are many such subsets R(θ)′s. We divide the space S by this equiva-

lence relation. Then all the points in a R(θ) reduces to one behavior point. The topological

structure of S is destroyed by this division, because every R(θ) reduces to a single point. This

gives rise to singularities. We call R(θ) a singular region. We give two typical examples of

singularity in a hierarchical system.

1) Eliminating singularity:

When vi = 0, whatever wi is, viϕ (wi · x) = 0, so that R = {θ|vi = 0, wi arbitrary} is

a singular region. Since neuron i is eliminated because of vi = 0, it is called an eliminating

singularity region.

2) Overlapping singularity:
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When wi = wj = w, so long as vi + vj = v holds,

viϕ (wi · x) + vjϕ (wj · x) = vϕ(w · x). (80)

So we cannot identify each of vi and vj . The region

R = {θ |wi = wj = w, vi + vi = v} (81)

is a singular region, depending on w and v. Since the two neurons become identical in this

case, we call it an overlapping singularity.

There are other singularities where three neurons overlap and so on, but the above two are

typical and other singularities are intersections of the above singularity regions. Therefore, we

treat a simple system consisting of two hidden neurons, where θ = (v1, v2, w2, w2) and study

the dynamical behavior of learning in such a system.

In the critical region R(v,w), only one neuron suffices, where w1 = w2 = w or one of v1

and v2 is 0. In this case, its input-output function is written by using a single neuron,

f(x, θ) = vϕ (w · x) . (82)

The situation is the same in the Gaussian mixture case.

We introduce a new coordinate system ξ = (v, w, u, z), defined by

u = w2 − w1, w =
1
2

(w1 + w2) ,

z =
v1 − v2

v1 + v2
, v = v1 + v2.

(83)

Then, the singular region is represented by u = 0 or z = ±1. Given (v,w), singular region

R(v,w) exists. A singular region R consists of three parts, one given by u = 0, that is,

w1 = w2, which we call the overlapping singular region, and the other is z = ±1, that is

w1 = 0 or w2 = 0, in which one neuron is eliminated. We have R = R1 ∪ R2,

R1 (v, w) = {ξ |u = 0, z : arbitrary;v and w fixed} , (84)

R2 (v, w) = {ξ |u : arbitrary; z = ±1,v and w fixed} . (85)

In the subspace in which v and w are fixed constants, R1 is a line in which z changes, and R2

consists of two n-dimensional surfaces. The singular region R is a composite of one line and

two surfaces.
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We study the dynamical flow near the singularity R1 (v, w), by using the Taylor expansion

with respect to u, where |u| is small. The average learning equation is expanded as

u̇ = η
w

2
(1 − z2)

〈
eϕ′′(v · x)(u · x)x

〉
+ O(|u|2), (86)

ż = −1 + z2

w
η

〈
ϕ′(v · x)(u · x)

〉
+ O(|u|2). (87)

We can integrate (86) and (87) in the subspace in which S∗ where v = v∗ and w = v∗ are

the optimal values, that is v∗ϕ (w∗ · x) is the optimal approximation of the target foundation

k(x) by using only a single neuron. This gives the flows or trajectories of dynamics in the

neighborhood of u = 0 of S∗. They are given by

1
2
uT · u =

2w∗2

3
log

[
(z2 + 3)2

|z|

]
+ c (88)

where c is an arbitrary constant.

6 Milnor attractor

The line R1 (v∗, w∗) in S∗ is a critical line of the dynamics of learning. Under a certain condi-

tion, we show that the line is divided into two parts such that one part is stable (attractive)

and the other is unstable (repulsive). In such a case, there are trajectories attracted to the

stable part, and the basin of attraction has a finite measure. This is the Milnor type attractor

(Milnor, 1985), different from a saddle point. More strongly, the basin of attraction includes a

neighborhood of this part, so that all the points near this part are once attracted to it. After

being attracted to it, the parameters still move randomly in R1 (v∗, w∗) by stochastic fluctua-

tions until they reach the unstable part (Fukumizu and Amari, 2000). Then, the parameters

leave R1 eventually.

We can prove that R∗
1 is unstable (saddle) when A = (Aij), Aij = 〈eφij〉, where

φij =
∂2

∂wi∂wj
ϕ(w · x) (89)

includes both positive and negative eigenvalues. When w∗A is positive-semi-definite, the in-

terval 1 < z2 is attractive, and the remaining part 1 > z2 is repulsive. Hence, the interval

18



1 < z2 behaves like a Milnor attractor. This is the plateau phenomenon, taking long time

before getting rid of it. When w∗A is negative-semi-definite, the part 1 > z2 is attractive and

the other part is repulsive.

7 Conclusions

We have shown examples of mathematical neuroscience approaches. They include 1) the macro-

dynamics of randomly connected networks and the characteristics of state transition are eluci-

dated. 2) The dynamics of associative memory networks is elucidated from the point of view

of macro-dynamics. 3) Pattern formations and pattern interactions in a neural field are inves-

tigated by using integro-differential equations. 4) It is studied how the singularity existing in

a hierarchical system affects dynamics of learning.

Mathematical approaches are necessary for finding the principles of information processing

which the brain utilizes. We need to use simple and tractable models for carrying mathematical

analysis. The models are different from the real biological neural networks, but we hope the

mathematical theory clarifies the principles from which we can construct realistic models.

Mathematical neuroscience has not been fully established and much more efforts should be

devoted for constructing such theories.
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