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Ophthalmologic Image Segmentation and Surface Visualization 
 

Abstract 

In this paper we present a practical approach to 
interactive segmentation of human eye magnetic 
resonance images (MRI) and human optical system 
surface reconstruction. A prototype software has been 
implemented and therefore this paper describes all the 
necessary aspects of the proposed method, including 
the use of preprocessing, user interaction, snakes \ 
active contour model and 3d visualization. Practical 
results are analyzed and further improvements are 
reasoned out. 

1   INTRODUCTION 

Image segmentation software designed specifically for 
the needs of ophthalmologists can become a great aid 
in semi-automating the analysis of magnetic resonance 
images (MRI) of human eye for every day medical 
practice. That is why it is of an immediate interest to 
introduce an effective approach for segmentation and 
surface reconstruction of human optical system. 

The approach consists of two main steps: the 
segmentation step, which includes the extraction of 
image elements (pixels) belonging to an eye ball and 
the surrounding anatomical structures (e.g. optical 
nerve) and the reconstruction step, which includes the 
integration of the extracted elements into the 
representation of a surface.  

The core logic of segmentation step is based on widely 
spread Active Contour Models (Snakes) first 
introduced by Kaas (1987). A generic boundary-
searching snake functions by iteratively deforming its 
contour in an effort to minimize the contour energy, 
which is based on combination of internal and external 
forces. A contour is composed of a finite number of 
connected snake points (also called ‘snaxels’) and can 
be parametrically described as  

v(s) = (x(s), y(s)), 
where s[0...1] and the contour is closed if  

v(0)==v(1). 
But, instead of the original snake we choose a ‘greedy 
snake’ (Lam 1994) variation as a starting point. There 
are two main problems associated with basic greedy 
snake algorithm: it does not work well with noised 
images and there’s a tendency for a contour to be 
unstable. Both problems have known solutions and can 
be easily dealt with. It is possible to greatly reduce 
noise susceptibility of the greedy snake by 
implementing a gaussian pyramid. We take the image 
and create a number of blurred (locally averaged) and 
scaled down copies of it, then the snake begins its 
spatial and temporal evolution starting from the image 

copy with the lowest resolution and over a given 
number of iterations propagates to higher resolution. 
As the result the snake is able to pass high frequency 
noise parts of the image and more easily reach the 
desired shape. The desired shape is reached more 
easily also because the gradient capture range is 
increased after we blur the image. Contour instability 
takes place when the desired shape is found, but at 
least one point twitches a little and - because all snake 
point are connected and affect their neighbours – a 
chain reaction is started, which leads to an inefficient 
long-term contour twitching. This can be fixed by 
processing the points not in a sequential order, but in a 
random one – which eliminates the problem, but 
produces slightly different results each time with 
identical starting conditions.  

As the prototyped software is aimed at interaction with 
users it is important to provide a streamlined workflow 
and an array of tools to facilitate extracting anatomical 
features. Active contour model heavily depends on 
initialization, so having several modes which allow the 
snake to be initialized – both manual and automatic – 
is an absolute requirement. Medical three-dimensional 
images often come in stacks, so having the ability to 
switch between different slices and projections is 
necessary. Also the reconstruction step implies means 
to manipulate the three-dimensional view. 

It is evident that anatomical structures can be explicitly 
defined by a surface or boundary representation given 
by a mesh of polygons. It is possible to construct such 
mesh from contours registered on each slice in MRI 
stack, but this is not always convenient and also 
introduces several topological issues: we have to make 
sure that there’s only one contour per anatomical 
structure on each slice and that the number of snaxels 
in each neighbouring contour is the same. One more 
option would be to extend the greedy snake algorithm 
to three-dimensional space, where a contour would be 
represented as a balloon. 

2   METHOD 

The following phases for interaction with the system 
are provided: preprocessing, 2d\3d snake initialization 
and evolution, polygon surface reconstruction. 

Preprocessing includes filtering the image just before 
the initialization step to facilitate better results.  

A snake can be initialized automatically (snake points 
are positioned to form an ellipse or some other 
predefined contour in the center of an image) and 
manually by the user. The user plots a contour, places 
individual points and pulls them around with the help 
of a mouse until a desired contour is formed. 
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An interactive system consists of 4 viewport: 3 two-
dimensional views (axial, coronal, sagittal projections) 
and a 3d view. The user can scroll through slices in a 
stack, rotate the 3d view and pan it. 

In greedy snake each snaxel is computed separately by 
operating in a neighbourhood of a given size (e.g. 3x3, 
5x5 etc.). At first an image gradient is generated, 
which is then used in calculation of energy in every 
pixel in the neighbourhood. The energy is computed as 
shown by (Lam 1994): 

E = alpha*Econt + beta*Ecurv + gamma* Egrad , 

where Egrad is an image gradient:  

 

 
and alpha,beta, gamma are weighting coefficients 
determined by the user that show the contribution of 
Econt, Ecurv, and Egrad. Econt is related to the distance 
between a pixel and its neighboring snaxels relatively 
to the rest of the snaxels. To calculate it we just 
subtract the total average distance from the distance 
between the pixel and the previous snaxel. Ecurv is 
related to the amount of curvature in the given pixel. If 
it exceeds a threshold for the current pixel (and if the 
gradient also exceeds a threshold) – then the beta 
weighting coefficient for this particular pixel is set to 
0.0 which allows to obtain sharp corners in an 
otherwise elastic contour. By estimating energies for 
all neighbouring pixels, the processed snaxel is 
transformed into position of a pixel with the smallest 
overall energy. It should be noted that snake iterating 
process terminates if either too many iterations have 
been performed (controlled by a variable set by the 
user to prevent infinite looping) or too little amount of 
snaxels have moved (also controlled by a special 
variable to have a way to notice that the active contour 
has reached a stable state). 
Snaxels are drawn as a rectangular group of pixels and 
connected by segments plotted via Bresenham line 
algorithm. Every snaxel can leave a trail behind itself 
(if the user turns this options on), so it is easier to see 
how the snake is evolving in terms of time and space.  

3d greedy snake (greedy balloon) as a surface model is 
able to approximate the data across all slices. This 
active contour model is quite similar to 2d greedy 
snake in many ways: it consists of a finite number of 
points, the initial balloon position is set manually by 
the user. An image gradient is also computed, but in 

case of a balloon it is 3d gradient which is calculated 
for each pixel in every slice, working not in 2 (x,y), but 
in 3 dimensions (x,y,z), where z is a slice id. 

A good example of a 3d snake implementation is 
demonstrated in (Twente Univ. 2008). 

Reconstruction step implementation depends on 
whether 2d or 3d snake was used during the 
segmentation step. In the first case, which is quite 
trivial, the resulting contour for each slice is connected 
with its neighbouring contours via triangle stripes. In 
the second case, a polygonal mesh of the resulting 3d 
baloon can be made to adjust its topological structure 
or smoothed via interpolating subdivision for better 
visual representation. A good reference on subdivision 
is (California Institute of Technology 1998). 
 
 “Good” (i.e. successfully extracted and approved by 
the user) contours are saved and an averaged contour 
is calculated, so it is possible to get a generalized 
contour for a shape being studied (e.g. an  eyeball 
etc.). 

3   RESULTS 

A prototype software for ophthalmologic image 
segmentation and surface visualization has been 
developed and the proposed approach has been tested. 
It should be noted that at least one of the possibilities 
for improvement in this project lies in the area of using 
the raw computing power of GPU to increase the 
speed of segmentation and reconstruction process. The 
other possibility may be to refine the implemented 
methods of surface reconstruction or include more 
sophisticated ones. The method can be used for pre-
surgery planning. The work was partly supported by 
Belarusian Foundation of Fundamental Research, 
Project F09-152. 
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