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A New Validity Measure for Heuristic Possibilistic Clustering  
 
 
 
 

Abstract 

A heuristic approach to possibilistic clustering is the 
effective tool for the data analysis. The approach is 
based on the concept of allotment among fuzzy 
clusters. To establish the number of clusters in a data 
set, a validity measure is proposed in this paper. An 
illustrative example of application of the proposed 
validity measure to the Anderson’s Iris data is given. A 
comparison of the validity measure with some well-
known cluster validity indices for objective function-
based fuzzy clustering algorithms is given. Preliminary 
conclusions are formulated. 

1   INTRODUCTION 

The objective of a fuzzy clustering algorithm is to 
partition a data set },...,{ 1 nxxX =  into с  

homogeneous fuzzy clusters. The most widely used 
fuzzy clustering algorithm is the FCM-algorithm 
which was proposed by Bezdek (1981). The FCM-
algorithm is the basis of the family of fuzzy clustering 
algorithms. The family of objective function-based 
fuzzy clustering algorithms includes 

• fuzzy c-lines algorithm (FCL); 

• fuzzy c-rings algorithm (FCR); 

• fuzzy c-shells algorithm (FCS); 

• fuzzy c-rectangular shells algorithm (FCRS). 

These and other well-known fuzzy clustering 
algorithms were proposed by different authors and 
they are considered by Höppner, Klawonn, Kruse and 
Runkler (1999) in detail. Moreover, some other fuzzy 
clustering algorithms were also proposed. 

All fuzzy clustering algorithms require the user to pre-
define the number of clusters, с . However, it is not 
always possible to know the number of clusters in 
advance. Different fuzzy partitions are obtained at 
different values of с . Thus, a methodology of 
evaluation of fuzzy partitions is required to validate 
each fuzzy partition to obtain the optimal number of 
clusters, с . 

Many cluster validity criterion have been proposed for 
validating fuzzy partition. In particular, the partition 
coefficient ( pcV ), the partition entropy (peV ), the Xie-

Beni index ( XBV ), the Fukuyama-Sugeno index (FSV ) 

are well-known validity measures, and these criteria 
are considered by Höppner, Klawonn, Kruse and 
Runkler (1999). 

However, the condition of fuzzy partition is very 
difficult from essential positions. That is why a 
possibilistic approach to clustering was proposed by 
Krishnapuram and Keller (1993) and developed by 
other researchers. This approach can be considered as 
a way in the optimization approach in fuzzy clustering 
because all methods of possibilistic clustering are 
objective function-based methods. A concept of 
possibilistic partition is a basis of possibilistic 
clustering methods and membership values can be 
interpreted as the values of typicality degree. 

An outline for a new heuristic method of fuzzy 
clustering was presented by Viattchenin (2004), where 
concepts of fuzzy α -cluster and allotment among 
fuzzy α -clusters were introduced and a basic version 
of direct fuzzy clustering algorithm was described. The 
basic version of direct fuzzy clustering algorithm 
requires that the number c  of fuzzy α -clusters be 
fixed. That is why the basic version of the algorithm, 
which was proposed by Viattchenin (2004), can be 
called the D-AFC(c)-algorithm. Moreover, the 
allotment of elements of the set of classified objects 
among fuzzy α -clusters can be considered as a 
special case of possibilistic partition. So, the D-
AFC(c)-algorithm can be considered as a direct 
algorithm of possibilistic clustering. The fact was 
demonstrated by Viattchenin (2007). 

The results of application of the D-AFC(c)-algorithm 
to the Anderson’s (1935) Iris data are considered by 
Viattchenin (2006) and the results shows that the D-
AFC(c)-algorithm is a precise and effective numerical 
procedure for solving classification problems. 
However, a unique validity measure for the D-AFC(c)-
algorithm was proposed by Viattchenin, Damaratski, 
and Novikau (2009) and the proposed linear measure 
of fuzziness of the allotment is not effective in every 
classification problem. So, the main goal of this paper 
is a proposition of a new validity measure for the D-
AFC(c)-algorithm. The contents of this paper is as 
follows: in the second section basic concepts of the 
clustering method are considered, the linear measure 
of fuzziness of the allotment is presented and a new 
cluster validity index for the D-AFC(c)-algorithm is 
proposed, in the third section an example of 
application of the D-AFC(c)-algorithm with the 
proposed validity measure to the Anderson’s (1935) 
Iris data set is given in comparison with the linear 
measure of fuzziness of the allotment and some 
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validity criteria for validating fuzzy partition, in the 
fourth section methods of the data preprocessing are 
considered and numerical in comparison with the 
compactness and separation index for objective 
function-based fuzzy clustering algorithms, in the fifth 
section some final remarks are stated. 

2   A HEURISTIC METHOD OF 
POSSIBILISTIC CLUSTERING  

The basic concepts of the heuristic method of 
possibilistic clustering are considered in the first 
subsection. The linear measure of fuzziness of the 
allotment is presented in the second subsection and a 
new validity measure is proposed in the third 
subsection of the section. 

2.1   Basic concepts  

Let us remind the basic concepts of the D-AFC(c)-
algorithm. The concept of fuzzy tolerance is the basis 
for the concept of fuzzy α -cluster. That is why 
definition of fuzzy tolerance must be considered in the 
first place. 

Let },...,{ 1 nxxX =  be the initial set of elements and 

]1,0[: →× XXT  some binary fuzzy relation on X  

with ]1,0[),( ∈jiT xxµ , Xxx ji ∈∀ ,  being its 

membership function. Fuzzy tolerance is the fuzzy 
binary intransitive relation which possesses the 
symmetricity property  

),(),( ijTjiT xxxx µµ = , Xxx ji ∈∀ , ,      (1) 

and the reflexivity property 

1),( =iiT xxµ , Xxi ∈∀ .              (2) 

Let },...,{ 1 nxxX =  be the initial set of objects. Let 

T  be a fuzzy tolerance on X  and α  be α -level 
value of T , ]1,0(∈α . Columns or lines of the fuzzy 

tolerance matrix are fuzzy sets },...,{ 1 nAA . Let 

},...,{ 1 nAA  be fuzzy sets on X , which are generated 

by a fuzzy tolerance T . The α -level fuzzy set 

]},1[,)(|))(,{()( nlxxxA iAiAi
l

ll ∈≥= αµµα  is fuzzy 

α -cluster or, simply, fuzzy cluster. So ll AA ⊆)(α , 

]1,0(∈α , },,{ 1 nl AAA K∈  and liµ  is the 

membership degree of the element Xxi ∈  for some 

fuzzy cluster lA )(α , ]1,0(∈α , ],1[ nl ∈ . Value of α  

is the tolerance threshold of fuzzy clusters elements. 

The membership degree of the element Xxi ∈  for 

some fuzzy cluster lA )(α , ]1,0(∈α , ],1[ nl ∈  can be 

defined as a 





 ∈

=
otherwise

Axx l
iiA

li
l

,0

),( αµ
µ ,             (3) 

where an α -level })(|{ αµα ≥∈= iAi
l xXxA l , 

]1,0(∈α  of a fuzzy set lA  is the support of the fuzzy 

cluster lA )(α . So, condition )( )(
ll ASuppA αα =  is met 

for each fuzzy cluster lA )(α , ]1,0(∈α , ],1[ nl ∈ . 

Membership degree can be interpreted as a degree of 
typicality of an element to a fuzzy cluster. The value 
of a membership function of each element of the fuzzy 
cluster in the sense of (3) is the degree of similarity of 
the object to some typical object of fuzzy cluster. 

Let T  is a fuzzy tolerance on X , where X  is the set 

of elements, and },...,{ )(
1

)(
nAA αα  is the family of fuzzy 

clusters for some ]1,0(∈α . The point ll
e Aατ ∈ , for 

which  

li
x

l
e

i

µτ maxarg= , l
i Ax α∈∀              (4) 

is called a typical point of the fuzzy cluster lA )(α , 

]1,0(∈α , ],1[ nl ∈ . A fuzzy cluster can have several 

typical points. So, symbol e  is the index of the typical 
point. 

Let ]}1,0(,2,,1|{)( )( ∈≤≤== αα
α ncclAXR l
z  be 

a family of fuzzy clusters for some value of tolerance 
threshold α , ]1,0(∈α , which are generated by some 

fuzzy tolerance T  on the initial set of elements 
},...,{ 1 nxxX = . If condition  

0
1

>∑
=

c

l
liµ , Xxi ∈∀               (5) 

is met for all fuzzy clusters )()( XRA z
l α
α ∈ , cl ,1= , 

nc ≤ , then the family is the allotment of elements of 

the set },...,{ 1 nxxX =  among fuzzy clusters 

}2,,1,{ )( ncclAl ≤≤=α  for some value of the 

tolerance threshold α . 

It should be noted that several allotments )(XRz
α  can 

exist for some tolerance threshold α . That is why 
symbol z  is the index of an allotment.  

The condition (5) requires that every object ix , 

ni ,,1K=  must be assigned to at least one fuzzy 
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cluster lA )(α , cl ,1= , nc ≤  with the membership 

degree higher than zero. The condition nc ≤≤2  
requires that the number of fuzzy clusters in each 

allotment )(XRz
α  must be more than two. Obviously, 

the definition of the allotment among fuzzy clusters (5) 
is similar to the definition of the possibilistic partition. 
So, the allotment among fuzzy clusters can be 
considered as the possibilistic partition and fuzzy 
clusters in the sense of (3) are elements of the 
possibilistic partition. 

If condition 

         )()(
1

XcardAcard
c

l

l ≥∑
=

α , )()( XRA z
l α
α ∈∀ , (6) 

and condition 

        wAAcard ml ≤∩ )( αα , ml AA )()( , αα∀ , ml ≠ ,    (7) 

are met for all fuzzy clusters clAl ,1,)( =α  of some 

allotment },,1|{)( )( ncclAXR l
z ≤== α
α  then the 

allotment is the allotment among particularly separate 
fuzzy clusters and nw ≤≤0  is the maximum number 
of elements in the intersection area of different fuzzy 
clusters.  

Obviously, if 0=w  in conditions (6) and (7) then the 
intersection area of any pair of different fuzzy cluster 
is an empty set and fuzzy clusters are fully separate 
fuzzy clusters. 

Detection of fixed c  number of fuzzy clusters can be 
considered as the aim of classification. So, the 

allotment },1|{)( )( clAXR l
z == α
α  among the given 

number c  of fuzzy clusters and the corresponding 
value of tolerance threshold α  are the results of 
classification.  

A plan of the D-AFC(c)-algorithm is presented, for 
example, by Viattchenin (2007). 

2.2   The linear measure of fuzziness of the 
allotment  

The linear measure of fuzziness of the allotment which 
is the validity measure for the D-AFC(c)-algorithm 
was defined by Viattchenin, Damaratski, and Novikau 
(2009) as follows: 

( ) ∑
∗∈

∗ =
)(

)(

)(

)();(
XRA

l
LLMF

l
AIcXRV

α

α ,     (8) 

where )( )(
l

L AI α  is a modification of the linear index 

of fuzziness which was defined by Viattchenin (2006) 
as 

),(
2

)( )()()(
ll

H
l

l
L AAd

n
AI ααα ⋅= ,             (9) 

where )( l
l Acardn α= , )()( XRAl ∗∈α  is the number 

of objects in the fuzzy cluster lA )(α  and 

),( )()(
ll

H AAd αα  is the Hamming distance 

∑
∈

−=
l

i

l

Ax
iAli

ll
H xAAd

α
α

µµαα )(),(
)(

)()(   (10) 

between the fuzzy cluster lA )(α  and the crisp set 
lA )(α  

nearest to the fuzzy cluster lA )(α . The membership 

function of the crisp set 
lA )(α  can be defined as 

l
i

iA

iA

iA
Ax

x

x
x

l

l

l α

α

α

α µ

µ
µ ∈∀








>

≤
=

,5.0)(,1

,5.0)(,0
)(

)(

)(

)(
,   (11) 

where ]1,0(∈α . 

The fuzziness of the allotment )(XR∗  depends on the 

size of each fuzzy cluster. Using ));(( cXRVLMF
∗ , the 

optimal number c  of fuzzy clusters can be obtained 
by maximizing the index (8) value.  

2.3   A new cluster validity measure 

From other hand, a density of fuzzy clusters can be 
taken into account for the validating allotment. The 
density of fuzzy cluster was defined by Viattchenin 
(2006) as follows: 

∑
∈

=
l

i Ax
li

l

l

n
AD

α

µα
1

)( )( ,            (12) 

where )( l
l Acardn α= , )()( XRAl ∗∈α  and 

membership degree liµ  is defined by formula (3). It is 

obvious that condition  

1)(0 )( ≤< lAD α ,             (13) 

is met for each fuzzy cluster lA )(α  in )(XR∗ . 

Moreover, 1)( )( =lAD α  for a crisp set )()( XRAl ∗∈α  

for any tolerance threshold α , ]1,0(∈α . The density 

of fuzzy cluster shows an average membership degree 
of elements of a fuzzy cluster. 

The density of fuzzy cluster (12) can be considered as 
the basis for a validity measure, too. The validity 
measure must be taking into account the compactness 
of fuzzy clusters which is characterized by their 
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density. The density of each fuzzy cluster 

)()( XRAl ∗∈α  is increasing with increasing of the 

number c  of fuzzy clusters. So, for nc →  we have 

1)( )( →lAD α  for all lA )(α , },,1{ cl K∈ . Moreover, 

for nc →  we have 1→α . Thus, the value of the 
tolerance threshold α  must be taken into account. So, 
the validity measure can be defined as the ratio of the 
sum of densities of fuzzy clusters of some allotment to 

the number of fuzzy clusters minus the value of the 
tolerance threshold α . However, a case of particularly 
separate fuzzy clusters must be taken into account. 
That is why a total number of objects, n

(
, in 

intersection areas of each pair of fuzzy clusters must 
be calculated.  

Thus, the measure of compactness of the allotment can 
be defined in the following way:

 







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


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
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














−⋅

−
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∑

∗

∗

∈

∈

∗

clustersfuzzyseparatelyparticularfor
c

AD

n

clustersfuzzyseparatefullyfor
c

AD

cXRV
XRA
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XRA

l

MC
l
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,
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,

)(

));((
)(

)(

)(
)(

)(
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α

α

α

α

α

α

(

,    (14) 

 

where n
(

 is the total number of elements in all 
intersection areas of different fuzzy clusters. Note that 

the value of ));(( cXRVMC
∗  for fully separate fuzzy 

clusters will be equal to the value for particularly 
separate fuzzy clusters in the case of 1=n

(
. The 

measure of compactness of the allotment 

));(( cXRVMC
∗  increases when c  is closer to n . 

Solving ( )( )cXRVMC
c

);(min ∗ , max,,2 cc K= , 

1max −≤ nc , is assumed to produce valid clustering of 

the initial data set X .  

3   AN ILLUSTRATIVE EXAMPLE 

The Anderson's (1935) Iris data set represents different 
categories of Iris plants having four attribute values. 
The four attribute values represent the sepal length, 
sepal width, petal length and petal width measured for 
150 irises. It has three classes Setosa, Versicolor and 
Virginica, with 50 samples per class. The problem is to 
classify the plants into three subspecies on the basis of 
this information. The Anderson's Iris data can be 

presented as a matrix of attributes ]ˆ[ˆ t

imn
xX =× , 

150,,1K=i , 4,,1K=t , where the value 
t

i
x̂  is the 

value of the t -th attribute for i -th object. The method 
of the data preprocessing is described by Viattchenin 
(2006). The data were preprocessed using the squared 
normalized Euclidean distance (Kaufmann, 1975). So, 
the matrix of fuzzy tolerance )],([ jiT xxT µ= , 

nji ,,1, K=  was obtained.  

We applied the D-AFC(c)-algorithm to the matrix of 
fuzzy tolerance for 5,,2 max == cc K . So, we 

calculated the values of the linear measure of fuzziness 
of the allotment and the measure of compactness of the 
allotment for different c  values and we plotted these 
validity measures in Figure 1 and Figure 2. 

 
Figure 1: Plot of the linear measure of fuzziness of the 

allotment as a function of the number of clusters. 

 
Figure 2: Plot of the measure of compactness of the 
allotment as a function of the number of clusters. 
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By executing the D-AFC(c)-algorithm 
for 5,,2 max == cc K , we obtain that the optimal 

cluster number c  is chosen at 5=c  for the linear 
measure of fuzziness of the allotment. However, the 
number of fuzzy clusters 3=c  corresponds to the first 
maximum for the validity measure. From other hand, 
the measure of compactness of the allotment finds the 
optimal cluster number c  at 3=c . Allotments among 
fully separated fuzzy clusters were obtained for 2=c  
and 3=c . The value of the total number of elements 
in intersection areas n

(
 is equal 10 for the allotment 

among four particularly separate fuzzy clusters and for 
5=c  we have 17=n

(
. So, the result of the proposed 

validity measure is seems as appropriate. 

To demonstrate the effectiveness of the proposed 
validity measure, we conducted extensive comparison 
with some cluster validity indices for validating fuzzy 
partition. The partition coefficient (pcV ), the partition 

entropy ( peV ), the Xie-Beni index ( XBV ), the 

Fukuyama-Sugeno index (FSV ) were selected for the 

comparison. The numbers of clusters yielded by all the 
validity indices for the Anderson’s Iris data set are 
given in Table 1. 

Table 1: Values of c preferred by each cluster validity 
index for the Iris data set. 

The validity measure c 

pcV  2 

peV  2 

XBV  2 

FSV  3 

Note that most validity measures reported in the 
literature provides two clusters for this data 
(Bouguessa, Wang, Sun, 2006). 

4   CONCLUSIONS 

A new cluster validity measure for the heuristic D-
AFC(c)-algorithm of possibilistic clustering is 
introduced in the paper and a numerical experiment 
confirmed its utility. Thus, the result of application of 
the proposed validity measure to the data set shows 
that the validity measure is an effective tool for 
solving the classification problem.  
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