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Université Paris − Est, Sénart Institute of Technology,

Avenue Pierre Point, 77127 Lieusaint, France
wangting0310@yahoo.com.cn, sabourin@u-pec.fr, madani@u-pec.fr

Abstract

In this paper, we propose a control strat-

egy for a nonholonomic robot which is based

on an Adaptive Neural Fuzzy Inference Sys-

tem. The neuro-controller makes it possible

the robot track a desired reference trajectory.

After a short reminder about Adaptive Neu-

ral Fuzzy Inference System, we describe the

control strategy which is used on our virtual

nonholonomic robot. And finally, we give the

results of simulations where the robot have

to pass into a narrow path.

1 Introduction

Research about the multi-robot systems have
started in the late 1980s, like for instance the project
CEBOT (Fukuda, 1998). Indeed, the multi-robot
systems offers many advantages in comparison with
systems using only one robot (Parker, 2008) (Cao,
1997):

• In first, cooperation between a group of several
robots can carried out more complex tasks,

• Secondly, the use of several robots for a given
task allows to increase robustness,

• And finally, the design and the use of several
simple robots can be cheaper and more flexible.

Today, and in the future, many applications can ben-
efit of advantages of multiple robot systems like, for
instance, in the warehouse management, for the in-
dustrial assembling, in military applications, or for
daily tasks, so on. But generally, the design of
one control strategy for systems with several robots
requires cooperation and coordination between all
robots. This means that robots can communicate
between them and self-organize in the group. With
the new recent technologies like wireless commu-
nication, one robot can easily send information to

another robot. Consequently, in the future works,
the main challenge will focus on the design of con-
trol strategies allowing to a group of robots to self-
organize with, if possible, emergent behaviors. In
this context, the goal of our laboratory is to design
control strategies for multi-robot systems. But one
major problem about the control of a multi-robot
system is coordination and formation control, and
namely the design of control strategy making it pos-
sible for a wheeled robot to track a desired trajec-
tory. And generally, the wheeled robots are non-
holonomic robots increasing the difficulty to design
the control strategy.

Most of the control approaches are based on asymp-
totic stabilization with the feedback controls. Dif-
ferent methods have been used to reduce or to trans-
form the nonlinear kinematic equation into a linear
approximation system. For instance, Samson (1995)
transformed the nonlinear system into a chained sys-
tem with the feedback control to solve the path-
following problem. Several authors have addressed
the problem of tracking admissible trajectory by
applying dynamic feedback linearization techniques
(Kolmanovsky, 1995), (D’Andrea-Novel, 1995), (De
Luca, 1993),(Fliess, 1995).

In Morin (2003), the authors are certainly the first
to address the problem of tracking arbitrary trajec-
tories (i.e., not necessarily feasible for the controlled
robot) based on the conception of transverse func-
tions. And in Barfoot (2004) , the feedback control
law inherits the strong robustness properties asso-
ciated with stable linear systems but it yields slow
convergence. In this short overview about control
strategies for nonholonomic robots, all approaches
are based on a kinematic modeling and most of them
have a slow convergence. The main drawback of this
is the control strategy must failed in some cases. An
alternative solution to the kinematic modeling is to
use neural networks.



In this paper, we propose a new approach to con-
trol nonholonomic robot based on Adaptive Neu-
ral Fuzzy Inference System (ANFIS). This approach
may be decomposed in two part: the first one al-
low to decompose an arbitrary path into several
desired trajectories, and the second is composed
of two neuro-controller, both position and orienta-
tion control, allowing to track these desired trajec-
tories. In fact, ANFIS control don’t depend on kine-
matic equations, and although we present the con-
trol strategy for nonholomic robot, this concept may
be used on another kind of wheeled robots.

The paper is organized in the following way. In the
next section, we introduce the ANFIS Adaptive Neu-
ral Fuzzy Inference System. In the third section, we
give the kinematic model of the nonholonomic robot,
and we describe how we can control the wheeled
robot with ANFIS. In section 4, we present the con-
trol strategy. Simulation results have showed in the
fifth section. At last, we get some brief conclusions.

2 ANFIS neural network

The main advantage of a Fuzzy Inference Systems is
that it allows to deal some systems where it is diffi-
cult to design control strategy based on mathemati-
cal modeling such as nonholonomic systems because
they are a non-linear systems. But the main disad-
vantage of fuzzy system is that it needs a knowledge
of an expert and needs a long time to get the accu-
rate membership functions. Neural network, or more
generally adaptive systems based on learning process
(i.e. Q-learning, genetic algorithm, so on), can make
up for this disadvantage and improve the basic fuzzy
system. For instance ANFIS, which is based on both
neural networks and fuzzy inference systems, is a
class of adaptive fuzzy inference system. In this sec-
tion, we remember briefly the ANFIS architecture
initially proposed by Jang (1995). Assume that a
control system with m inputs x1, x2, ..., xm and one
output y, the n linguistic rules Ri can be expressed
as:

If x1 is Ai1 and x2 is Ai2 ........and xm is Aim

Then y Is wi i = 1, ....., n
(1)

where i is the index of the rule, Aij is a fuzzy set for
i-th rule and j-th input and wi is a real number that
represents a consequent part. In the present case,
the membership function is defined as a gaussian
function:

µij = exp
− (xj − aij)

2

2b2
ij

. (2)

The output of this neural network is given by the

following equation:

y =

∑n

i=1 uiwi
∑n

i=1 ui

(3)

Where ui is given by:

ui = µi1 µi2 .............µim (4)

Now, we define z the set of all parameters to adapt
in the neural network:

z = a11, ..., anm, b11, ..., bnm, w1, ..., nn (5)

And V (z) the function to minimize :

V (z) =
1

2
(y(t) − yd(t))2 (6)

Where y(t) is the output of the neural network and
yd(t) is the desired output. In this case, Godjevac
(1995) shown it was possible to use an iterative pro-
cedure to update parameters in order to minimize
the function V (z). The three kinds of parameter
aij , bij and wi may be updated by Eqs. 7,8 and 9
respectively.

aij(t + 1) = aij(t) − Γa×

ui
∑

n

k=1
uk

(y − yd)(ωi − y)
(xj−aij(t))

bij(t)2

(7)
bij(t + 1) = bij(t) − Γb×

ui
∑

n

k=1
uk

(y − yd)(ωi − y)
(xj−aij(t))

2

bij(t)3

(8)

ωi (t + 1) = ωi (t) − Γω

ui
∑n

k=1 uk

(

y − yd
)

(9)

where aij , bij and ωi are the parameters of the adap-
tation of the learning algorithm. Γa, Γb and Γω are
the predefined constants.

3 Control nonholonomic robot

Generally, the control of wheeled robots consists in
doing a follow of reference path and supposes to
measure both the position and orientation with re-
spect to a fixed frame. Let us consider a given tra-
jectory C in the reference frame, and a point P at-
tached to the robot chassis, at the mid-distance of
the wheels, as illustrated on figure 1. The state of
the robot can be described by a triplet as P (x, y, θ),
in which x and y are the coordinates of the robot in
the reference frame. θ is the angle from X-axis to
the robot’s motion direction.
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Figure 1: Robot’s coordinates described by a triplet
as P (x, y, θ).

The kinematic modeling of this wheeled robot (i.e.
unicycle-type mobile robot) may be represented by
Eqs. 10 and 11 (Pascal, 2008):







Vx = V cos θ

Vy = V sin θ

θ̇ = Ω
(10)

{

V = r

2

(

Ωrigth + Ωleft)

Ω = r

2l

(

Ωrigth
− Ωleft)

(11)

Where Vx and Vy represent respectively the instanta-
neous horizontal and vertical velocities of the point
P located at mid-distance of the actuated wheels. V

represents the intensity of the longitudinal velocity
and Ω the angular velocity of the robot. Ωleft and
Ωrigth are the angular velocity of the left and right
wheels respectively. r is the radius of the wheels and
l is the distance between the two wheels.

For an unicycle-type mobile robot, the goal of the
control strategy is to compute the velocities of each
wheel in order to the robot follows the desired path.
The given trajectory can be expressed as a function
of time P d(xd(t), yd(t), θd(t)), with the θd(t) repre-
sents of the trajectory’s curvature at each step time
t. But in the case of non-holonomic robots where
the kinematic model is represented by Eqs. 10 and
11, this control is not a trivial problem.

In this paper, we propose a new approach based on
neural networks. The goal of these neural networks
are to control the velocity of each wheel in order to
minimize both error between position and desired
position (x−xd, y−yd), and orientation and desired
orientation (θd − θd).

3.1 Orientation control

The orientation control allows to the robot to rotate
on itself in following the target angle. Consequently,
the ANFIS needs one input xθ which is the difference
between of the angle between the robot’s direction
θ and the desired angle θd (see Eq. 12 ), and one
output which is an angular velocity.

xθ(t) = θ(t) − θd(t) (12)

yθ(t) =

∑n

i=1 uθ
i w

θ
i

∑n

i=1 uθ
i

(13)

The relation between yθ(t) and ∆Ω (the difference

between the right Ωrigth
θ and left Ωleft

θ angular ve-
locity) is given by the following equation:

∆Ω(t) = Ωrigth
θ (t) − Ωleft

θ (t) = yθ(t) (14)

A each step time, the parameters wθ
i are update in

order to minimize the following equation:

Vθ(t) =
(

θ(t) − θd(t)
)2

(15)

3.2 Position control

The position control allows to the robot to follow the
target point (xd(t),yd(t)) on a desired path. In this
case, the neural network needs two inputs xpx and
xpy which are given by Eqs. 16 and 17 respectively:

xpx(t) = x(t) − xd(t) (16)

xpy(t) = y(t) − yd(t) (17)

Where x(t) and y(t) correspond to the coordinates
of the robot, and xd(t) and yd(t) correspond to the
desired coordinates of the robot. The neural network
have only one output yp(t):

yp(t) =

∑n

i=1 u
p
i w

p
i

∑n

i=1 u
p
i

(18)

And the relation between yp(t) and the right Ωrigth
p

and left Ωleft
p angular velocity is given by the follow-

ing equation:

Ωrigth
p = Ωleft

p = yp(t) (19)



4 Control strategy

In order to explain clearly the proposed approach,
we present a practical example where the robot must
move from an initial position to goal position by
passing a narrow path (figure 2). This approach
may be decomposed in two part: the first one allow
to decompose the path into several desired trajec-
tories (section 4.1), and the second is composed of
two neuro-controller, both position and orientation
control, allowing to track these desired trajectories
(section 4.2).

obstacle obstacle

Robot

Robot

Robot

B

A
Initial position

Part I

Part II

Part III

C
Final position

Robots’rigid formation

Robot

Figure 2: Description of the path of the robot from
point A to point C.

4.1 Desired trajectory

The figure 2 shows the trajectory of the robot from
the initial position to the final position. The pro-
posed example may be decomposed in three parts:
firstly the robot moves from the point A toward the
obstacles, secondly the robot follows a circle trajec-
tory, and finally the robot goes towards the final
position. During these three parts, the desired tra-
jectory P d(xd(t), yd(t), θd(t)), are computed as fol-
low:

• During the first part, the robot moves from ini-
tial position A to the obstacle with position’s
control only. In this part, robot follow the verti-
cal line xd = 0.3 without the orientation control
(see Eq. 20).

P d(t) =







xd(t) = 0.3
yd(t) = yd(t − 1) + ∆y

θd = 0
(20)

xd(t) and yd(t) represent the coordinates of the
robot according to the reference frame. θd =
−180◦ is the orientation of the robot. ∆y is
chosen according to both length L and duration
T of the path.

• During the second part, firstly the robot turn
around itself from θd = −180◦ to θd = 0◦ by
using the orientation control, and secondly the
robot use trajectory control to follow a circular
arc (see Eq. 21).

P d(t) =







xd(t) = 0.3 ∗ cos(θ(t))
yd(t) = −0.3 ∗ sin(θ(t))
θd(t) = θd(t − 1) + ∆θ

(21)

Finally, the robot turn around itself from θd =
90◦ to θd = 0◦.

• During the final part, the robot follows a verti-
cal line (xd = 0.0) and goes in a narrow path to
arrive at the final position C.

4.2 Trajectory control
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Figure 3: Two neuro-controllers are used for both
position’s control and orientation’s control.

If we combine orientation’s control with position’s
control, we get trajectory’s control which can make
robot follow a desired trajectory. In this case, the
angular velocity of two wheels ( Ωrigth and Ωleft )
are given by Eq. 22. Ωrigth

p and Ωleft
p are given

by the ANFIS position control, and ∆Ω is given by
ANFIS orientation control. Inputs ex, ey,and eθ are
the differences between the real position of the robot
given by P = (x, y, θ) and the desired position P d =
(xd, yd, θd).

Ωrigth = Ωrigth
p

Ωleft = Ωleft
p + ∆Ω

. (22)



5 Result simulation

In this section, we present results of simulation for
the problem described in the section 5. Simulation
have been performed by using software Webots 1

with the virtual robot KheperaIII. The controller
have been designed with the software Matlab 2. Fig-
ures 4 and 5 show respectively the trajectory and
orientation of the robot during the simulation. On
these both figures, the red line represents the desired
trajectories and the blue dot line the real position of
the robot. On the figure 5, the axis t represents the
time step. Figures 6, 7, 8 and 9 show a snapshot of
this simulation.

The path of the robot can be interpreted as follow:

• From t = 0 (figure 6) to t = 200 (figure 7),
the robot follow a vertical line and moves from
the point (x = 0.3, y = −0.8) to point (x =
0.3, y = 0). The desired angle is equal to −180◦

( θd = −180◦ )

• At t = 200 (figure 7), the robot turns on itself
during 100 step time. During this stage, the
robot stay at the point (x = 0.3, y = 0) but
turns from θ = −180◦ to θ = 0◦

• From t = 300 to t = 500 (figure 8), the robot
follows a desired circular trajectory (see sec-
tion 4.1) and moves progressively from the point
(x = 0.3, y = 0, θ = 0◦) to (x = 0, y = −0.3, θ =
90◦)

• At t = 200, the robot turns on itself during 100
step time. During this stage, the robot stay
at the point (x = 0, y = −0.3) but turns from
θ = 90◦ to θ = 180◦ = 0◦

• Finally, from t = 600 to t = 800 (figure 9), the
robot follow a vertical line and moves to goal
position (x = 0, y = 0.6)

6 Conclusion

In this paper, we have proposed a control strat-
egy for nonholonomic robot based on Adaptive Neu-
ral Fuzzy Inference System. This neuro-controller
makes it possible the robot track a given reference
trajectories. We have presented results about the
control of one robot which must avoid an obstacle.
The first interest of our approach is that the kine-
matics modeling is not needed to control the robot.
Consequently, it is possible to extend our control

1www.cyberbotics.com/
2www.mathworks.com/

Figure 4: Trajectory simulation result.

Figure 5: Orientation simulation result.

strategy for another kind of robot as cart-like model
for example. The second interest is given by the pos-
sibility to design multi-level control: path planing,
trajectory computing, and robot’s controller.

Further works will focused, on this one hand, the
design of the multi-level control strategy to the con-
trol of a robot’s formation, and on the other hand,
the experimental validation on the real robots khep-
eraIII.
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