
Neural Network AQM Congestion Control Based Genetic

Algorithm for TCP/IP Networks

Mohammad Rasoul Tanhatalab*, Modjtaba Rouhani **, Ali Shokouhi Rostami ***

 *, **Azad University/Electrical Department, Gonabad, Iran,

*** Azad University/Electrical Department, Behshahr, Iran

*m_r_tanha@yahoo.com, **m.rouhani@ieee.org, ***soheil.shokohi@gmail.com

Abstract

 Active Queue Management (AQM) has been widely

used for congestion avoidance in TCP networks.

Although numerous AQM schemes have been

proposed to regulate a queue size close to a

reference level as Random early Detection (RED),

PI controller, PID controller (Hollot C., 2002),

adaptive prediction controller (APC) (Torkamandi

M., 2007), and neural network using the Back-

Propagation (Cho Hyun C., 2005). Most of them are

incapable of adequately adapting to TCP network

dynamics due to TCP’s non-linearity and time-

varying stochastic properties. This subject should

be mentioned that neural network with Back-

Propagation (Cho Hyun C., 2005), has taken the

wrong scheme. In this article is referred to the

wrong. Also in this article, unlike previous methods

we have used non-linear model of TCP network.

We evaluate the performances of the proposed

neural network AQM approach using MATLAB

and simulation experiments. The proposed

approach yields superior performance with faster

transient time, larger throughput, and higher link

utilization compared to another schemes.

1 Introduction

Considering the increase in use of computer data

networks, voice and video, there has been extensive

investment in high-quality service and traffic

engineering, Therefore the use of algorithms is

necessary to avoid congestion to optimum use of

network facilities (bandwidth, processing speed of

processors, memory of capacity routing and etc.)

(Tanenbaum, 2003). Congestion is one of the most

important issues in which, the computer networks

designers are involved. When the network faces

congestion, data packets are destroyed, bandwidth is

wasted, unreasonable delays occur. Algorithms which

are used in the network router section are known as

AQM: Tail-Drop and RED algorithm that has been

recognized as the most important queue management

algorithm (Hollot C. , 2002). In addition to these two

cases, SRED algorithm and BlueRED algorithm have

been introduced to improve RED algorithm (Cho Hyun

C., 2005). To improve active queue management

algorithms in recent years, classical control methods

such as PI and PID controller are also used. In design

of this controller, APC (Torkamandi M., 2007) has

been used. In reference (Cho Hyun C., 2005), a neural

network trained for the back propagation error is used

for AQM controller design .In this article activation

function of hidden layer was linear, that based on BP

training is wrong. In BP training, the activation

function in hidden layer should be as sigmoid.

Therefore the scheme in this reference is a wrong way

to solve this problem.

In this article we scrutinize controller design method of

neural network trained with genetic algorithm and by

analyzing and comparing the results with the ones of

algorithms RED, PI, PID and APC. We come to this

conclusion that the results are significantly improved.

In second section the nonlinear model of congestion in

TCP networks is given and in the third section to

introduce of different algorithms reposed for AQM.

In fourth section we would like to design a neural

network controller with genetic training for AQM

problem. In fifth section by doing different simulations

and comparing various existing methods with

presented method, the efficiency of the new method is

studied. And in the final paper conclusion, the results

are given.

2 TCP Networks congestion review

and introduction of the athematical

model of the network

Congestion occurs when the number of packets passing

a part of the network is more than usual, in this case

the network performance decreases. Figure 1 shows

the network performance in congestion mode

compared to optimum one (Tanenbaum, 2003).

Figure 1: Network performance in congestion mode

mailto:*m_r_tanha@yahoo.com
mailto:**m.rouhani@ieee.org

Although 90 percent of the traffic data is caused by

resources which use the TCP protocol in transfer layer,

therefore, most congestion control algorithms are

implemented in the protocol TCP.

We consider the dynamic fluid-flow model introduced

in (Hollot C., 2002) for describing the behavior of a

TCP/AQM network. Mathematical model Eq. (1) is a

nonlinear time-varying differential equations model for

TCP networks:

Windows dynamic

))((
))((

))((

2

)(

)(

1
)(tRtp

tRtR

tRtwtw

tR
tw 






Queue dynamic


















0))(
)(

)(
,0max(

0)(
)(

)(

)(

qtw
tR

tN
C

qtw
tR

tN
C

tq (1)

pT
C

tq
tR 

)(
)(

In these equations:

)(tw : Average TCP time window size (packets);

)(tq : Average queue length (packets);

)(tR : Round trip time (sec);

C : Link capacity (packets/sec);

pT : Propagation delay (sec);

N : Number of TCP sessions;

p : Probability of packet mark;

The specifications of the TCP network are from

(Hollot C., 2002).

3 Introduction of different

algorithms reposed for AQM

As shown in Figure 2 the purpose of active queue

management is the design of controller (making queue

size dynamically closer to the predetermined value q)

or in other words reducing the error,

)()()(tqtqte ref  by a control signal,
)()(tptu  .

Control signal changes in the interval [0, 1] and the

reference signal)(tqref
 must be less than the

maximum queue capacity. We must consider that the

reference signal will be variable.

Figure 2: AQM controller for TCP Network

To design and obtain the parameters of RED, PI, PID

and APC, a linear model of Eq. (1) around the

operation points 0W ,
 0R ,

 0Q and
0p is used. Linear

form of equations is shown as follow:

 (2)

)(
1

)()(
00

tq
R

tW
R

N
tq  

3.1 Tuning RED

RED takes an average measure of the queue length and

randomly drops packets which are within a threshold

between min and max of Average queue length (Hollot

C., 2002).

Figure 3: The RED algorithm

Gradient:

thth

red

p
L

minmax

max


 (3)

Then selected K as low pass filter pole, minq and maxq

as threshold of average queue length and gain redL ,

therefore transfer function of RED:

)(

*
)(

Ks

LK
sC red


 (4)

We selected optimal parameters value for RED control

from iterative numerical analyses using (Hollot C.,

2002) under the given RED specifications with

1.0max p , 800max q , 150min th
, 700max th

:

410*86.1 redL

,
310*5 K

)005.0(

)10*86.1)(10*5(
)(

43






s
sC (5)

3.2 PI and PID Controller

To improve the controller performance, classical

controllers PI and PID are used with linear model of

Eq. (1) around the operation points 60N ,

150 W ,

008.00 p

and

 sR 246.00  (Hollot . , 2002).

)(
2

))()((
1

))()(()(

02

2

02
0

02
0

Rtp
N

CR
Rtqtq

CR

RtWtW
CR

N
tW

o 





 

PI:
s

s

sC

1
53.010*64.9)(6



  (6)

PID:
s

ss
sC

61.022.1
10*1.5)(

2
5 

 

 (7)

3.3 Adaptive Prediction Controller APC

For designing the APC, we use the method presented

in reference (Torkamandi M., 2007). In this reference

),...,,(10 p and),...,,(10 q parameters are

necessary for calculating of)(kttQ 


 and control

signal)(tu . The adaptive setting of parameters is

shown in Figure 4.

Figure 4: Adaptive setting of parameters

To obtain the prediction model assuming the theory of

adaptive signal processing, the error was calculated by

the difference of estimation value)(tQ


 and actual

value)(tQ .

With the following equation:

(t)QQ(t))(


te (8)

 This error is used to set the unknown parameters. For

this calculation the well-known algorithm
1
 NLMS, is

used.

)(...)1()([

)(

10 pdtQdtQdtQ

tQ

p 






)]1(ˆ...)2()1(ˆ
10  qdtudtudtu q


 (9)

There is:

 T

qp ttttt)](),...,(),(ˆ),....,([)(11 


 (10)

And

TqdtudtupdtQdtQ

dt

)]1(),..,1(),(),...,([

)(





 (11)

For the initial state, we choose 0)0(ˆ  .

To set the parameters we use the following formula:

1- Normalized Least Mean Square

)()(
)(

)(ˆ)1(
2

tedt
dta

tt 


 







 (12)

By selecting 1p , 1q and 8d we will have

queue size, q as the output system and the packets

drop probability, 1p as the control signal.

)]10()9(ˆ)9()8([)(1010  tptptQtQtQ 


)8()( tk T


 (13)

)()8(
)8(

)(ˆ)1(
2

kek
ka

kk 


 







 (14)

And at the end, the block diagram of APC controller is

shown in Figure 5.

Figure 5: APC block diagram

3.4 Neural network controller with BP

training

The neural network model used in (Cho Hyun C.,

2005) is shown in Figure 6. This neural network

includes one feedback connection and a three-layer

perceptron.

The dynamic behavior of the network is given by:

bVuyy T

kk )(1  (15)

Where  is the feedback gain, k denotes discrete time,

and b is a bias connected with unit input. Finally, the

network output is obtained from the activation

function:

)exp(1

1
)(

y
yp





 ,  >0 (16)

Where,  is a constant scaling factor.

Figure 6: Neural network controller by BP training

In this scheme we have a problem: if the activation

function of the output layer Eq. (16) is nonlinear and

the previous layers Eq. (15) are linear, all layers come

before the output layer turns to a single-layer, therefore

in this case we have not a real neural network.

4 Neural AQM controller design

with genetic training

As mentioned in previous algorithms, linear model of

TCP is used for designing control. Our target in this

article is designing a controller with a nonlinear model

of TCP. This is appropriate because a nonlinear control

structure such as neural networks can be used to

control a nonlinear system. A very effective method

for training neural networks control is using of genetic

algorithm (Seiffert Udo., 2001).

4.1 Description of neural network and

relationship between weights and

chromosomes for genetic algorithm

In overview of the simple neural network controller,

we select a dynamic neural model including one

feedback connection and three-layer perceptron. This

neural network is shown in Figure 7.

Figure 7: Overview of neural controller

 The input vector of this neural network includes the

error signal, e and the output, q as a feedback signal.

Thus, the input vector, u is given by

 Tu q e 
 (17)

The weight matrix in the first layer is nm* where m

denotes the number of nodes and n indicates the

number of input, in this case n=2.

And the weight vector in the second layer is

 Tm ...1 (18)

We determine the weight range value in the interval

[-a, a] and the activation function is obtained for each

neuron in this neural network as follow:

)exp(1

1

y
p


 (19)

Where,  is a constant scaling factor.

In training stage we should find the relationship

between neural network weights and chromosomes for

genetic algorithm. Neural network structure is shown

in Figure 7. Weight and bias related to each neuron are

placed behind each other and chromosomes occur

(Seiffert Udo., 2001). This relationship is shown in

Figure 8.

Figure 8: Mapping the weights of the neural network

into a chromosome

4.2 Design and training of neural network

controller by genetic algorithm

In previous section we had a neural network with

three-layer perceptron with input vector, u and the

output, q.

In this structure for network training, genetic algorithm

used minimum E as target function:





T

k

kqkqE
1

2))(ˆ)((min (20)

Here the inverse minimum E is used as fitness function

for genetic algorithm training:

E
fitness

1
max 

 (21)

The performance of genetic algorithm for designing

neural controller is shown in block diagram (1).

In this article, different structures are considered for

neural networks (different input and different number

of neurons) that have been trained by genetic

algorithm. Best results obtained by the network are

shown in Figure 9.

In this neural network, the weight matrix in the first

layer is defined by 3 neurons (3*4) and also the

number of neurons in the second layer is defined four

(1*4). The network parameters such as N , the

number of TCP connections and)(tR , the round-trip

time are not constant, therefore dynamic network has

delay and time-variable. To have less effects of these

parameters on output, we must use the)(te
and)(tq

as a feedback signal. In this case the neural network

input will include three components: error signal,)(te

error signal with propagation delay,

)(pTte  and

queue size,)(tq . The input vector is given for

controller as follows:

  .)T-q(t)T-e(t (e(t) pp

T
input 

(22)

The steps can be followed to obtain the weights of

neural networks by using block diagram (1).

Block diagram 1. Genetic algorithm implementation

process to determine weights for the neural network

After examining different networks the best neural

network controller design will be achieved such as a

network with the following structure:

Figure 9: Structure neural network with 3 input and 4

neurons in hidden layer

4.3 Design of neural network controller

for different traffic flows
As mentioned, variations in the number of network

connections and incoming packet sizes are the

unpredictable traffic volume. To overcome this

problem (Hyun C., 2008), the proposed system

considers distinct neural AQMs for different traffic

characteristics. Specifically, a TCP network with three

different traffic scenarios is adopted: light traffic,

medium traffic and heavy traffic. Accordingly, we

construct three corresponding modular neural AQMs

with different neural network parameters, i.e.

1) Neural AQM I → light traffic

2) Neural AQM II → medium traffic

3) Neural AQM III → heavy traffic

As incoming traffic load is increased due to a growth

in the number of network connections, the queue size

in the router increases. For this case, the desired queue

occupation level must be enlarged to efficiently utilize

network resources.

In these cases we have three neural networks that

trained under different traffic flows. Following

training, we have optimal controller parameters for

each network scenario. In real-time implementation,

one of the three controllers must be selected based on

dynamically changing TCP network conditions, it is

shown in Figure 10. We note that each controller is

trained for a distinct traffic level at which it performs

best. Therefore, we select the network control that best

matches traffic level.

Figure 10: Neural controller selection for different

traffic flows

5 Simulation results

For the neural controller simulation of Fluid-Flow

model of TCP with (1), we introduced 60 TCP flows (

60N), a reference queue size of 200 packets (

200refQ), the capacity C is Mbs15 and the

propagation delay pT is s16.0 for the simulation of

RED, PI, PID and APC controller, we should use the

linear model of TCP around the operating points

150 W , 008.00 p , sR 246.00  and it was used in

Eq. (2).

We selected neural network weight and bias in the

interval [-1, 1] and created the initial population with

selected reference signal,)(tQref for all generations,

the neural network trained by genetic algorithm is

performed up to 500 generations. In Figure 11 we can

see the error reduction in this algorithm performance.

Figure 11: Training process of genetic algorithm

We ran five algorithms by constant signal 200)(tQref

to evaluate the different AQM approaches: RED

algorithm, PI control, PID control, APC algorithm and

neural network control. In Figure 12 simulation results

are shown.

Figure 12: Performance of different algorithms with

200)(tQref

Figure 13 shows the simulation results for the queue

dynamics, these results indicate that neural AQM

performs more effectively than PI, PID and APC

controller for varying reference queue size)(tQref .

The reference queue size is:

)100(*100)80(*200

)50(*100)30(*200)(*50)(





tutu

tutututQref

 (23)

Figure 13: Performance of different algorithms with

)100(*100)80(*200

)50(*100)30(*200)(*50)(





tutu

tutututQref

As mentioned in section 4.3, this simulation is

intended to evaluate the modular neural AQM. We

separately trained three neural AQMs with different

network connections and reference queue lengths, as

NAQM I: N ~ Uniform (200, 400) & r(t) = 200 packets

NAQM II: N ~ Uniform (400, 600) & r(t) = 400 packets

NAQM III:N ~ Uniform (600, 800) & r(t) = 600 packets

Figure 14 shows the time-history of the dynamic queue

length for PID and neural AQM.

Figure 14: Simulation results of PID and modular neural

AQMs

6 Conclusions

In this paper we presented a novel AQM methodology

using a dynamic neural network for TCP congestion

control. The neural network is trained by genetic

algorithm. The results were compared through the

simulation of different algorithms and controllers. The

neural AQM controller is designed directly from the

non-linear model Eq. (1).This type of controller design

(neural AQM) is superior to the previous controller

design such as PI, RED, PID and APC. For training

neural network, Genetic Algorithm is used. Simulation

results indicate that this design is the best methods.

References

Tanenbaum Andrew S. Computers Networks, Prentice-

Hall Inc. New Jersey, 4’th Edition, 2003.

 Hollot C. V., Misra V., Towsley D. and Gong W. B.

Analysis and design of controllers for AQM routers

supporting TCP flows. "IEEE Trans. - 2002".

Cho Hyun C., Sami Fadali M., Lee Hyunjeong Neural

Network Control for TCP Network Congestion.

International American Conference "Control

Conference", Portland, OR, USA, June, 2005.

Seiffert Udo. Multiple Layer Perceptron Training

Using Genetic Algorithms. ESANN'2001

proceedings of European Symposium "Artificial

Neural Networks", Bruges (Belgium), April 2001.

Torkamandi M., Hamidi Beheshti M.T. Adaptive

Predictive Congestion Con trot Design for TCP/IP

Networks. University of Tehran Electronic Journals

no.107, December 2007. p. 587-596 (in Persian)

Hyun C. Cho, Sami Fadali M., Hyunjeong Lee.

Adaptive Neural Queue Management for TCP

Networks. ACM portal, Computers and Electrical

Engineering, (November 2008).

