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Abstract 

 Active Queue Management (AQM) has been widely 

used for congestion avoidance in TCP networks. 

Although numerous AQM schemes have been 

proposed to regulate a queue size close to a 

reference level as Random early Detection (RED), 

PI controller, PID controller (Hollot C., 2002), 

adaptive prediction controller (APC) (Torkamandi 

M., 2007), and neural network using the Back-

Propagation (Cho Hyun C., 2005). Most of them are 

incapable of adequately adapting to TCP network 

dynamics due to TCP’s non-linearity and time-

varying stochastic properties. This subject should 

be mentioned that neural network with Back-

Propagation (Cho Hyun C., 2005), has taken the 

wrong scheme. In this article is referred to the 

wrong. Also in this article, unlike previous methods 

we have used non-linear model of TCP network. 

We evaluate the performances of the proposed 

neural network AQM approach using MATLAB 

and simulation experiments. The proposed 

approach yields superior performance with faster 

transient time, larger throughput, and higher link 

utilization compared to another schemes. 

 

1   Introduction 
 

Considering the increase in use of computer data 

networks, voice and video, there has been extensive 

investment in high-quality service and traffic 

engineering, Therefore the use of algorithms is 

necessary to avoid congestion to optimum use of 

network facilities (bandwidth, processing speed of 

processors, memory of capacity routing and etc.) 

(Tanenbaum, 2003). Congestion is one of the most 

important issues in which, the computer networks 

designers are involved. When the network faces 

congestion, data packets are destroyed, bandwidth is 

wasted, unreasonable delays occur. Algorithms which 

are used in the network router section are known as 

AQM: Tail-Drop and RED algorithm that has been 

recognized as the most important queue management 

algorithm (Hollot C. , 2002). In addition to these two 

cases, SRED algorithm and BlueRED algorithm have 

been introduced to improve RED algorithm (Cho Hyun 

C., 2005). To improve active queue management 

algorithms in recent years, classical control methods 

such as PI and PID controller are also used. In design 

of this controller, APC (Torkamandi M., 2007) has 

been used. In reference (Cho Hyun C., 2005), a neural 

network trained for the back propagation error is used 

for AQM controller design .In this article activation 

function of hidden layer was linear, that based on BP 

training is wrong. In BP training, the activation 

function in hidden layer should be as sigmoid. 

Therefore the scheme in this reference is a wrong way 

to solve this problem. 

In this article we scrutinize controller design method of 

neural network trained with genetic algorithm and by 

analyzing and comparing the results with the ones of 

algorithms RED, PI, PID and APC. We come to this 

conclusion that the results are significantly improved. 

In second section the nonlinear model of congestion in 

TCP networks is given and in the third section to 

introduce of different algorithms reposed for AQM.  

In fourth section  we would like to design a neural 

network controller with genetic training for AQM 

problem. In fifth section by doing different simulations 

and comparing various existing methods with 

presented method, the efficiency of the new method is 

studied. And in the final paper conclusion, the results 

are given. 

 

2   TCP Networks congestion review 

and introduction of the athematical 

model of the network 
 

Congestion occurs when the number of packets passing 

a part of the network is more than usual, in this case 

the network performance decreases. Figure 1 shows 

the network performance in congestion mode 

compared to optimum one (Tanenbaum, 2003). 

 
 

Figure 1: Network performance in congestion mode 
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Although 90 percent of the traffic data is caused by 

resources which use the TCP protocol in transfer layer, 

therefore, most congestion control algorithms are 

implemented in the protocol TCP. 

We consider the dynamic fluid-flow model introduced 

in (Hollot C., 2002) for describing the behavior of a 

TCP/AQM network. Mathematical model Eq. (1) is a 

nonlinear time-varying differential equations model for 

TCP networks: 
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In these equations: 

 

)(tw : Average TCP time window size (packets); 

)(tq : Average queue length (packets); 

)(tR : Round trip time (sec);
 

C : Link capacity (packets/sec); 

pT : Propagation delay (sec); 

N : Number of TCP sessions; 

p : Probability of packet mark; 

The specifications of the TCP network are from 

(Hollot C., 2002). 

 

3   Introduction of different 

algorithms reposed for AQM  
 

As shown in Figure 2 the purpose of active queue 

management is the design of controller (making queue 

size dynamically closer to the predetermined value q) 

or in other words reducing the error, 

)()()( tqtqte ref   by a control signal,
 )()( tptu  . 

Control signal changes in the interval [0, 1] and the 

reference signal )(tqref
 must be less than the 

maximum queue capacity. We must consider that the 

reference signal will be variable. 

 

 
 

Figure 2: AQM controller for TCP Network 

 

 

To design and obtain the parameters of RED, PI, PID 

and APC, a linear model of Eq. (1) around the 

operation points 0W ,
 0R ,

 0Q  and 
0p  is used. Linear 

form of equations is shown as follow:
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3.1   Tuning RED  

 

RED takes an average measure of the queue length and 

randomly drops packets which are within a threshold 

between min and max of Average queue length (Hollot 

C., 2002). 

 

 
 

Figure 3: The RED algorithm 
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Then selected K as low pass filter pole, minq  and maxq  

as threshold of average queue length and gain redL , 

therefore transfer function of RED: 
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We selected optimal parameters value for RED control 

from iterative numerical analyses using (Hollot C., 

2002) under the given RED specifications with

1.0max p , 800max q , 150min th
, 700max th

: 
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3.2   PI and PID Controller  

 

To improve the controller performance, classical 

controllers PI and PID are used with linear model of 

Eq. (1) around the operation points 60N ,
 

150 W ,
 

008.00 p
 
and

 
 sR 246.00  (Hollot . , 2002). 
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3.3   Adaptive Prediction Controller APC  

 

For designing the  APC, we use the method presented 

in reference (Torkamandi M., 2007). In this reference 

),...,,( 10 p and ),...,,( 10 q  parameters are 

necessary for calculating of  )( kttQ 


 and control 

signal )(tu . The adaptive setting of parameters is 

shown in Figure 4. 

 

 
 

Figure 4: Adaptive setting of parameters 

 

To obtain the prediction model assuming the theory of 

adaptive signal processing, the error was calculated by 

the difference of estimation value )(tQ


 and actual 

value )(tQ . 

With the following equation: 
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 This error is used to set the unknown parameters. For 

this calculation the well-known algorithm 
1
 NLMS, is 

used. 

 

)(...)1()([

)(

10 pdtQdtQdtQ

tQ

p 




  

      

)]1(ˆ...)2()1(ˆ
10  qdtudtudtu q


 

                                                                                   (9) 

There is: 

   

        T

qp ttttt )](),...,(),(ˆ),....,([)( 11 


                (10) 

 

And  

 

TqdtudtupdtQdtQ

dt

)]1(),..,1(),(),...,([

)(



                                                                                  

                                                                                 (11) 

For the initial state, we choose 0)0(ˆ  . 

To set the parameters we use the following formula: 
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By selecting 1p , 1q  and 8d  we will have 

queue size, q  as the output system and the packets 

drop probability, 1p  as the control signal. 
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And at the end, the block diagram of APC controller is 

shown in Figure 5. 

 

 
 

Figure 5: APC block diagram 

 

3.4   Neural network controller with BP 

training   
 

The neural network model used in (Cho Hyun C., 

2005) is shown in Figure 6. This neural network 

includes one feedback connection and a three-layer 

perceptron. 

The dynamic behavior of the network is given by:  
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Where  is the feedback gain, k denotes discrete time, 

and b is a bias connected with unit input. Finally, the 

network output is obtained from the activation 

function:   
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Where,   is a constant scaling factor. 

 



 

 
 

Figure 6: Neural network controller by BP training 

 

In this scheme we have a problem: if the activation 

function of the output layer Eq. (16) is nonlinear and 

the previous layers Eq. (15) are linear, all layers come 

before the output layer turns to a single-layer, therefore 

in this case we have not a real neural network. 

  

4   Neural AQM controller design 

with genetic training 
 

As mentioned in previous algorithms, linear model of 

TCP is used for designing control. Our target in this 

article is designing a controller with a nonlinear model 

of TCP. This is appropriate because a nonlinear control 

structure such as neural networks can be used to 

control a nonlinear system. A very effective method 

for training neural networks control is using of genetic 

algorithm (Seiffert Udo., 2001).  

 

4.1   Description of neural network and    

relationship between weights and 

chromosomes for genetic algorithm 
 

In overview of the simple neural network controller, 

we select a dynamic neural model including one 

feedback connection and three-layer perceptron. This 

neural network is shown in Figure 7. 

 
 

Figure 7: Overview of neural controller 

 

 The input vector of this neural network includes the 

error signal, e and the output, q as a feedback signal. 

Thus, the input vector, u is given by 

 

 Tu  q  e 
                                                       (17) 

 

The weight matrix in the first layer is nm*  where m 

denotes the number of nodes and n indicates the 

number of input, in this case n=2. 

And the weight vector in the second layer is   

 

 Tm ...1                                                     (18) 

 

We determine the weight range value in the interval  

[-a, a] and the activation function is obtained for each 

neuron in this neural network as follow: 
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Where,   is a constant scaling factor. 

In training stage we should find the relationship 

between neural network weights and chromosomes for 

genetic algorithm. Neural network structure is shown 

in Figure 7. Weight and bias related to each neuron are 

placed behind each other and chromosomes occur 

(Seiffert Udo., 2001). This relationship is shown in 

Figure 8. 

 
 

Figure 8:  Mapping the weights of the neural network 

into a chromosome 

 

4.2   Design and training of neural network 

controller by genetic algorithm 
 

In previous section we had a neural network with 

three-layer perceptron with input vector, u and the 

output, q. 

In this structure for network training, genetic algorithm 

used minimum E as target function: 
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Here the inverse minimum E is used as fitness function 

for genetic algorithm training:  

E
fitness

1
max 

                                               (21) 

The performance of genetic algorithm for designing 

neural controller is shown in block diagram (1). 

In this article, different structures are considered for 

neural networks (different input and different number 

of neurons) that have been trained by genetic 

algorithm. Best results obtained by the network are 

shown in Figure 9.  

In this neural network, the weight matrix in the first 

layer is defined by 3 neurons ( 3*4 ) and also the 



 

number of neurons in the second layer is defined four  

( 1*4 ). The network parameters such as N , the 

number of TCP connections and )(tR , the round-trip 

time are not constant, therefore dynamic network has 

delay and time-variable. To have less effects of these 

parameters on output, we must use the )(te  
and )(tq  

as a feedback signal. In this case the neural network 

input will include three components: error signal, )(te  

error signal with propagation delay,
 

)( pTte   and 

queue size, )(tq . The input vector is given for 

controller as follows: 
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T
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(22) 

 

The steps can be followed to obtain the weights of 

neural networks by using block diagram (1). 

 

 
 

Block diagram 1. Genetic algorithm implementation 

process to determine weights for the neural network 
 

After examining different networks the best neural 

network controller design will be achieved such as a 

network with the following structure: 

 
 

Figure 9: Structure neural network with 3 input and 4 

neurons in hidden layer 
 

 

4.3   Design of neural network controller 

for different traffic flows 
As mentioned, variations in the number of network 

connections and incoming packet sizes are the 

unpredictable traffic volume. To overcome this 

problem (Hyun C., 2008), the proposed system 

considers distinct neural AQMs for different traffic 

characteristics. Specifically, a TCP network with three 

different traffic scenarios is adopted: light traffic, 

medium traffic and heavy traffic. Accordingly, we 

construct three corresponding modular neural AQMs 

with different neural network parameters, i.e. 

1) Neural AQM I → light traffic 

2) Neural AQM II → medium traffic 

3) Neural AQM III → heavy traffic 

As incoming traffic load is increased due to a growth 

in the number of network connections, the queue size 

in the router increases. For this case, the desired queue 

occupation level must be enlarged to efficiently utilize 

network resources. 

In these cases we have three neural networks that 

trained under different traffic flows. Following 

training, we have optimal controller parameters for 

each network scenario. In real-time implementation, 

one of the three controllers must be selected based on 

dynamically changing TCP network conditions, it is 

shown in Figure 10. We note that each controller is 

trained for a distinct traffic level at which it performs 

best. Therefore, we select the network control that best 

matches traffic level. 

 
Figure 10: Neural controller selection for different 

traffic flows 
 

5   Simulation results 
 

For the neural controller simulation of Fluid-Flow 

model of TCP with (1), we introduced 60 TCP flows (

60N ), a reference queue size of 200 packets (

200refQ ), the capacity C  is Mbs15 and the 

propagation delay pT  is s16.0  for the simulation of 

RED, PI, PID and APC controller, we should use the 

linear model of TCP around the operating points 

150 W , 008.00 p , sR 246.00  and it was used in 

Eq. (2). 

We selected neural network weight and bias in the 

interval [-1, 1] and created the initial population with 

selected reference signal, )(tQref  for all generations, 

the neural network trained by genetic algorithm is 

performed up to 500 generations. In Figure 11 we can 

see the error reduction in this algorithm performance. 



 

  
Figure 11:  Training process of genetic algorithm 

 

We ran five algorithms by constant signal 200)( tQref
 

to evaluate the different AQM approaches: RED 

algorithm, PI control, PID control, APC algorithm and 

neural network control. In Figure 12 simulation results 

are shown. 

 
Figure 12: Performance of different algorithms with 

200)( tQref  
 

Figure 13 shows the simulation results for the queue 

dynamics, these results indicate that neural AQM 

performs more effectively than PI, PID and APC 

controller for varying reference queue size )(tQref .  

The reference queue size is: 
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Figure 13: Performance of different algorithms with              

)100(*100)80(*200

)50(*100)30(*200)(*50)(
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tutu

tutututQref
       

As mentioned in section 4.3, this simulation is 

intended to evaluate the modular neural AQM. We 

separately trained three neural AQMs with different 

network connections and reference queue lengths, as 

NAQM I: N ~ Uniform (200, 400) & r(t) = 200 packets 

NAQM II: N ~ Uniform (400, 600) & r(t) = 400 packets 

NAQM III:N ~ Uniform (600, 800) & r(t) = 600 packets 

Figure 14 shows the time-history of the dynamic queue 

length for PID and neural AQM. 

 
 

Figure 14: Simulation results of PID and modular neural 

AQMs 
 

6   Conclusions 
 

In this paper we presented a novel AQM methodology 

using a dynamic neural network for TCP congestion 

control. The neural network is trained by genetic 

algorithm. The results were compared through the 

simulation of different algorithms and controllers. The 

neural AQM controller is designed directly from the 

non-linear model Eq. (1).This type of controller design 

(neural AQM) is superior to the previous controller 

design such as PI, RED, PID and APC. For training 

neural network, Genetic Algorithm is used. Simulation 

results indicate that this design is the best methods. 
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