Neural Network AQM Congestion Control Based Genetic
Algorithm for TCP/IP Networks

Mohammad Rasoul Tanhatalab*, Modjtaba Rouhani **, Ali Shokouhi Rostami ***

*, **Azad University/Electrical Department, Gonabad, Iran,
*** Azad University/Electrical Department, Behshahr, Iran
*m_r_tanha@yahoo.com, **m.rouhani@ieee.org, ***soheil.shokohi@gmail.com

Abstract

Active Queue Management (AQM) has been widely
used for congestion avoidance in TCP networks.
Although numerous AQM schemes have been
proposed to regulate a queue size close to a
reference level as Random early Detection (RED),
Pl controller, PID controller (Hollot C., 2002),
adaptive prediction controller (APC) (Torkamandi
M., 2007), and neural network using the Back-
Propagation (Cho Hyun C., 2005). Most of them are
incapable of adequately adapting to TCP network
dynamics due to TCP’s non-linearity and time-
varying stochastic properties. This subject should
be mentioned that neural network with Back-
Propagation (Cho Hyun C., 2005), has taken the
wrong scheme. In this article is referred to the
wrong. Also in this article, unlike previous methods
we have used non-linear model of TCP network.
We evaluate the performances of the proposed
neural network AQM approach using MATLAB
and simulation experiments. The proposed
approach vyields superior performance with faster
transient time, larger throughput, and higher link
utilization compared to another schemes.

1 Introduction

Considering the increase in use of computer data
networks, voice and video, there has been extensive
investment in high-quality service and traffic
engineering, Therefore the use of algorithms is
necessary to avoid congestion to optimum use of
network facilities (bandwidth, processing speed of
processors, memory of capacity routing and etc.)
(Tanenbaum, 2003). Congestion is one of the most
important issues in which, the computer networks
designers are involved. When the network faces
congestion, data packets are destroyed, bandwidth is
wasted, unreasonable delays occur. Algorithms which
are used in the network router section are known as
AQM: Tail-Drop and RED algorithm that has been
recognized as the most important queue management
algorithm (Hollot C. , 2002). In addition to these two
cases, SRED algorithm and BlueRED algorithm have
been introduced to improve RED algorithm (Cho Hyun
C., 2005). To improve active queue management

algorithms in recent years, classical control methods
such as Pl and PID controller are also used. In design
of this controller, APC (Torkamandi M., 2007) has
been used. In reference (Cho Hyun C., 2005), a neural
network trained for the back propagation error is used
for AQM controller design .In this article activation
function of hidden layer was linear, that based on BP
training is wrong. In BP training, the activation
function in hidden layer should be as sigmoid.
Therefore the scheme in this reference is a wrong way
to solve this problem.

In this article we scrutinize controller design method of
neural network trained with genetic algorithm and by
analyzing and comparing the results with the ones of
algorithms RED, PI, PID and APC. We come to this
conclusion that the results are significantly improved.
In second section the nonlinear model of congestion in
TCP networks is given and in the third section to
introduce of different algorithms reposed for AQM.

In fourth section we would like to design a neural
network controller with genetic training for AQM
problem. In fifth section by doing different simulations
and comparing various existing methods with
presented method, the efficiency of the new method is
studied. And in the final paper conclusion, the results
are given.

2 TCP Networks congestion review
and introduction of the athematical
model of the network

Congestion occurs when the number of packets passing
a part of the network is more than usual, in this case
the network performance decreases. Figure 1 shows
the network performance in congestion mode
compared to optimum one (Tanenbaum, 2003).

Accurate
Network Capacity /

Carried Traffic

Congestion

offered Traffic

Figure 1: Network performance in congestion mode

mailto:*m_r_tanha@yahoo.com
mailto:**m.rouhani@ieee.org

Although 90 percent of the traffic data is caused by
resources which use the TCP protocol in transfer layer,
therefore, most congestion control algorithms are
implemented in the protocol TCP.

We consider the dynamic fluid-flow model introduced
in (Hollot C., 2002) for describing the behavior of a
TCP/AQM network. Mathematical model Eqg. (1) is a
nonlinear time-varying differential equations model for
TCP networks:

Windows dynamic

1 w(t) w(t — R(t))

W(t) = RO 2 R(E_R®D) p(t — R(t))
Queue dynamic
N(t)
—C+—=w(t) q>0
(0 - Qo €y
max(0,-C + %W(t)) g<0

R(t) = —qg) T,

In these equations:

w(t) : Average TCP time window size (packets);
q(t) : Average queue length (packets);

R(t) : Round trip time (sec);

C : Link capacity (packets/sec);

T, : Propagation delay (sec);

N : Number of TCP sessions;

p : Probability of packet mark;

The specifications of the TCP network are from
(Hollot C., 2002).

3 Introduction of different
algorithms reposed for AQM

As shown in Figure 2 the purpose of active queue
management is the design of controller (making queue
size dynamically closer to the predetermined value q)
or in other words reducing the error,
e(t) = grer () —q(t) by a control signal, u(t) = p(t).
Control signal changes in the interval [0, 1] and the
reference signal q,,(t) must be less than the

maximum queue capacity. We must consider that the
reference signal will be variable.

e w
9 AQM P TCP q

Router
Controller Source

Figure 2: AQM controller for TCP Network

v

To design and obtain the parameters of RED, PI, PID
and APC, a linear model of Eq. (1) around the
operation points wg, Ry, Q, and p, is used. Linear

form of equations is shown as follow:

&N(t):—%(wa)ww(t—%»—
0 , @
1 R,C
20 0= 2t =Ro) =225 Bt o)

10 = ow() - L
) =W O~ -

3.1 Tuning RED

RED takes an average measure of the queue length and
randomly drops packets which are within a threshold
between min and max of Average queue length (Hollot
C., 2002).

P
1
p pma K q
«— - e -
Liep S+K
e _ Averaging Filter
Packet-marking profile
Figure 3: The RED algorithm
Gradient:
p
red — . - (3)
max,, —min

Then selected K as low pass filter pole, (,,;, and 0.,

as threshold of average queue length and gain L
therefore transfer function of RED:

red !

_K*L

red

(s+K)

C(s) 4)

We selected optimal parameters value for RED control
from iterative numerical analyses using (Hollot C.,
2002) under the given RED specifications with

Prax = 0.1, Q. =800, min,, =150, max,, =700

Lyog =1.86%107 . K=5*10"°
(5*1073)(1.86*107%)

(s +0.005)

C(s) = (5)

3.2 Pl and PID Controller

To improve the controller performance, classical
controllers Pl and PID are used with linear model of
Eqg. (1) around the operation points N =60, W, =15,

po =0.008 and Ry =0.246s (Hollot . , 2002).

s+1

Pl C(s)=9.64*106053 (6)
S

2
PID: c(s):5_1*10—55 +1.225s +0.61
° ")

3.3 Adaptive Prediction Controller APC

For designing the APC, we use the method presented
in reference (Torkamandi M., 2007). In this reference

(o, a0)and (B, B,...5,) Parameters are
necessary for calculating of Q(t+kt) and control
signalu(t). The adaptive setting of parameters is

shown in Figure 4.

Adaptive Filter

» Delay ¢(k ‘d).;

Figure 4: Adaptive setting of parameters

To obtain the prediction model assuming the theory of
adaptive signal processing, the error was calculated by
the difference of estimation value Qt) and actual

value Q) -
With the following equation:

e(t) =Q® - QW ®)
This error is used to set the unknown parameters. For
this calculation the well-known algorithm * NLMS, is

used.

Q) =
[6,Q(t ~d)+&Q(t~d 1) +...+@,Q(t—d - p)

+ oAUt —d —1) + BAu(t—d —2) +...+ B, Au(t—d —q —1)]

)
There is:
() =1, t).@, (1), B, (1), B, O (10)
And
#t-d)=
[Q(t-d),... Q(t—d — p),Au(t—d —1),.., Au(t —d —q—-1)]"
(11)

For the initial state, we choose §(0) = 0.
To set the parameters we use the following formula:

1- Normalized Least Mean Square

a(t+1) = 4(t) + i

————#(t=d)e(t)
a+|gt—d)|

(12)

By selecting p=1, g =1 and d =8 we will have
queue size, ¢ as the output system and the packets

drop probability, p =1 as the control signal.
Q(t) =[@,Q(t -8) + &Q(t —9) + A,Ap(t - 9) + B,Ap(t —10)]

= é(k)T P(t-8) (13)

Ok +1) = (k) + i

——————¢(k —8)e(k)
a+lotk-)

(14)

And at the end, the block diagram of APC controller is
shown in Figure 5.

Y wies) b——» ()
Wik+1)
wlthetsk) P Prk) QE=D) (2
Q=)
L - Oref (k) R *(3
Oref (k) R(k+1)

Controller Model

N

Parameter updating

—»|P(k)
»| QX
| theta(k)

Ofk+1)

Predictor

Figure 5: APC block diagram

3.4 Neural network controller with BP
training

The neural network model used in (Cho Hyun C.,
2005) is shown in Figure 6. This neural network
includes one feedback connection and a three-layer
perceptron.

The dynamic behavior of the network is given by:
Yk+1=a)/k+7T(Vu)+b (15)
Where « is the feedback gain, k denotes discrete time,
and b is a bias connected with unit input. Finally, the
network output is obtained from the activation

function:
p=p(y)=—r s 0 (16)
1+exp(-oy)

Where, o is a constant scaling factor.

Figure 6: Neural network controller by BP training

In this scheme we have a problem: if the activation
function of the output layer Eqg. (16) is nonlinear and
the previous layers Eq. (15) are linear, all layers come
before the output layer turns to a single-layer, therefore
in this case we have not a real neural network.

4 Neural AQM controller design
with genetic training

As mentioned in previous algorithms, linear model of
TCP is used for designing control. Our target in this
article is designing a controller with a nonlinear model
of TCP. This is appropriate because a nonlinear control
structure such as neural networks can be used to
control a nonlinear system. A very effective method
for training neural networks control is using of genetic
algorithm (Seiffert Udo., 2001).

4.1 Description of neural network and
relationship between weights and
chromosomes for genetic algorithm

In overview of the simple neural network controller,
we select a dynamic neural model including one
feedback connection and three-layer perceptron. This
neural network is shown in Figure 7.

TCP

Figure 7: Overview of neural controller

The input vector of this neural network includes the
error signal, e and the output, q as a feedback signal.
Thus, the input vector, u is given by

U:[eq]T 17)

The weight matrix in the first layer is V,», where m

denotes the number of nodes and n indicates the
number of input, in this case n=2.
And the weight vector in the second layer is

y = [yl...ym]T (18)

We determine the weight range value in the interval
[-a, a] and the activation function is obtained for each
neuron in this neural network as follow:

[EnN

p= L (19)
1+exp(—<y)

Where, ¢ is a constant scaling factor.

In training stage we should find the relationship
between neural network weights and chromosomes for
genetic algorithm. Neural network structure is shown
in Figure 7. Weight and bias related to each neuron are
placed behind each other and chromosomes occur
(Seiffert Udo., 2001). This relationship is shown in
Figure 8.

Hiddenl
Nodel

Node2

Qutput
Nodes

Input X X,

Figure 8: Mapping the weights of the neural network
into a chromosome

4.2 Design and training of neural network
controller by genetic algorithm

In previous section we had a neural network with
three-layer perceptron with input vector, u and the
output, g.

In this structure for network training, genetic algorithm
used minimum E as target function:

min E =i(q(k)—@|(k))2 (20)
k=1

Here the inverse minimum E is used as fitness function
for genetic algorithm training:

. 1

max fitness = —
E (21)

The performance of genetic algorithm for designing
neural controller is shown in block diagram (1).
In this article, different structures are considered for
neural networks (different input and different number
of neurons) that have been trained by genetic
algorithm. Best results obtained by the network are
shown in Figure 9.
In this neural network, the weight matrix in the first

layer is defined by 3 neurons (V,+3) and also the

number of neurons in the second layer is defined four

(Y4+)- The network parameters such asN, the

number of TCP connections and R(t) , the round-trip

time are not constant, therefore dynamic network has
delay and time-variable. To have less effects of these
parameters on output, we must use the e(t) and q(t)

as a feedback signal. In this case the neural network
input will include three components: error signal, e(t)

error signal with propagation delay, e(t-T,) and

queue size, q(t). The input vector is given for
controller as follows:
input =[(e(®) et-T,) qt-T,) . (22

The steps can be followed to obtain the weights of
neural networks by using block diagram (1).

Randomly generation an Initial population

‘

[To obtain of fitness flmctiml]

Selection of the best
Clromosome

Selection
Crossover
Mutation

Create a new
generation

Save the best
chromogome

Tmplement of the
network with the best
chromosome

Block diagram 1. Genetic algorithm implementation
process to determine weights for the neural network

After examining different networks the best neural
network controller design will be achieved such as a
network with the following structure:

e(t)
u(t)
e(t-Tp)
q{t-Tp)

Figure 9: Structure neural network with 3 input and 4
neurons in hidden layer

4.3 Design of neural network controller

for different traffic flows
As mentioned, variations in the number of network
connections and incoming packet sizes are the

unpredictable traffic volume. To overcome this
problem (Hyun C., 2008), the proposed system
considers distinct neural AQMs for different traffic
characteristics. Specifically, a TCP network with three
different traffic scenarios is adopted: light traffic,
medium traffic and heavy traffic. Accordingly, we
construct three corresponding modular neural AQMs
with different neural network parameters, i.e.

1) Neural AQM | — light traffic

2) Neural AQM Il — medium traffic

3) Neural AQM Il — heavy traffic

As incoming traffic load is increased due to a growth
in the number of network connections, the queue size
in the router increases. For this case, the desired queue
occupation level must be enlarged to efficiently utilize
network resources.

In these cases we have three neural networks that
trained under different traffic flows. Following
training, we have optimal controller parameters for
each network scenario. In real-time implementation,
one of the three controllers must be selected based on
dynamically changing TCP network conditions, it is
shown in Figure 10. We note that each controller is
trained for a distinct traffic level at which it performs
best. Therefore, we select the network control that best
matches traffic level.

)——»= Neural AQM 1 |——» (k)
J% Neural AQM Il ——m (k)

(O——»| Neural AQM I |— (k)

Figure 10: Neural controller selection for different
traffic flows

5 Simulation results

For the neural controller simulation of Fluid-Flow
model of TCP with (1), we introduced 60 TCP flows (
N =60), a reference queue size of 200 packets (
Q. =200), the capacityC is 15Mbsand the

propagation delay T, is 0.16s for the simulation of

RED, PI, PID and APC controller, we should use the
linear model of TCP around the operating points
Wy =15, pg=0.008, Ry =0.246sand it was used in
Eq. (2).

We selected neural network weight and bias in the
interval [-1, 1] and created the initial population with
selected reference signal, Q,,(t) for all generations,

the neural network trained by genetic algorithm is
performed up to 500 generations. In Figure 11 we can
see the error reduction in this algorithm performance.

Error

. . \ . A
50 100 150 200 250 a00 350 400 450 &0
generations

Figure 11: Training process of genetic algorithm

We ran five algorithms by constant signal Q. (t) =200

to evaluate the different AQM approaches: RED
algorithm, PI control, PID control, APC algorithm and
neural network control. In Figure 12 simulation results
are shown.

v T]) . Y T
500)—-----f:{"' o --:--"--1-------.'RE-D-.‘ --r-"--“
. e ————— +
ol i i i i i i i i
0 5 10 15 20 25 30 35 40 45 50
T = Pl -
500 /
ol L 1 1 1 i | 1 1 | |
g 0 5 10 15 20 25 30 35 40 45 50
» 500’ : : : " PID |
) o 4 g
S5 olf 1 I | I I I 1 1 1 1
(7] 0 5 10 15 20 25 30 35 40 45 50
> T T T
fop 500}»—— e sl e s APC. .. Boses :I
ol [l I 1 | I | 1 | | |
10 15 20 25 30 35 40 45 50
500 T T T
| : NN | |
;)| | i i i i i i i i |
5 10 15 20 25 30 35 40 45 50
Time (sec)

Figure 12: Performance of different algorithms with
Qref (t) =200

Figure 13 shows the simulation results for the queue
dynamics, these results indicate that neural AQM
performs more effectively than PI, PID and APC
controller for varying reference queue size Q. (t) -

The reference queue size is:

Qref () =50*u(t) +200 *u(t —30) —100 *u(t —50)

+200 *u(t —80) —100 *u(t —100) (23)

B NN
am —
m
i @ m iE g B0 150
Time (sec)

Figure 13: Performance of different algorithms with
Qref (t) =50 *u(t) + 200 *u(t —30) —100 *u(t —50)

+200 *u(t —80) —100 *u(t —100)
As mentioned in section 4.3, this simulation is
intended to evaluate the modular neural AQM. We

separately trained three neural AQMs with different
network connections and reference queue lengths, as

NAQM I: N ~ Uniform (200, 400) & r(t) = 200 packets

NAQM II: N ~ Uniform (400, 600) & r(t) = 400 packets
NAQM I11:N ~ Uniform (600, 800) & r(t) = 600 packets
Figure 14 shows the time-history of the dynamic queue
length for PID and neural AQM.

800 v v

[PID
700 " Neural | |

600 %

n
g

Queue size(packets)
@ B
g 8

n " L N
o 10 20 30 40 60 70 80 s0 100

50
time(sec)

Figure 14: Simulation results of PID and modular neural
AQMs

6 Conclusions

In this paper we presented a novel AQM methodology
using a dynamic neural network for TCP congestion
control. The neural network is trained by genetic
algorithm. The results were compared through the
simulation of different algorithms and controllers. The
neural AQM controller is designed directly from the
non-linear model Eq. (1).This type of controller design
(neural AQM) is superior to the previous controller
design such as PI, RED, PID and APC. For training
neural network, Genetic Algorithm is used. Simulation
results indicate that this design is the best methods.

References

Tanenbaum Andrew S. Computers Networks, Prentice-
Hall Inc. New Jersey, 4°th Edition, 2003.

Hollot C. V., Misra V., Towsley D. and Gong W. B.
Analysis and design of controllers for AQM routers
supporting TCP flows. "IEEE Trans. - 2002".

Cho Hyun C., Sami Fadali M., Lee Hyunjeong Neural
Network Control for TCP Network Congestion.
International American Conference "Control
Conference", Portland, OR, USA, June, 2005.

Seiffert Udo. Multiple Layer Perceptron Training
Using Genetic Algorithms. ESANN'2001
proceedings of European Symposium "Artificial
Neural Networks", Bruges (Belgium), April 2001.

Torkamandi M., Hamidi Beheshti M.T. Adaptive
Predictive Congestion Con trot Design for TCP/IP
Networks. University of Tehran Electronic Journals
no.107, December 2007. p. 587-596 (in Persian)

Hyun C. Cho, Sami Fadali M., Hyunjeong Lee.
Adaptive Neural Queue Management for TCP
Networks. ACM portal, Computers and Electrical
Engineering, (November 2008).

