

1

Neural Network Artificial Immune System for Malicious Code
Detection

Vladimir Golovko, Sergei Bezobrazov

Brest State Technical University

Moskovskaja str. 267, Brest, 224017, Republic of Belarus
gva@bstu.by, bescase@gmail.com

Abstract

In this paper we present the intelligent adaptive
self-learning and self-organizing system for
malicious code detection based on integration of the
Artificial Immune Systems and the Artificial
Neural Networks. Such a system works according
to basic principles of the artificial immune system
where immune detectors present neural network
and detect a malicious pattern by means of the
analysis the structure of the executable code. As a
result the proposed system is capable to adapt to
the continually changeable computer environment
and detect not only known but unknown malicious
code, which does not belong to training data set.
The purpose of this paper is to present the key
ideas and approaches underlying our research in
this area.

Keywords. Artificial immune systems,
artificial neural networks, malicious code
detection, malware, viruses

1 Introduction

Nowadays modern society faces the problem of
information security from malicious software. And if
already known malware is not so dangerous for the
computer users, because the signature analysis method
of malware detection successfully cope with such
problems, the unknown malicious software may cause
a serious security threat. Antivirus experts should
detect the unknown malware, investigate it and give
the solution for the computer users to secure protection
from this malicious code. Though, the computer may
be infected with this malware before it has been
detected by the antivirus industry. The traditional
proactive methods of unknown malware detection
based on heuristic analysis don’t provide with proper
level of computer system defense. The best modern
antivirus software obtains 90% of malicious code
detection by the methods of reactive defense (already
known malware detection) and 70% of malicious code
detection by the methods of proactive defense

(unknown malware detection). Figure 1 shows the
levels of reactive and proactive detection) [1].

Fig. 1. Reactive and proactive detection.

The test results confirm an existence of malicious
code detection problem, and this problem is very
important. Recently various techniques of anomaly
detection and unknown malware detection have been
proposed [2], [3], [4], [5]. Artificial immune systems
(AIS) have the particular place among the methods of
artificial intelligence for anomaly detection [6], [7].
Unfortunately, many researchers use the AIS only as a
metaphor. Different researchers either implement only
parts of AIS mechanisms or don’t use them at all that
reduce the ability such systems to adaptation, self
organization and self-learning [8], [9], [10], [4]. Also,
most of scientific works don’t focus on solving the
problem of malicious code detection on the whole.
They try to decide only the part of this problem
namely viruses (infectors) or worms detection [9],
[11], [12].

At present time the most real antivirus software based
on signature analysis. Signature-based approach have
acceptable detection rate for known virus and
relatively low false positives. Unfortunately the ability
of signature-based system to detect new viruses is
extremely poor.

The artificial immune system (AIS) is an approach
inspired by biological immune systems. It can be
defined like computational system based on ideas

mailto:gva@bstu.by�

2

biological immune system. There exist different
models of AIS for malicious code detection (L.N. de
Castro 2002, S. Hofmeyr 2000, Janeway 1993).
Unfortunately there are some problems to use this
approach for malware detection. As a rule AIS models
use of binary or real strings structure of detectors. In
this case it is difficult to train such detectors for
qualitative malware detection. As a result such systems
have high computational complexity and nonwell
ability for novel malware detection. The other authors
propose to combine the neural networks and artificial
immune systems for network intrusion or anomaly
detection [13]. However they use neural network
separately from AIS, as a rule only on final stage like
classifier. To overcome these problems we propose an
approach the use of neural networks in AIS for
malicious code detection.

The key idea of this paper is to integrate of advantages
of artificial immune systems and neural networks for
creating intelligent adaptive self organizing system for
malicious code detection and recognition. Such a
system should have ability of novel malware detection
and low false positive and false negative rates.

The paper is structured as follows. Section 2 describes
the neural network artificial immune system. Section 3
presents the structure of neural network immune
detector. In section 4 the performance of immune
detector is proposed. In section 5 the experimental
results of malicious code detection are given. Section 6
concludes this paper and point out our future work.

2 Neural network artificial immune
system

Let consider the main principles of artificial immune
system (AIS) development, using neural networks.
First of all we will define the environment in which the
AIS will exist. The environment includes computer
like protected system, which contains as uninfected
(self) and virus (nonself) files.

Figure 1: Model of the AIS.

The proposed AIS (Figure 1) consists of the following
blocks: block of detectors generation, block of

detectors training, block of detectors selection, block
of detectors elimination, block of infected files
detection, block of detectors cloning and mutation,
block of immune memory creation. The immune
detectors play a main role in malicious code detection
and the architecture of detectors is significant for
successful detection. The computer system is
changeable environment. The new software is installed
and uninstalled continually. Therefore the security
system should correct identify legitimate software and
detect malicious code both already known and novel.

Let define a detection unit as a component of artificial
immune system for malware detecting in a computer
system. As a detection unit we will use neural
network. Then artificial immune system will consist of
certain number of neural networks, which forms the
population of immune detectors. Primarily we will
present the neural network immune detector as a black
box, which has n-inputs and two outputs (Figure 2).

Figure 2: The neuronet immune detector.

The outputs of detector after presentation of all
checking data can be obtained in accordance with the
following expressions:





=





=

.,0
,1

.,0
,1

2

1

otherwise
filemaliciousif

Z

otherwise
filelegitimateif

Z
 (1)

The training data set consist of legitimate and
malicious files. Of course, the immune detectors will
be more diverse, if the more various files are presented
at the training data set. It is desirable to have also
representatives of all types of malware, namely
worms, Trojan programs, macro viruses etc.

The neural network is trained by supervisor. Figure 3
illustrates the input samples for neural network
training.

The files are selected from utilities of operating system
Microsoft Windows for generation uninfected samples
as it is shown in Fig.3 (dwwin.exe, regedit.exe,
taskman.exe, autoras.exe). The computer viruses are
used for generation malicious samples, for instance
lovesan.vir in figure 3.

Let Т is set of legitimate files and F is set of malicious
files. Using these files the set of input samples are
generated in a random way, which are applied for
training of i th detector (expression 2).

NID

X1
X2

Xn

Z1

Z2

Detectors
generation

Detectors
training

Detectors
elimination

Mature
detectors

Weak detectors
elimination

Malware
detection

Immune
memory

Cloning and
mutation

А

А

3

Figure 3: The data set for neural network training.

Accordingly, the set of desired output samples can be
written in accordance with expression (3), where L is
dimension of training set.

The desired output samples for i th detector are formed
using expression (4).





















=





















=

L
in

L
i

L
i

inii

inii

L
i

i

i

i

XXX

XXX

XXX

X

X

X

X

...

...
...

...

...

21

22
2

2
1

11
2

1
1

2

1

 (2)





















=





















=

L
i

L
i

ii

ii

L
i

i

i

i

ll

ll

ll

l

l

l

l

21

2
2

2
1

1
2

1
1

2

1

......
 (3)





 ∈

=





 ∈

=

.,0
,1

.,0
,1

2

1

oteherwise
FXifl

otherwise
TXifl

k
ik

i

k
ik

i

 (4)

The detectors are trained to classify normal and
abnormal patterns. The purpose of the training of each
detector is to minimize the total mean square error.
The total mean square error for i-th detector is defined
as:

∑∑
= =

−=
L

k j

k
ij

k
iji lZE

1

2

1

2 ,)(
2
1 (5)

where Zij
k is j-th output unit of i-th detector for k-th

pattern.

The total mean square error characterizes the detector
fitness to recognize malicious code. The small value of
mean square error means the better fitness of the
detector. Therefore the mean square error evaluates the
quality of detector and can be used for selection of the
best detectors.

The set of trained neural networks form population of
immune detectors which circulate (live) in computer
system and perform detection of malicious code. Each
detector has an assigned lifetime that is decreased at
each an iteration of algorithm presented below. If the
detector reaches the maturity age, it will be eliminated.

The use of the various files for neural networks
training and random generation of input vectors permit
to increase diversity of detector population.

The neural network AIS algorithm aims at building
such an adaptive system that can detect novel malware
patterns for which no signature exists.

The procedure of building and performance of neural
network immune system can be represented as
follows:

1. Generate an initial population of detectors. It should
be noted that each detector represents the neural
network with random weights:

{ },,1, riDD i == (6)

where Di is i-th neural network immune detector, r is
the number of detectors.

2. Train neural network immune detectors. Training
data set are generated by random way from legitimate
and malicious files or their signatures. The desired
output units are obtained in accordance with equation
(4). After the training the certain amount of detectors
are obtained, which are used in the testing stage.

3. Select the best neural network detectors using test
data set. The goal of this process is to eliminate bad
(unsuitable) detectors, which have insufficient ability
to training and false positive rate. Each detector is
verified using test data set, which consists of
legitimate files. As a result for each detector the total
mean square error Ei is determined in accordance with
equation 5. Detectors would be selected with zero
mean square error:



 ≠

=
.,

0,0
otherwiseD
Eif

D
i

i
i (7)

where 0 characterizes deletion of detector.

4. Each detector get lifetime and randomly choose the
checking file from all files of computer, which
detector did not inspect.

5. Scanning by each detector of the chosen file. As a
result output values of detectors Zi1, Zi2, where i=1…r,
are defined.

6. If the i-th detector does not detect malware in
scanning file, i.e. Zi1=1 и Zi2=0, then it choose next
file for inspection. If the lifetime of a detector is
ended, it is eliminated from the detectors set and new
detector is created.

7. If i-th detector detect malware in file, i.е. Zi1=0 и

lovesan.vir

3 9 40 .. 237

dwwin.exe regedit.exe taskman.exe autoras.exe

files selection

vectors selection

12 128 54 .. 28 38 149 3 .. 65 89 101 168 .. 5 49 193 3 .. 243

n-size n-size n-size n-size n-size

NID learning

NID

1 n

0
1

1
0

.

malicious
legitimate

4

Zi2=1, then it activates alarm. In this case cloning and
mutation of given detector is performed. As a result
the set of clones are generated and each clone is
trained by using detected infected file (mutation).
Finally we can get the set of clones, which are aimed
to detect given virus

).,...,,(21 iniii DDDD = (8)

8. Select the best clone detectors, which are most
fitness to detect this malicious cod. The mean square
error for each clone is calculated, using detected virus
file. IF Eij >Ei, тhen detector has passed selection.
Here Eij – mean square error for j-th clone of i-th
detector.

9. The set of clones scanning the file system of
computer with purpose of given malicious code
detection and elimination.

10. Creation of immune memory set. The best neural
network detectors are defined, which have shown the
perfect results during detection of given computer
virus. Detectors of immune memory live in system
long time and provide the protection against repeated
infection.

Figure 4 shows the performance of the immune
detectors based on neural network architecture.

Figure 4: The performance of immune detectors.

Let's note the basic differences of the proposed and
known algorithms. In our case each immune detector
is completely independent object, i.e. itself chooses the
scanning area. For this purpose it receives the list of
files stored on a hard disk and randomly chooses a file
from this list. After checking of file detector selects
randomly next file from the existing list. The
procedure is continued until the detector does not
detect malicious code or lifetime of the detector is not
finished yet. The key advantage of proposed neural
network artificial immune system (NAIS) is the ability
to detect novel malicious code, for which no signature
exists.

3 Neural network immune detector

The choice of neural network immune detectors
directly influences on the classification quality of
unknown patterns and malware detection. The AIS is
characterized by continuous evolution of immune
detectors (figure 1). Untrained detectors are incapable
of correct classification of legitimate and malicious
code. The complexity of learning process depends on
the size of training data set. Therefore we should
choose the type of neural network that is characterized
by minimal size of training set. As a basis of the
immune detector (NID) we will use counter-
propagation neural network. In comparison to another
types of neural networks for instance multi-layer
perceptron and multi-recurrent neural networks,
counterpropagation neural network is characterized by
minimal size of training data set.

Figure 5 shows the structure of immune detector,
which consists of three layers and arbiter.

Figure 5: The structure of NID.

The number of neurons of input layers is equal to size
of sliding window n (NID scans files by a sliding
window method).

The second layer consists of the competitive units.
This layer are trained, using the competitive learning
rule (winner-takes-all) and performs clusterization of
the input patterns. The number of units equals m and

m = p + r, (9)

where p – the number of the first neurons which
correspond to legitimate files; r – the number of last
neurons. The activity of these units characterizes the
class of malicious files.

The ratio of p to r should be multiple of 4 to 1 (for
example p = 8, r = 2)

.
1
4

=
r
p (10)

This ratio is obtained in accordance with the algorithm
of training data set generation and showed the best
results.

The third layer consists of two linear units. The
activity of the first unit characterizes the “clear”
legitimate pattern and activity of the second one
corresponds to malicious pattern. In general case the

.

.

.

 1

2

3

n

1

2

m

1

2
A

Z1

Z2

Yj

Yi

X

ωci

ω
ij

.

.

. Legitimate

Legitimate

Legitimate

1
2
.
n

Detector 1

0

1 Malicious

U
nd

er
-te

st

Fi
le

 1

1

0 Malicious

0

1 Malicious

1
2
.
n

U
nd

er
-te

st

Fi
le

 2

U
nd

er
-te

st

Fi
le

 m

Detector 2

Detector m

1
2
.
n

5

output value of j-th neuron of third layer is described
in accordance with equation (11).

If the winning neuron of competitive layer has number
k then the output value of j-th neuron is calculated by
equation (12).

,
1
∑
=

⋅=
m

i
iijj YY ω (11)

where ωij – weighting coefficient between i-th neuron
of competitive layer and j-th neuron of linear layer; m -
the number of units of competitive layer.

.kkjj YY ⋅= ω (12)

Eventually, for the correct mapping of input patterns
into two classes the matrix of weights of third layer
should be obtained as follows:

ωkj = 1 if k = 1,2,..,p and j=1, or k=p+1,..,r and j=2

ωkj = 0 if k = 1,2,..,p and j=2, or k=p+1,..,r and j=1
(13)

For example, if p = 8 and r = 2 then the matrix of
weights will be the following:









=

0000000011
1111111100TW (14)

The arbiter performs final decision about the class
(legitimate or malicious) of the under test file. The
output values of detector are obtained after analysis of
the checking file





=





=

.,0
,1

.,0
,1

2

1

otherwise
filemaliciousif

Z

otherwise
filelegitimateif

Z
 (15)

4 Performance of the immune
detector

The training data set consists of malicious and
legitimate files. Legitimate and malware patterns
contain accordingly 80% and 20% of learning samples
from whole training data set. This ratio 4/1 affects to
the proportion of “self” and “nonself” units in
competitive layer.

The training patterns for each detector are formed by
the following way:

1. Four legitimate files and one malicious file are
randomly chosen from training data set.

2. A fragments (vectors) of n size (n = size of
sliding window) are randomly chosen from the each
selected files. As a result are obtained learning set. The
number of training samples is equal L = 5·A.

The learned and selected NID scans the file memory
and performs the function of malicious code detection.
It should be noted that every NID is an independent
autonomous agent which chose the target files for
scanning by oneself.

The process of file scanning is performed by sliding
window technique. The size of window can be varied
within 128 and 512. These values are taken from the
traditional method of malware detection based on
signature analysis where similar sizes of signatures
guaranties exact malicious code detection. The
procedure of performance of neural network immune
detector can be represented as follows:

1. The initial values of units are set to 0

.0)1(

,0)1(

2

1

=−

=−

kY

kY
 (16)

2. The input patterns (k = 1…L, where L – the number
of patterns) from a checked file sequentially enter on
the immune detector and for each pattern the following
calculations are performed:

a. Euclidean distance between input pattern and
weights of competitive layer units;

b. the winning neuron with index k

.min jjk DD = (17)

c. the output values of linear units (equation 12);
d. the number of legitimate and malicious fragments of
under-test file

.)1()(

,)1()(

222

111
k

k

YkYkY

YkYkY

+−=

+−=
 (18)

3. The membership probability of under-test file into
legitimate or malicious class is calculates

%,1001

%,100

2

1

⋅=−=

⋅=

L
YPP

L
YP

TF

T
 (19)

where PT – the probability of legitimate file; PF – the
probability of malware.

5. The final decision is performed as follows:



 >

=



 >

=

.,0
%20,1

.,0
%80,1

2

1

otherwise
Pif

Z

otherwise
Pif

Z

F

T

 (20)

6

The space of output values of the arbiter can be
represented in the following form (table 1).

Table 1: The arbiter output values space.

Z1 Z2 Class
1 0 Clear
0 1 Malicious
0 0 Undefined

 If Z1 = 0 and Z2 = 0 then another NID for scanning
this file is assigned.

Let’s consider an example performance of NID, using
two files write.exe and Virus.Win32.VB.d. The NID
has next architecture: n = 256, m = 10, b = 2, where n
– the number of input units; m – the number of
competitive units; b – the number of output units. The
next four legitimate file – forcedos.exe, rspndr.exe,
share.exe, lpq.exe and one malicious file – Net-
Worm.Win32.Bozori.k are used for the NID training.
Let’s examine the inspection of write.exe. File. The
number of patterns (NID scans files using sliding
window technique) is computed as

L = S – n + 1 = 2402 – 256 + 1 = 2147, (21)

where S – file size; n – window size.

As a result the NID classifies 1084 fragments to
legitimate class and 343 fragments to malicious class.
Therefore probabilities of legitimate and malicious
class is

%.16%100
2147
343%1001

%,84%100
2147
1804%100

2

1

=⋅=⋅=−=

=⋅=⋅=

L
YPP

L
YP

TF

T
 (22)

Finally the arbiter performs decision as regards
maliciousness of the file:

Z1 = 1, since PT > 80%,

Z2 = 0, since PF < 20%.
(23)

Therefore Write.exe belongs to legitimate class.

In case of Virus.Win32.VB.d the number of windows is
equal to

L = S – n + 1 = 33330 – 256 + 1 = 33075, (24)

As a result the NID classifies 21499 fragments to
legitimate class and 11576 fragments to malicious
class. The probabilities of legitimate and malicious
classes is

%.35%100
33075
11576%1001

%,65%100
33075
21499%100

2

1

=⋅=⋅=−=

=⋅=⋅=

L
YPP

L
YP

TF

T
 (25)

And finally the arbiter makes a decision about
maliciousness of the file:

Z1 = 0, since PT < 80%,

Z2 = 1, since PF > 20%.
(26)

Therefore Virus.Win32.VB.d belongs to malicious
class.

This example shows that the proposed algorithm
permits to detect new malicious code.

5 Experimental results

We performed series of experiments for testing of
NAIS and comparison results of malicious code
detection with known anti-viruses software. Table 2
shows these results.

Table 2. The results of malware detection.

Malware Kaspersk
anti-virus Eset NOD32 Dr.Web NAIS

500 NID
Worm.Brontok.q worm win32/brontok worm malicious
Worm.NetSky.q worm win32/netsky worm malicious

Worm.Rays worm legitimate legitimate malicious
Worm.Zafi.d legitimate newheur_pe legitimate malicious
Worm.Zafi.f legitimate newheur_pe legitimate malicious

Worm.Bozori.a legitimate win32/bozori legitimate malicious
Worm.Bozori.k legitimate win32/bozori legitimate malicious

Worm.Lovesan.a worm win32/lovesan worm malicious
Worm.Maslan.a worm win32/maslan worm malicious
Worm.Mytob.a legitimate win32/mytob legitimate malicious
Worm.Sasser.a worm legitimate legitimate malicious

Packed.Tibs legitimate legitimate legitimate malicious
Trojan.Dialer.eb trojan legitimate legitimate malicious
Trojan.Small.kj trojan legitimate legitimate malicious
Trojan.Psyme.y legitimate legitimate legitimate malicious
Trojan.Adload.a trojan legitimate legitimate malicious

Trojan.Bagle.f legitimate win32/bagle legitimate malicious
Trojan.INS.bl trojan win32/trojan trojan malicious
Trojan.INS.gi trojan win32/trojan trojan malicious

Trojan.Ladder.a trojan win32/trojan trojan malicious
Trojan.Small.da trojan win32/trojan trojan malicious

Trojan.Small.dde trojan win32/trojan trojan malicious
Trojan.Small.dg trojan win32/trojan trojan malicious
Trojan.Agent.y trojan legitimate legitimate legitimate

Trojan.Daemon.a trojan legitimate trojan malicious
Trojan.Lager.d trojan win32/trojan trojan malicious

Trojan.Mitglied.o trojan win32/trojan trojan malicious
Trojan.Small.a trojan win32/trojan trojan malicious

Trojan.Antigen.a trojan legitimate legitimate malicious
Trojan.Fantast.3 legitimate legitimate legitimate malicious
Trojan.Hooker.2 trojan legitimate legitimate malicious
Trojan.LdPinch.f trojan win32/psw trojan malicious

Virus.Bee virus win32/virus virus malicious
Virus.Hidrag.d virus win32/virus virus malicious
Virus.Neshta.a virus win32/virus virus malicious

Virus.VB.d virus win32/virus virus malicious

This test presents the ability of conventional methods
for malware detection that use various anti-viruses to
detect novel malicious code. Therefore, in our tests all
used anti-viruses were with outdated signature bases
and most of presented malware were novel,
“unknown” as well as for NAIS. The presented
malware cover various classes such as viruses,
Trojans, worms etc.

7

Let’s analyze the results. Different anti-viruses showed
poor results: 75% detection from Kaspersky antivirus,
67% detection from NOD32 and 53% from Dr.Web.
Of course, small size of test sample cannot give exact
results. However if we address to figure 1 then we can
see the similar results. Thus, NAIS provide the best
results in task of novel malicious code detection. No
doubt, and we are sure that the increasing of number of
malware lead up to decreasing of rate of malware
detection by NAIS. But obtained results permit us to
conclude that NAIS provides better defense against
novel malicious code.

6 Conclusions

In this paper we present the neural network artificial
immune system for malware detection. Such system
consists of certain number of neural network detectors
and has ability to novel malware detection with low
false positive and false negative rates. Applying of the
NAIS for malicious code detection permits to expand
the possibilities of existing antivirus software and will
increase level of computer security.

References

1. Virus bulletin, http://www.virusbtn.com
2. Shafig, M., Tabish, S., Farooq, M.: On the

Appropriateness of Evolutionary Rule Learning
Algorithms for Malware Detection. In: 11th
Annual Conference Companion on Genetic and
Evolutionary Computation Conference, pp. 2609--
2616. ACM Press, New York (2009).

3. Edge, K., Lamont, G., Raines, R.: A Retrovirus
Inspired Algorithm for Virus Detection &
Optimization. In: 8th Annual Conference
Companion on Genetic and Evolutionary
Computation Conference, pp. 103--110. ACM
Press, New York (2006).

4. Lee, H., Kim, W., Hong, M.: Artificial Immune
System Against Viral Attack. In: Bubak, M. (eds.)

ICCS 2004. LNCS, vol. 3037, pp. 499--506.
Springer, Heidelberg (2004)

5. Harmer, P., Williams, P., Gunsch, G., Lamont, G.:
An Artificial Immune System Architecture for
Computer Security Applications. IEEE
Transactions on Evolutionary Computation. vol.
6(3), pp. 252--280 (2002)

6. De Castro, L., Timmis, J.: Artificial Immune
Systems: A New Computational Intelligence
Approach. Springer, London (2002)

7. Dasgupta, D.: Artificial Immune Systems and
Their Applications. Springer, Berlin (1999)

8. Marhusin, M., Cornforth, D., Larkin, H.: Malicious
Code Detection Architecture Inspired by Human
Immune System. In: 9th ACIS International
Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed
Computing, pp. 312--317. IEEE Press, Phuket
(2008)

9. Daoud, E.: Metamorphic Viruses Detection Using
Artificial Immune System. In: International
Conference on Communication Software and
Networks, pp. 168--172. IEEE Press, Macau
(2009)

10. Wang, W., Zhang, P., Tan, Y., He, X.: A
Hierarchical Artificial Immune Model for Virus
Detection. In: International Conference on
Computational Intelligence and Security, pp. 1--5.
IEEE Press, Beijing (2009)

11. Tesauro, G., Kephart, J., Sorkin, G.: Neural
Networks for Computer Viruses Recognition. IEEE
Expert. vol 11(4), 5--6 (1996)

12. Doumas, A., Mavroudakis, K.: Design of a Neural
Network for Recognition and Classification of
Computer Viruses. Computers & Security. vol.
14(5), 435-448 (1995)

13. Powers, S., He, J.: A Hybrid Artificial Immune
System and Self Organising Map for Network
Intrusion Detection. Information Sciences. vol.
178, 3024 – 3042 (2008)

http://www.virusbtn.com/vb100/rap-index.xml�

