
Supporting Coherence in Multi-Agent System:

 Related Temporal Difference with Influence Trace

Golovko Vladimir, Anton Kabysh

Moskowskaja 267, Brest 224017 Republic of Belarus

gva@bstu.by, anton.kabysh@gmail.com

Abstract

This paper covers area of Collective Reinforcement

Learning. We introduce and describe new simple

approach to Collective Reinforcement Learning

named Related Temporal Difference. This

approach can supports coherence of agent’s

behavior in distributed and structurally

complicated multi-agent system. We construct a

decentralized Multi-Agent system which describes

behaviors of multi-joint robot. Given experiments

show, that system of local learning procedures in

complex system can be much faster than learning

system on the whole.

1 Introduction

More and more, machine learning is being explored as

a vital component to address challenges in multi-agent

systems (MAS). For example, many application

domains are envisioned in which teams of software

agents or robots learn to cooperate amongst each other

and with human beings to achieve global objectives.

Learning may also be essential in many non-

cooperative domains such as economics and finance,

where classical game-theoretic solutions are either

infeasible or inappropriate. Teams of agents have the
potential for accomplishing tasks that are beyond the

capabilities of a single agent. An excellent and

demanding example of multi-agent cooperation is in

robot soccer.

At the same time, Multi-Agent learning (MAL) poses

significant theoretical challenges, particularly in

understanding how agents can learn and adapt in the

presence of other agents that are simultaneously

learning and adapting. This is a fertile area of research

that seems ripe for progress: the numerous and

significant theoretical developments of the 1990s, in
fields such as Bayesian, game-theoretic, decision-

theoretic, and evolutionary learning, can now be

extended to more challenging multi-agent scenarios

(Vidal 2009). The topic of this paper is combining

together Reinforcement Learning and Multi-Agent

Learning to achieve new level of collective behavior of

agents.

There are many principles and approaches to Multi-

Agent learning (Liviu Panait 2005; Eduardo Alonso

2001); there are some of them, important in this paper:

1. Some degree of decentralization of learning

process.

2. Interaction between agents during learning

process. Learning feedback (observer, critic,
teacher, e.t.c.).

3. Involvement of agents. Interconnections and

structure of Multi-Agent system must be

included in learning algorithm.

4. Learning in Multi-Agent systems is on

principle another kind of learning and

standard techniques of single learning must

be updated to use it into Multi-Agent systems.

We can use these principles as properties when we

design new Collective Learning algorithm. It next
sections we introduce new kind of Collective

Reinforcement Learning algorithm that correspond to

described principles and support’s coherence of agents

behavior into Multi-Agent Systems to produce

complex, synchronized actions of agents.

2 Reinforcement learning

Reinforcement learning is an approach to artificial

intelligence that emphasizes learning by the individual

from its interaction with its environment that produces

optimal behavior (A. G. Richard S. Sutton 1998). It is

often used for learning autonomous agents in unknown

environment. It emerged at the intersection of dynamic

programming, machine learning, biology, studies the
reflexes and reactions of living organisms (reflex

theory, animal cognition (Worgotter 2005, Dr.

Florentin Woergoetter 2008)). The core of all most

Reinforcement Learning methods is a Temporal

Difference (TD) learning (Sutton 1988, Barto 2007,

Peter Dayan 1994, Worgotter 2005). Usually, RL used

for learning autonomous agents, e.g. for robotics.

Classic RL-theory works only on MDP, so it widely

mailto:gva@bstu.by
mailto:anton.kabysh@gmail.com

used for learning in game theory, e.g. TD-Gammon

(Tesauro 1994). One iteration of RL-agent on MDP is

shown at fig. 1.

Figure 1: One iteration of Reinforcement Learning

SARSA algorithm (1). Where  – learning rate,  -

discount factor.

)()],()','([),(seasQasQrasQ   (1)

Agent does some action in particular state, goes to next

state and receives reward as a feedback of recent

action. During learning agent try to select the best

action in some state (best action usually more

rewarded in future). Learning goal is to approximate

Q-function (1), e.g. finding true Q-values of Q-

function for each action in every state.

Natural extension of standard RL algorithm is a

including eligibility traces - are one of the basic

mechanisms of reinforcement learning. Eligibility

trace is a temporary records of the occurrence of an

event, such as the visiting of a state or the taking of an

action. At every time step (when a TD error occurs),

only the eligible states or actions are updated (Fig. 2).

(a) (b)

Figure 2: Action values increase by (a) one-step
SARSA, (b) by SARSA with Eligibility Trace, λ=0.9

(adopted from (A. G. Richard S. Sutton 1998)).

)()],()','([),(seasQasQrasQ   (2)








1)(

)(
)(

se

se
se





oterwise

ssif t
 (3)

Formula (2) called for every previously visited state if

0)(se , where)(se - is a eligibility value,  - is

a eligibility discount factor.

Almost any temporal-difference method, such as Q-

learning or SARSA, can be combined with eligibility

traces to obtain a more general method that may learn

more efficiently. Its produce modified versions of

algorithms used in this work SARSA(λ) and Watkins-

Q(λ), Peng-Q(λ) and another.

There are many versions of RL algorithms for single

and collective learning (Bab A 2008). But standard RL

is limited to use in Multi-Agent RL (Eduardo Alonso,

2001; Liviu Panait, 2005; Dr. Florentin Woergoetter,

2008):

1. Learning time grown up with state-action space.

2. Curse of dimensionality as a legacy of dynamic

programming (A. G. Richard S. Sutton 1998);

3. Hard learning and convergence with function

approximations (linear and non-linear).

4. State-action space grown exponentially

depending on number of agents, and

generalization techniques need to be used to

avoid this problem (Tan 2005).

3 Collective reinforcement learning

In collective learning task we must learn agents

cooperatively, with other agents, including

interconnections into Multi-Agent System and used

rules of environment to produce expected behavior of

the agents. Every agent must learn rules of

environment, rules of Multi-Agent system, and their

own behavior scenario to acts correctly with other

agent and environment. Also, collective learning
includes synchronization sequences of agent’s actions

to produce complex intellectual behavior. It’s very

important emergent effects of collective reinforcement

learning.

In many articles collective reinforcement learning

shown in context of game theory for founding Nash

equilibrium point for group of agents. Works (Vidal

2009, Tan 2005, Yoav Shoham, Rob Powers, Trond

Grenager 2006) provided generalized view to this

approach, and (Stone. May 2007) pointed, that Multi-

Agent learning is a still open question.

The simplest form of collective reinforcement learning

named Joint Reinforcement Learning where the whole

Multi-Agent system learned as one agent.

Figure 3: Standard (left) and Joint (right) models of

Collective Reinforcement Learning

Like in standard RL model, every agent in Multi-

Agent system has state, and can select some action at

this state. We can collect all states into one composite

Multi-Agent system joint state s*(t). Also, if some

(may be all) agents in MAS produce actions at this

time step, we can collect these actions into one

composite joint action a*(t). Environment produce

composite state s*(t+1) and composite reward r*(t+1)

and distribute it into MAS. After this we can learn

MAS using every TD procedure in different ways.

1. Joint MAS learning. On Multi-Agent system

level we can learn total MAS updating
))(*),(*(tatsQ

2. Local-Joint Learning. We can learn every agent

locally updating))(),((tatsQ ii for every

contributed agent. To use second update rule
composite reward must be divided into sub

rewards for agents contributed to composite

action (agent must produce action) in previous

time step t.

There is no principal difference between Joint RL and

standard RL. Experiments with Joint-RL model have

shown convergence to minimum error value with

expected behavior of MAS. But, using this technique

we don’t avoid described limitations of RL. For Joint-

RL convergence time is very slow and very sensitive
to number of agents because we must search optimal

policy in multidimensional state action space, where

number of dimensions is equal to number of agents.

Following for state-space complexity we have problem

with function approximation (but generalization

potential is greater in this case). We can use different

selecting technique for building composite actions to

force search process, for example Genetic Algorithms

with chromosome represented by composite action.

Local-Joint learning can’t produce coherence structure

and synchronization between agents. There is no
information exchange between agents. Hence, Joint

RL can be successfully applied only for simple MAL

tasks, without deep synchronization and emergent

effects between agents, e.g. to learn simple swarm

agents.

Following for more complex Multi-Agent learning

task we need to develop new collective learning

techniques.

3.1 Related temporal difference learning

Related TD – is new adaptation of standard TD

technique for Multi-Agent system. If some problem
solved cooperatively by agents, and they must learned

together, so their learning is related to each other. In

this case, actions from one agent may be directed to

another agents (and change their states), not only to

environment or himself (as in standard RL model).

Let’s see to A and B - agents interconnected into one

Multi-Agent system. Agent A actions directed not to

environment, but to agent B. Agent A at state sa

execute action a over agent B, and set it into new state

sb. Agent B produce action b and execute it somewhere

(on another agent, or on environment). This situation is

shown at Fig. 4.

Figure 4: Related Temporal Difference update rule

Actions a and b has their Q-values Q(sa, a) and Q(sb,

b) respectively. Agent B sent to A feedback their Q-

value Q(sb, b) and reward r as a response to action a.
Receiving this feedback agent a can learn using

standard TD technique and can update their Q(sa, a).

Feedback reward r depends from agent B, and means

its reaction to action a . Receiving this feedback agent

A can learn using related TD update rule. Agent A

update their Q-value),(asQ a
 corresponding to

action a using formulas (4,5).

),(),(asQbsQr abAB   (4)

ABa asQ ),((5)

Formula (4) is a temporal difference error between

agent A and B. Part of (4),),(bsQr b - is a feedback

from agent, to which agent A influence. Update rule

(4) calculate TD error as measure of the inconsistency

of behavior policies between for agent A and B.

Illustrated situation shows learning between two

agents when state of one agent depends from actions

of another (interaction). The main idea of related TD

is that we suppose a),(bsQ b
- is a “future” Q-value of

agent A, and in this case RTD is equal to TD.

Feedback between agents included into update rule

produces coherence of their behaviors. In this

example, after learning, agent A will select actions that

put agent B in optimal state.

Described learning technique extends Temporal

Difference and adopts them to interactions in Multi-
Agent system. This technique looks to local

perspective and learn agents in multiagent system at

local level including interconnections with another

agents. Using related learning we can apply standard

RL model locally in multiagent system. It means that

we can learn agents one by one use only its local

interconnection with other agents in multiagent system

instead of learning system on the global level.

We have a few modifications of this technique with

including eligibility traces (we call them influence

traces) into update rule. Including eligibility traces we
can reduce decentralization of learning process and

propagate coherence relations more than between two

agents.

3.2 Related temporal difference learning with

influence trace

One of the biggest problems of collective learning – is

a decentralization of learning process. How efficient to

learn group of agent if they are structurally sparse far

away from each other. We use term coherence to refer

property of multiagent systems to be “as one

organism”. Such systems can easily produce

synchronized actions and have many interesting

properties.

Related TD with influence trace – it is a adaptation of
eligibility traces to related learning described in

previous section. We closely refer to idea of Eligibility

traces, but change the subject storing in the trace, and

way of propagation for trace. In original eligibility

traces we store in memory previously visited states

(see fig. 2), but in influence trace we store history (set)

of agent influences to each other, as number of RTD

procedures. Eligibility traces distributed in time,

Influence trace – in structure (and may be in time too).

For example, let’s see to more complicated and

distributed example from previous chapter. Introduce
one more agent C. This situation is shown at Fig. 5.

Figure 5: RTD with influence trace for agent C.

We have next scenario:

1. Agent A acts to agent B with Q(sa, a). Agent B

goes to state sb.

2. Agent B acts to agent C with Q(sb, b). Agent C

goes to state sc.

3. Agent C acts with action c to environment Env

and receive their reward.

4. Agent B produces feedback to agent A and

learns it using update rule (6).

1|)()),(),((),( dabba diasQbsQrasQ  (6)

5. Agent C produces feedback and reward to both

B and A agents, and learn it using extended
update rule (7-9).

1|)()),(),((),( dbccb dibsQcsQrbsQ  (7)

2|)()),(),((),( dacca diasQcsQrasQ  (8)

 1)( ddi  (9)

State of agent C depends from actions and states of

agents A and B, so it is forming their own influence

trace. We introduce parameter of influence distance

)(di that shows how far away structurally produced

influence to this agent. Influence value is reduced with

increasing influence distance between agents.

4 Experiments

To verify described RTD learning rule and compare

their efficiency with Joint-RL, we test these techniques

in Multi-Joined Robot (MJR) learning task. MJR

model is simple decentralized model, which simulate

robot arm with N-degrees of freedom, where N – is a

number agents in MAS. Every segment – is an
intellectual agent learned via Reinforcement Learning.

The goal of experiment is to learn MJR reach some

target point. This problem requires synchronization of

local agent behaviors.

4.1 Model of Multi-Joined robot

MJR contains one root segment R, several

intermediate segments S1, S2, … , Sm, and one terminal

segment T connected into chain from R to T (figure 1).

Every segment, excluding terminal, can rotate at full

circle (360 o) all next segments. At one time step each

segment, excluding terminal, can rotate all next

segments at 5 o to left or right, or do nothing.

First acts root segment R, then first intermediate S1,

then second S2, and so on, until Sm,. Root segment

can’t move, can’t be moved and don’t change their

position. Terminal segment verify reaching the target

and receive actions from previous segments that

change their own position.

Figure 6: Multi-Joined Robot with 4 segments R, S1,

S2, T. cba ,, - Agent actions. cba rrr ,, – Feedback

reward corresponds to actions.

Every segment – is an intellectual agent learned via

reinforcement learning. Goal of multi-agent system is

reaching a target grid. After learning MJR must reach

by oneself any acceptable target cell of grid world.

Used next learning procedure (one training start):

1. MJR moved to initial position.

2. Every segment selects and executes action in

order to structure of MJR. States of all next
agents are changed.

3. Terminal segment calculate distance to target

point.

4. If target is reached then MJR count grand-

prix reward and learned. Go to 1.

5. Else, terminal segment produce feedback

reward for previous agent to learn it.

Feedbacks are propagated into MJR, so

agents learn via RTD until root segment will

be reached.

6. If simulation time is ended (1000 simulation

steps) go to 1. If average RTD-Error (7)
lover than limit value, then learning is over.

7. Next time step. Go to 2

4.2 Experimental results

Learning time depends on number of segments, used

algorithm and values of RL configuration parameters.

RL parameters include:  (learning rate) = 0.05~0.1;

 (discount factor) = 0.7;  (eligibility discount

factor) = 0.7~0.99, d (influence discount factor) =

0.5~0.7

 (a) (b) (c)

Figure 5. Simulation of MJR in RepastJ simulation
environment. (a) – initial state of MJR. (b) –
successful learning, MJR reach the target. (c) –
unsuccessful learning of MJR.

Simulation of MJR behavior at first steps looks like
chaotic. During learning become synchronization of

behaviors between segments (successful learning) and

MJR successfully can reach the target. Sometimes (5%

of experiments) MJR can’t synchronize at all

(unsuccessful learning). In this case, behaviors of

different segments compensate each other, and MJR

can’t successfully move in consolidate direction. It is

some case of “learning deadlock” where robot can’t

get a new experience to break the lock.

Quality of convergence depends from number of

segments. If MJR have more than 7-10 segments then

probability of convergence is much lower. Actions in
the beginning of robot not synchronized with actions

in the end of robot. In this case need to develop new

techniques of learning for reducing complexity, or use

hierarchical reinforcement learning (modular influence

traces).

Figure 8: Average RTD error for one agent per

episode.

Fig. 8 shows efficiency of compassion Joint-RL (in

legend marked as JAL) and RL algorithms under

Related TD learning with influence traces. We can see

experimentally that techniques using principle of local

learning such as RTD and RTD convergence much

faster.

Behavior policy variously changed in way of use

different algorithms. RL algorithms with influence

tract (SARSA(λ), Watkins-Q(λ)) shown more smooth

behavior and better synchronization than algorithms

without it (Q-Learning). Another unobvious result was
seen in robot behavior. For algorithms with eligibility

traces robot prefer rotation about a fixed root point

with segment reconfiguration on new round to reach

the target. Nevertheless, for Q-Learning (without

eligibility traces) robot prefer reach the target in a

straight way.

Conclusion

This work suggests new approaches to Multi-Agent

Reinforcement Learning named Related Temporal

Difference. This technique was designed to change

standard Reinforcement Learning model in a best

essential way to Multi-Agent Learning. Using RTD we

can apply RL model between agents locally. We can

learn agents one by one only use its local

interconnection with each other, instead of learning

whole system on the global level, as JAL approach. An

experimental result shows faster convergence for CTD

approach than for JAL in Multi-Joined Robot learning.

There are many different reward-count strategies in

this MJR task. For example, we don’t regulate how

robot reaches the target. In future experiments we can

calculate additional reward for “speed” or “beauty” of

target reaching for robot. It is a topic of future
experiments.

References

Bab A, Brafman R I. "Multi-Agent Reinforcement

Learning in Common Interest and Fixed Sum

Stochastic Games: An Experimental Study." Journal

of Machine Learning Research 9, 2008: 2635-2675.

SARSA

Q-Learning

Watkins-Q

SARSA

Barto, Dr. Andrew G. " Temporal difference learning."

Scholarpedia.org. 2007.

http://www.scholarpedia.org/article/Temporal_differen

ce_learning.

Chris J.C.H. Watkins, Peter Dayan. "Reinforcement

Learning." Encyclopedia of Cognitive Science (Wiley),

2002.

Dr. Florentin Woergoetter, Dr. Bernd Porr.

"Reinforcement Learning ."

http://www.scholarpedia.org. 2008.

http://www.scholarpedia.org/article/Reinforcement_lea
rning.

Eduardo Alonso, Mark D’Inverno, Daniel Kudenko,

Michael Luck, Jason Noble. "Learning in Multi-Agent

Systems." Science Report, Discussion. UK’s Special

Interest Group on Multi-Agent Systems, 2001.

Greenwald A., Hall K. "Correlated-Q learning." In

Proceedings of the Twentieth International Conference

on Machine Learning, 2003: pages 242–249.

John N. Tsitsiklis, Benjamin Van Roy. "An Analysis

of Temporal-Difference learning with Function

Approximation." IEEE Transactions on Automatic
Control, 1997: 674-690.

Junling Hu, Michael P Wellman. "International

Conference on Machine Learning." Multiagent

Reinforcement Learning - Theoretical Framework and

an Algorithm. 1998.

Junling Hu, Michael P Wellman. "Nash Q-Learning

for general-sum stochastic games." Journal of

Machine Learning Research, 4, 2003: 1039–1069.

Kabysh A., Golovko V. "Proceedings of the Tenth

International Conference “Pattern Recognition and

Image Processing” PRIP2009." Collective Behavior in

Multiagent Systems Based on Reinforcement Learning.
Minsk, Republic of Belarus, 2009.

Littman, Michael L. "Firend-or-foe Q-learning in

general-sum games." 18-tn Conference on Machine

Learning (Morgan Kaufman), 2001: pages 322 – 328.

Littman, Michael L. "In Proceedings of the 11th

International Conference on Machine Learning (ML-

94)." Markov games as a framework for multi-agent

reinforcement learning. New Brunswick, NJ: Morgan

Kaufman, 1994. pages 157–163.

Liviu Panait, Sean Luke. "Cooperative Multiagent

Learning: The State of Art." Autonomous Agents and
Multiagent Systems, Volume 11, 2005 : 387-434.

Parashkevov, Ivo. "Joint Action Learners in

Competitive Stochastic Games." Thesis. Cambridge,

Massachusetts, 2007.

Peter Dayan, Terrence J Sejnowski. "TD(lamda)

Converges with Probability 1." 1994.

Richard S. Sutton, Andrew G. Barto, Ronal J.

Williams. "Reinforcement Learning is Direct Adaptive

Control." American Control Conference. Boston,

1991.

Richard S. Sutton, Andrew G. Barto. "Reinforcement

Learning: An Introduction." (MIT Press.) 1998.

Schneider, Markus. "Reinforcement Learning with

RBF-Networks." Scientific Project, University of

Applied Sciences Weingarten, 2006.

Stone., Peter. "Multiagent learning is not the answer. It

is a question." Artificial Intelligence, 171, May 2007 :

402 – 405.

Sutton, Richard S. "Learning to Predict by the

Methods of Temporal Differences." Machine

Learning, 3, 1988: 9-44.

Tan, Ming. "Multiagent Reinforcement Learning.

Independent vs Cooperative Agents." Autonomous
Agents and Multiagent Systems, v.10 n.3, 2005: 273-

328.

Tesauro, G. J. "TD-gammon, a self-teaching backgam-

mon program, achieves master-level play. ." Neural

Computa-tion, 6(2),

(http://www.research.ibm.com/massive/tdl.html) ,

1994: 215-219.

Vidal, Hose M. Fundamentals of Multiagent Systems

with Net Logo Examples. www.multiagent.com, 2009.

Watkins, Chris J.C.H. Learning from Delayed

Rewards. PhD Thesis, University of Cambridge.

Watkins, Christopher J.C.H. "Technical Note Q-
Learning." Machine Learning 8, 1992: 279-292.

Worgotter, F. and Porr, B. "Temporal sequence

learning, prediction and control - A review of different

models and their relation to biological mechanisms."

Neural Computation, Volume 17, 2005: 245-319.

Yoav Shoham, Rob Powers, Trond Grenager. "If

multi-agent learning is the answer, what is the

question." Journal of Artificial Intelligence, 2006.

