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Abstract 

This paper covers area of Collective Reinforcement 

Learning. We introduce and describe new simple 

approach to Collective Reinforcement Learning 

named Related Temporal Difference. This 

approach can supports coherence of agent’s 

behavior in distributed and structurally 

complicated multi-agent system. We construct a 

decentralized Multi-Agent system which describes 

behaviors of multi-joint robot. Given experiments 

show, that system of local learning procedures in 

complex system can be much faster than learning 

system on the whole.   

1   Introduction 

More and more, machine learning is being explored as 

a vital component to address challenges in multi-agent 

systems (MAS). For example, many application 

domains are envisioned in which teams of software 

agents or robots learn to cooperate amongst each other 

and with human beings to achieve global objectives. 

Learning may also be essential in many non-

cooperative domains such as economics and finance, 

where classical game-theoretic solutions are either 

infeasible or inappropriate. Teams of agents have the 
potential for accomplishing tasks that are beyond the 

capabilities of a single agent. An excellent and 

demanding example of multi-agent cooperation is in 

robot soccer. 

At the same time, Multi-Agent learning (MAL) poses 

significant theoretical challenges, particularly in 

understanding how agents can learn and adapt in the 

presence of other agents that are simultaneously 

learning and adapting. This is a fertile area of research 

that seems ripe for progress: the numerous and 

significant theoretical developments of the 1990s, in 
fields such as Bayesian, game-theoretic, decision-

theoretic, and evolutionary learning, can now be 

extended to more challenging multi-agent scenarios 

(Vidal 2009). The topic of this paper is combining 

together Reinforcement Learning and Multi-Agent 

Learning to achieve new level of collective behavior of 

agents.  

There are many principles and approaches to Multi-

Agent learning (Liviu Panait 2005; Eduardo Alonso 

2001); there are some of them, important in this paper: 

1. Some degree of decentralization of learning 

process. 

2. Interaction between agents during learning 

process. Learning feedback (observer, critic, 
teacher, e.t.c.). 

3. Involvement of agents. Interconnections and 

structure of Multi-Agent system must be 

included in learning algorithm.  

4. Learning in Multi-Agent systems is on 

principle another kind of learning and 

standard techniques of single learning must 

be updated to use it into Multi-Agent systems. 

 

We can use these principles as properties when we 

design new Collective Learning algorithm. It next 
sections we introduce new kind of Collective 

Reinforcement Learning algorithm that correspond to 

described principles and support’s coherence of agents 

behavior into Multi-Agent Systems to produce 

complex, synchronized actions of agents.  

2   Reinforcement learning  

Reinforcement learning is an approach to artificial 

intelligence that emphasizes learning by the individual 

from its interaction with its environment that produces 

optimal behavior (A. G. Richard S. Sutton 1998). It is 

often used for learning autonomous agents in unknown 

environment. It emerged at the intersection of dynamic 

programming, machine learning, biology, studies the 
reflexes and reactions of living organisms (reflex 

theory, animal cognition (Worgotter 2005, Dr. 

Florentin Woergoetter 2008)). The core of all most 

Reinforcement Learning methods is a Temporal 

Difference (TD) learning (Sutton 1988, Barto 2007, 

Peter Dayan 1994, Worgotter 2005). Usually, RL used 

for learning autonomous agents, e.g. for robotics. 

Classic RL-theory works only on MDP, so it widely 
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used for learning in game theory, e.g. TD-Gammon 

(Tesauro 1994). One iteration of RL-agent on MDP is 

shown at fig. 1.  

 

Figure 1: One iteration of Reinforcement Learning 

SARSA  algorithm (1). Where  – learning rate,  - 

discount factor.  
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Agent does some action in particular state, goes to next 

state and receives reward as a feedback of recent 

action. During learning agent try to select the best 

action in some state (best action usually more 

rewarded in future). Learning goal is to approximate 

Q-function (1), e.g. finding true Q-values of Q-

function for each action in every state.  

Natural extension of standard RL algorithm is a 

including eligibility traces - are one of the basic 

mechanisms of reinforcement learning. Eligibility 

trace is a temporary records of the occurrence of an 

event, such as the visiting of a state or the taking of an 

action. At every time step (when a TD error occurs), 

only the eligible states or actions are updated (Fig. 2).  

 

(a)   (b) 

Figure 2: Action values increase by (a) one-step 
SARSA, (b) by SARSA with Eligibility Trace, λ=0.9 

(adopted from (A. G. Richard S. Sutton 1998)). 
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Formula (2) called for every previously visited state if 

0)( se , where )(se  - is a eligibility value,    - is 

a eligibility discount factor. 

Almost any temporal-difference method, such as Q-

learning or SARSA, can be combined with eligibility 

traces to obtain a more general method that may learn 

more efficiently. Its produce modified versions of 

algorithms used in this work SARSA(λ) and Watkins-

Q(λ), Peng-Q(λ) and another. 

There are many versions of RL algorithms for single 

and collective learning (Bab A 2008). But standard RL 

is limited to use in Multi-Agent RL (Eduardo Alonso, 

2001;  Liviu Panait, 2005; Dr. Florentin Woergoetter, 

2008):  

1. Learning time grown up with state-action space. 

2. Curse of dimensionality as a legacy of dynamic 

programming (A. G. Richard S. Sutton 1998);  

3. Hard learning and convergence with function 

approximations (linear and non-linear). 

4. State-action space grown exponentially 

depending on number of agents, and 

generalization techniques need to be used to 

avoid this problem (Tan 2005). 

3   Collective reinforcement learning  

In collective learning task we must learn agents 

cooperatively, with other agents, including 

interconnections into Multi-Agent System and used 

rules of environment to produce expected behavior of 

the agents. Every agent must learn rules of 

environment, rules of Multi-Agent system, and their 

own behavior scenario to acts correctly with other 

agent and environment. Also, collective learning 
includes synchronization sequences of agent’s actions 

to produce complex intellectual behavior. It’s very 

important emergent effects of collective reinforcement 

learning.  

In many articles collective reinforcement learning 

shown  in context of game theory for founding Nash 

equilibrium point for group of agents. Works (Vidal 

2009, Tan 2005, Yoav Shoham, Rob Powers, Trond 

Grenager 2006) provided generalized view to this 

approach, and (Stone. May 2007 ) pointed, that Multi-

Agent learning is a still open question.  

The simplest form of collective reinforcement learning 

named Joint Reinforcement Learning where the whole 

Multi-Agent system learned as one agent. 

 

Figure 3: Standard (left) and Joint (right) models of 

Collective Reinforcement Learning 

Like in standard RL model, every agent in Multi-

Agent system has state, and can select some action at 

this state. We can collect all states into one composite 

Multi-Agent system joint state s*(t). Also, if some 

(may be all) agents in MAS produce actions at this 



time step, we can collect these actions into one 

composite joint action a*(t). Environment produce 

composite state s*(t+1) and composite reward r*(t+1) 

and distribute it into MAS. After this we can learn 

MAS using every TD procedure in different ways. 

1. Joint MAS learning. On Multi-Agent system 

level we can learn total MAS updating 
))(*),(*( tatsQ  

2. Local-Joint Learning. We can learn every agent 

locally updating ))(),(( tatsQ ii for every 

contributed agent. To use second update rule 
composite reward must be divided into sub 

rewards for agents contributed to composite 

action (agent must produce action) in previous 

time step t. 
 

There is no principal difference between Joint RL and 

standard RL. Experiments with Joint-RL model have 

shown convergence to minimum error value with 

expected behavior of MAS. But, using this technique 

we don’t avoid described limitations of RL. For Joint-

RL convergence time is very slow and very sensitive 
to number of agents because we must search optimal 

policy in multidimensional state action space, where 

number of dimensions is equal to number of agents. 

Following for state-space complexity we have problem 

with function approximation (but generalization 

potential is greater in this case). We can use different 

selecting technique for building composite actions to 

force search process, for example Genetic Algorithms 

with chromosome represented by composite action.  

Local-Joint learning can’t produce coherence structure 

and synchronization between agents. There is no 
information exchange between agents. Hence, Joint 

RL can be successfully applied only for simple MAL 

tasks, without deep synchronization and emergent 

effects between agents, e.g. to learn simple swarm 

agents.  

Following for more complex Multi-Agent learning 

task we need to develop new collective learning 

techniques.  

3.1   Related temporal difference learning 

Related TD – is new adaptation of standard TD 

technique for Multi-Agent system. If some problem 
solved cooperatively by agents, and they must learned 

together, so their learning is related to each other.  In 

this case, actions from one agent may be directed to 

another agents (and change their states), not only to 

environment or himself (as in standard RL model).  

Let’s see to A and B - agents interconnected into one 

Multi-Agent system. Agent A actions directed not to 

environment, but to agent B.  Agent A at state sa 

execute action a over agent B, and set it into new state 

sb. Agent B produce action b and execute it somewhere 

(on another agent, or on environment). This situation is 

shown at Fig. 4.  

 

Figure 4: Related Temporal Difference update rule 

Actions a and b has their Q-values Q(sa, a) and Q(sb, 

b) respectively. Agent B sent to A feedback their Q-

value Q(sb, b) and reward r as a response to action a. 
Receiving this feedback agent a can learn using 

standard TD technique and can update their Q(sa, a). 

Feedback reward r depends from agent B, and means 

its reaction to action a .  Receiving this feedback agent 

A can learn using related TD update rule. Agent A 

update their Q-value ),( asQ a
 corresponding to 

action a  using formulas (4,5). 
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Formula (4) is a temporal difference error between 

agent A and B. Part of (4), ),( bsQr b  - is a feedback 

from agent, to which agent A influence. Update rule 

(4) calculate TD error as measure of the inconsistency 

of behavior policies between for agent A and B.  

Illustrated situation shows learning between two 

agents when state of one agent depends from actions 

of another (interaction).  The main idea of related TD 

is that we suppose a ),( bsQ b
- is a “future” Q-value of 

agent A, and in this case RTD is equal to TD. 

Feedback between agents included into update rule 

produces coherence of their behaviors. In this 

example, after learning, agent A will select actions that 

put agent B in optimal state.  

Described learning technique extends Temporal 

Difference and adopts them to interactions in Multi-
Agent system. This technique looks to local 

perspective and learn agents in multiagent system at 

local level including interconnections with another 

agents. Using related learning we can apply standard 

RL model locally in multiagent system. It means that 

we can learn agents one by one use only its local 

interconnection with other agents in multiagent system 

instead of learning system on the global level.  

We have a few modifications of this technique with 

including eligibility traces (we call them influence 

traces) into update rule. Including eligibility traces we 
can reduce decentralization of learning process and 

propagate coherence relations more than between two 

agents. 



3.2   Related temporal difference learning with 

influence trace 

One of the biggest problems of collective learning – is 

a decentralization of learning process. How efficient to 

learn group of agent if they are structurally sparse far 

away from each other. We use term coherence to refer 

property of multiagent systems to be “as one 

organism”. Such systems can easily produce 

synchronized actions and have many interesting 

properties. 

Related TD with influence trace – it is a adaptation of 
eligibility traces to related learning described in 

previous section. We closely refer to idea of Eligibility 

traces, but change the subject storing in the trace, and 

way of propagation for trace. In original eligibility 

traces we store in memory previously visited states 

(see fig. 2), but in influence trace we store history (set) 

of agent influences to each other, as number of RTD 

procedures. Eligibility traces distributed in time, 

Influence trace – in structure (and may be in time too).   

For example, let’s see to more complicated and 

distributed example from previous chapter. Introduce 
one more agent C. This situation is shown at Fig. 5.   

 

Figure 5: RTD with influence trace for agent C. 

We have next scenario: 

1. Agent A acts to agent B with Q(sa, a). Agent B 

goes to state sb. 

2. Agent B acts to agent C with Q(sb, b). Agent C 

goes to state sc. 

3. Agent C acts with action c to environment Env 

and receive their reward. 

4. Agent B produces feedback to agent A and 

learns it using update rule (6). 
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5. Agent C produces feedback and reward to both 

B and A agents, and learn it using extended 
update rule (7-9). 
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State of agent C depends from actions and states of 

agents A and B, so it is forming their own influence 

trace. We introduce parameter of influence distance 

)(di  that shows how far away structurally produced 

influence to this agent. Influence value is reduced with 

increasing influence distance between agents.  

4   Experiments 

To verify described RTD learning rule and compare 

their efficiency with Joint-RL, we test these techniques 

in Multi-Joined Robot (MJR) learning task. MJR 

model is simple decentralized model, which simulate 

robot arm with N-degrees of freedom, where N – is a 

number agents in MAS. Every segment – is an 
intellectual agent learned via Reinforcement Learning. 

The goal of experiment is to learn MJR reach some 

target point. This problem requires synchronization of 

local agent behaviors.  

4.1   Model of Multi-Joined robot 

MJR contains one root segment R, several 

intermediate segments S1, S2, … , Sm, and one terminal 

segment T connected into chain from R to T (figure 1).  

Every segment, excluding terminal, can rotate at full 

circle (360 o ) all next segments. At one time step each 

segment, excluding terminal, can rotate all next 

segments at 5 o to left or right, or do nothing.  

First acts root segment R, then first intermediate S1, 

then second S2, and so on, until Sm,. Root segment 

can’t move, can’t be moved and don’t change their 

position.  Terminal segment verify reaching the target 

and receive actions from previous segments that 

change their own position.  

 

Figure 6: Multi-Joined Robot with 4 segments R, S1, 

S2, T.   cba ,, - Agent actions. cba rrr ,,  – Feedback 

reward corresponds to actions. 

Every segment – is an intellectual agent learned via 

reinforcement learning. Goal of multi-agent system is 

reaching a target grid. After learning MJR must reach 

by oneself any acceptable target cell of grid world. 

Used next learning procedure (one training start): 

1. MJR moved to initial position.  

2. Every segment selects and executes action in 

order to structure of MJR. States of all next 
agents are changed. 



3. Terminal segment calculate distance to target 

point. 

4. If target is reached then MJR count grand-

prix reward and learned. Go to 1.  

5. Else, terminal segment produce feedback 

reward for previous agent to learn it. 

Feedbacks are propagated into MJR, so 

agents learn via RTD until root segment will 

be reached.   

6. If simulation time is ended (1000 simulation 

steps) go to 1. If average RTD-Error (7) 
lover than limit value, then learning is over.  

7. Next time step. Go to 2 

 

4.2   Experimental results 

Learning time depends on number of segments, used 

algorithm and values of RL configuration parameters.  

RL parameters include:   (learning rate) = 0.05~0.1; 

 (discount factor) = 0.7;  (eligibility discount 

factor) = 0.7~0.99, d (influence discount factor) = 

0.5~0.7 

 

      (a)        (b)   (c) 

Figure 5. Simulation of MJR in RepastJ simulation 
environment. (a) – initial state of MJR. (b) – 
successful learning, MJR reach the target. (c) – 
unsuccessful learning of MJR. 

Simulation of MJR behavior at first steps looks like 
chaotic. During learning become synchronization of 

behaviors between segments (successful learning) and 

MJR successfully can reach the target. Sometimes (5% 

of experiments) MJR can’t synchronize at all 

(unsuccessful learning). In this case, behaviors of 

different segments compensate each other, and MJR 

can’t successfully move in consolidate direction. It is 

some case of “learning deadlock” where robot can’t 

get a new experience to break the lock.  

Quality of convergence depends from number of 

segments. If MJR have more than 7-10 segments then 

probability of convergence is much lower. Actions in 
the beginning of robot not synchronized with actions 

in the end of robot. In this case need to develop new 

techniques of learning for reducing complexity, or use 

hierarchical reinforcement learning (modular influence 

traces). 

 

Figure 8: Average RTD error for one agent per 

episode.  

Fig. 8 shows efficiency of compassion Joint-RL (in 

legend marked as JAL) and RL algorithms under 

Related TD learning with influence traces. We can see 

experimentally that techniques using principle of local 

learning such as RTD and RTD convergence much 

faster.  

Behavior policy variously changed in way of use 

different algorithms. RL algorithms with influence 

tract (SARSA(λ), Watkins-Q(λ)) shown more smooth 

behavior and better synchronization than algorithms 

without it (Q-Learning). Another unobvious result was 
seen in robot behavior. For algorithms with eligibility 

traces robot prefer rotation about a fixed root point 

with segment reconfiguration on new round to reach 

the target. Nevertheless, for Q-Learning (without 

eligibility traces) robot prefer reach the target in a 

straight way. 

Conclusion 

This work suggests new approaches to Multi-Agent 

Reinforcement Learning named Related Temporal 

Difference. This technique was designed to change 

standard Reinforcement Learning model in a best 

essential way to Multi-Agent Learning. Using RTD we 

can apply RL model between agents locally. We can 

learn agents one by one only use its local 

interconnection with each other, instead of learning 

whole system on the global level, as JAL approach. An 

experimental result shows faster convergence for CTD 

approach than for JAL in Multi-Joined Robot learning.  

There are many different reward-count strategies in 

this MJR task. For example, we don’t regulate how 

robot reaches the target. In future experiments we can 

calculate additional reward for “speed” or “beauty” of 

target reaching for robot. It is a topic of future 
experiments.  
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