
Improved Sorting Methodology of Data-processing
Instructions

Andrii Borovyi1, Volodymyr Kochan2, Theodore Laopoulos1, Anatoly Sachenko2

1Electronics Lab, Physics Dept., Aristotle University, 54124, Thessaloniki, Greece

e-mail: aborovyi@physics.auth.gr, laopoulos@physics.auth.gr
2Research Institute of Intelligent Computer Systems, Ternopil National Economic University

3, Peremoha Sq., Ternopil, Ukraine
e-mail: oko@tneu.edu.ua, as@tneu.edu.ua

Abstract

An improved classification methodology for sorting
data-processing instructions for ARM7TDMI CPU
core is presented in this paper. Main discussion is
related to the process of creating appropriate
training sets for neural network (NN) based
estimation of power consumption. Proposed
instructions' sorting according to the binary
instruction representation and according to the
resources being used for the overall system model.
Separate instructions groups are obtained for NN-
based estimation of power consumption.
Experimental results of the proposed method
confirm successful usage of this sorting
methodology for providing high-accuracy
estimation about power consumption.

1 Introduction

One of the problems, which require detailed analysis
during the design of embedded and autonomous
systems, is power-aware design. Latest publications in
this area [1], [2] describe the need for the accurate
power consumption estimation not only during the
design process, but as well as during the normal usage
of the final devices. Important advantage of this
research is possible power-aware design not only for
the hardware, but for the software also. Proposed
approach is based on that well-known fact, that power
consumption of the CPU is determined by the
currently running routines.

There are known power-optimization methods [3] [4]
which are based on the fastest running of the routines
and putting microprocessor into power-saving mode
(usually, by disconnecting unused blocks of the CPU).
These methods are highly effective when the program
must run few times, and it doesn't involve detailed

analysis of CPU's analysis of operation according to
the power-consumption.

In a previous publication of the same group [5]
different measurement issues have been presented,
along with results of measurement data analysis [6].
The estimation methodology was mainly presented in
these papers, while the explicit data representation of
the instructions was not examined. Consequently the
error level of the analysis remained higher that it was
expected, mainly due to the simple representation
approach for the instructions’ information. By
contrast, an improved data sorting and analysis
methodology will be represented in this paper aiming
to complete the approach of using neural networks for
the software-related power consumption estimation
[7].

2 Analysis

Artificial neural networks are proposed to be used in
the present approach. The well known ARM7TDMI
CPU core will be used as a test bench in this work.
The power consumption for all types of instructions
within its 32-bit set will be explored. Data-processing
instructions are forming the biggest instruction group
within the ARM7TDMI ARM Instruction Set, as well
as the most-used during the regular routines usage [8].
That's why these instructions must be analysed in
first-time order.

In order to minimize amount of real measurements,
and avoid using only simulations, different data-
estimation methods have been used during previous
work of the Ukrainian group of authors [9]. The
estimation of the accuracy of the calculations and
testing is complex, because the information about the
measurement methodology is not very clear [10].
According to the results of the previous work it was
decided to use preliminary sorting methodology
related to the maximum available data (maximum bits
amount, that are used during the instruction forming,
processing and execution) as well as grouping various

instructions within separate subgroups, according to
their power consumption performance. Because of
these reasons the total amount of required real
measurements is expected to decrease drastically.

The term "base power consumption" has been
proposed in [10] for each instruction for simplifying
estimations of the mathematical model development. It
refers to power consumed by CPU during the
execution of the instruction with its minimum values
(zero values). Therefore, the appropriate amount of
"basic" instructions has been written, according to the
[7]. These instructions either described zero immediate
values within the instruction or operated with the
registers, which internal values has been equal to zero.

We have been trying to estimate power consumption
of the CPU, using the approach that has been described
above for the present research as well. Also we are
taking into account only operation code and addressing
mode, because all other values remained the same and
didn't change. Doing so, all instructions of interest
obtained decimal values (from 0 to 15) according to
their OpCode value. Addressing modes were
enumerated in the same way, but according to the
order as mentioned in [10]. Power consumption
estimation has been implemented within the
MATLAB environment using “nntoolbox package”,
and neural networks correspondingly. Yet, the results
became unstable (maximum estimation error rapidly
changed) and unacceptable (error changed from 10%
to 1000%). Thus, extra research effort on a more
efficient representation of obtained data is required.

Analysis of the obtained data has shown that internal
features of the data representation are not taken into
account during data processing. These features should
be considered during the analysis of the instructions'
binary code that is processing by the CPU core. All the
instructions within this research are existent and valid
for the 32-bit mode of the CPU (ARM mode) and their
length is 32-bits. Therefore the detailed analysis of
instructions' internal representation has been provided
(with the disassembler that accompanies the ARM
Developer Suite) and common bits were marked.

The analysis [9] discovered that gathering instructions
into separate groups is an effective way in terms of
power consumption. Using this fact, the following
three groups were created (according to the second
operand value):

1. instructions with the second operand as
immediate value;

2. instructions with the second operand as
register or register shifted to the immediate
value;

3. instructions with the second operand as
register or register shifted to the register.

We should note that proposed method for sorting
instructions excludes a description of the redundant
data, allowing instructions definition in fixed format,
and decreasing noises amount for NN (Table 1).

Table 1. Preliminary results of CPU power
consumption during the data-processing instructions.

Parameter Value

Architecture of neural network 6-8-1

Vectors amount in training set 12

Vectors amount in verification set 12

Mean square error 10-8

Training epochs 20785

Average training error 0,0 %

Maximum training error 0,1 %

Average estimation error 2,7 %

Maximum estimation error 5,2 %

Despite of the acceptable value of NN's average
estimation error, as in shown in Table 1, the
maximum estimation error remains high, therefore
training set must be analysed further in order to
remove data with noise. The ARM Assembler syntax
as well as data binary representation has been taken
into account during the creation of the new training
set. According to the syntax the three following
subgroups were created:

1. instructions where all three operands are
used for data processing;

2. instructions where both the destination and
the second operands only are used for data
processing;

3. instructions where both the first and the
second operands only are used for data
processing.

Thus, after the analysis nine subgroups for data-
processing instructions were formed, according to the
syntax and the maximum length of the second
operand to the each of those has its own unique
structure and requires separate NN for power
estimation.

Such grouping may be seen in Table 2.

Table 2. Data-processing instructions, according to
predefined criteria

Registers used within the instructions

All
registers

A
destination
and a second
register

A first
and a
second
register

96 bits

128 bits

A
m

o
u

n
t o

f
u

se
d

 b
its

160 bits

ADD,
SUB, RSB,

ADC,
SBC, RSC,

AND,
ORR,

EOR, BIC

MOV, MVN

CMP,
CMN,
TST,
TEQ

3 Architecture of neural network

According to the above analysis, the appropriate
architecture for the neural network is developed. The
input layer has 6 neurons, the hidden one - 4 neurons
and output layer has 1 neuron. Its output value will
correspond to the power consumption of the CPU.
Multilayer perceptron has been used as non-linear
activity function. This model is very simple, as well as
universal model for the estimations [11], [12]. Output
value for the three-layer perceptron can be defined
with the next equation:








 −∑ ThwF=y i

N

=i
i33

1

,

where N ― amount of the neurons at hidden layer,

i3w ― weight of the synapse from hidden neuron i ,

to the output layer, ih ― output value of the neuron

і , T ― threshold for output neuron, and 3F ―

activity function for the output neuron.

Output value for hidden neuron j can be estimated

with the next equation:








 −∑ ji

M

=i
ij2j TxwF=h

1

,

where ijw ― weight coefficient for connection

between input neuron i and hidden neuron j , ix ―

input values, and jT ― threshold of hidden neuron

j . Activity function for the hidden layer will be

sigmoid, and activity function for the output layer will

be linear function with the k coefficient [13].

The back-propagation algorithm [14] has been used as
training algorithm. This algorithm is based on
gradient decreasing method and provides iterating
procedure for renewal of weights and thresholds for

each vector p from the training set:

()
()tw

tE
α=∆w

ji,

p

ji, ∂
∂− ,

() ()
()tT

tE
α=t∆T

j

p

j ∂
∂− ,

where α training coefficient,
()
()tw

tE

ji,

p

∂
∂

 and

()
()tT

tE

j

p

∂
∂

― function error gradients at iteration t for

training vector p , { }P,p 1,...∈ , where P ― size

of the training set.

Mean-square error for iteration t is estimating
according to the next equation:

() () ()()2

2

1
tdty=tE ppp − ,

where ()ty p is outputting value for iteration t , and

()td p
― target outputting value for the training

vector p .

During the training process, overall error is estimated
as:

() ()tE=tE
P

=p

p∑
1

The steepest descent method for calculating the
learning rate [13] is used for removing the classical
disadvantages of the back propagation error
algorithm. Thus, the adaptive learning rates for the
logistic and linear activation functions are given,
respectively, by:

()
()()()

()() () ()()

()() ()() ()()2
2

1

2

1

2

2

1

1

1

4

ththtγ

ththtγ

tx+
=tα

p
j

N

=i

p
j

p
j

p
j

p
j

N

j=

p
j

p
i

−








−

∑

∑

()
()() 1

1

1

2
+th

=tα
N

=i

p
i∑

,

where, for the training vector p and iteration t ,

()tγ
p
j ― is the error of neuron j and p

jh ― is the

input signal of the linear neuron.

The error of neuron i with logistic activation function
can be determined by the expression:

() () () ()()ththtwtγ=γ
p
j

p
ii3

N

=j

pp
j −∑ 1

1
3 ,

where () () ()tdty=tγ
ppp −3 is the error of the

output neuron, i3w ― is the weight of the synapses

between the neurons of the hidden layer and the output
neuron.

The described algorithms of NN have been
implemented in routine for estimating power
consumption of the CPU.

4 NN verification results
The next step in the described procedure is to form
groups according to the proposed method of the
sorting instructions and taking into account available
data about CPU's "basic" power consumption during
the data-processing instructions execution:

 1. Arithmetic-logic instructions (10 instructions):

 1.1. 96 bits - 10 vectors;

 1.2. 128 bits - 60 vectors;

 1.3. 160 bits - 40 vectors.

 2. Movement instructions (2 instructions):

 2.1. 64 bits - 2 vectors;

 2.2. 96 bits - 12 vectors;

 2.3. 128 bits - 8 vectors.

 3. Comparing and testing instructions (4
instructions):

 3.1. 64 bits - 4 vectors;

 3.2. 96 bits - 24 vectors;

 3.3. 128 bits - 16 vectors.

Taking into account, that maximum available data for
creating training and verification sets have been
obtained for subgroup 1.3, it has been decided to
perform power analysis for this subgroup.

Research results are represented in Table 3.

Table 3. NN-prediction of power consumption

Architecture of neural network 20

Vectors amount in training set 20

Vectors amount in verification set 2

Mean square error 13

Training epochs 10-6

Average training error 11444

Maximum training error 0,20%

Average estimation error 0,60%

Maximum estimation error 1,80%

Architecture of neural network 5,30%

Comparing results, provided in Tables 1 and 3, it is
observed, that proposed sorting methodology provides
decreasing of average predicting error up to 1,8% that
is much better than in the previous results.

Partial output of the NN verification is provided in
Table 4.

Table 4. Partial verification results for the NN

Number Real Predicted Abs. Err. Rel. Err.

22 0,926 0,894 -0,032 3,50%

23 1,01 1,066 0,054 5,30%

24 0,82 0,810 -0,005 0,60%

25 1,12 1,118 0,002 0,01%

5 Conclusions and future works
Improved data processing methodology has been
proposed. This methodology is based on accounting
Assembler syntax of the instruction as well as used
resources. Gathering instructions into groups provided
exclude extra "noises" from the data, describing only
required resources. NN-based estimation of power
consumption confirmed decreasing of average
estimation error. Increasing of maximum estimation
error for 0,1% can be explained with the absence of
exact description of all the fields of the instructions
(in terms of data).

Future research will be focused on estimating power
consumption while the instructions will be in different
states, not only in "basic" one. It may implement
deeper usage of NN, providing more accurate
estimation.

References

1. Nikolaidis S., Chatzigeorgiou A., and
Laopoulos Th., "Developing an Environment
for Embedded Software Energy Estimation",
Computers, Standards and Interfaces, Vol.28,
N.2, 2005

2. Kavvadias N., Neofotistos P., Nikolaidis S.,
Kosmatopoulos C., and Laopoulos Th.,
"Measurements Analysis of the Software-
Related Power Consumption of
Microprocessors”, IEEE Transactions on
Instrumentation and Measurement, Vol.53, N.
4, 2004

3. Carlo Brandolese, William Fornaciari, and
Fabio Salice. Ultra Low-Power Electronics
and Design, chapter Source-Level Models for
Software Power Optimization, pages 156–
171. Politecnico di Torino, Italy, 2004.

4. M. F. Jacome, A. Ramachandran. Power
Aware Embedded Computing // Embedded
Systems Handbook Zurawski, R. (ed.) CRC
Taylor & Francis, 2006, P. 16-1 - 16-17

5. A. Borovyi, V. Konstantakos, V. Kochan et
al. Analysis of CPU's instructions energy
consumption device circuits // The fourth
IEEE international workshop on Intelligent
Data Acquisition and Advancing Computing
Systems (IDAACS 2007): Proceedings. —
Dortmund, Germany, September 9–11, 2007.
—P. 42—47. — ISBN 978-1-4244-1347-8

6. A. Borovyi, V. Konstantakos, V. Kochan et
al. Using Neural Network for the Evaluation

of Power Consumption of Instructions
Execution // The Fifth International
Instrumentation and Measurement
Technology Conference (I2MTC'2008):
Proceedings. — Vancouver Island, Victoria,
British Columbia, Canada, May 12—15,
2008. — P. 676—681.

7. ARM Limited, editor. ARM Architecture
Reference Manual. Number ARM DDI
0100I. ARM Limited, 2007.

8. S. Segars. ARM7TDMI Power
Consumption. IEEE MICRO, 17(4):12–19,
July– Aug. 1997.

9. A. Borovyi, O. Havryshok, V. Kochan, Z.
Dombrovsky Development Problems of The
CPU Power Consumptionm Model //
Proceedings of the 10th International
Scientific Conference "Modern Information
and Electronic Technologies", May 18-22
2009, Ukraine. Vol. 1, P. 157 (in Ukrainian)

10. Nikolaidis S., Kavvadias N., Laopoulos T.,
Bisdounis L., Blionas S., “Instruction-level
energy modeling for pipelined processors”,
Journal of Embedded Computing (special
issue on Low-Power Design), Cambridge
International Science Publishing (CISP),
N.3, 2004

11. K. Hornik, M. Stinchcombe, and H. White.
Multilayer feedforward networks are
universal approximators// Neural Networks.-
1989.- #2, P.359-366.

12. Simon Haykin. Neural Networks and
Learning Machines, 3rd Edition, Prentice
Hall, 2008. 936 pages.

13. V. Golovko, Neural Networks: training,
models and applications. Radiotechnika.
Moscow, 2001, P. 256. (In Russian).

14. D. Rumelhart, G. Hinton, R. Williams.
Learning representation by back-propagation
errors // Nature.- #323.- 1986.- P. 533-536.

