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Abstract 

The urgency of modeling cognitive evolution that is 
modeling evolution of animal cognitive abilities is 
underlined. Three initial models of autonomous 
agents that have elementary cognitive features are 
described. The first model describes emergence of 
action sequences of the single self-leaning agent 
that exists in two-dimensional cellular 
environment. The second model is devoted to 
adaptive behavior of agents that have natural needs 
(feeding, division and safety). The interaction 
between evolutionary optimization and learning 
processes in evolving population of autonomous 
agents is analyzed in the third model. The models 
demonstrate the formation of agent adaptive 
behavior. The simple cognitive features of agents 
are formed, namely, relations between situations 
and agent behavior are memorized in agent control 
systems. Further directions of modeling cognitive 
evolution are proposed. 

1   Introduction 

Investigation of cognitive evolution, evolution of 
animal cognitive features is very interesting and 
urgent. Studies of cognitive evolution are related with 
a very profound epistemological problem: why is 
human mind applicable to cognition of nature? In 
order to investigate the problem seriously, it is 
reasonable to analyze it by means of mathematical and 
computer models. Modeling cognitive evolution, we 
can analyze, why and how did animal and human 
cognitive features emerge, how did applicability of 
human mind to cognition of nature origin. So, this 
modeling is related with foundation of science, 
cognitive science and epistemological studies. 
Fortunately, there is a direction of research “Adaptive 
Behavior” (Meyer and Wilson, 1991; Donnart and 
Meyer, 1996) that is in close relation with modeling 
cognitive evolution. Using models of adaptive 
behavior, it is possible to analyze main steps of 
cognitive evolutions from simple forms of adaptive 
behavior to human deductive methods (Red’ko, 2008). 

The current work describes three models of initial 
steps of cognitive evolution studies. Elementary 
cognitive features of autonomous agents are analyzed 
in these models. It should be noted that similar 
intelligent agents were investigated previously 
(Wooldrodge, 1999). However, autonomous agents of 
the current work are designed using minimal 
assumptions; the cognitive properties of studied agents 
could naturally emerge in biological evolution.  

The paper is organized as follows. Section 2 describes 
the model of emergence of action sequences of an 
autonomous agent that exists in two-dimensional 
cellular environment. The model of adaptive behavior 
of autonomous agents that have natural needs (feeding, 
division and safety) is designed and investigated in 
Section 3. Interaction between evolutionary 
optimization and learning processes in an evolving 
population of autonomous agents is analyzed in 
Section 4. In particular, the genetic assimilation of 
acquired features of agents during a number of 
generations of Darwinian evolution (the Baldwin 
effect) is observed at computer simulations in this 
model. Finally, further steps of modeling cognitive 
evolution are discussed in Section 5. 

2   Generation of chains of actions 

The computer model of adaptive behavior of the single 
self-leaning agent in the two-dimensional cellular 
environment is designed and investigated below. An 
agent control system is based on sets of logic rules that 
have the following form “If the situation S takes place, 
then it is necessary to execute the action A.” The agent 
control system is optimized by means of reinforcement 
learning (Sutton and Barto, 1998). The formation of 
chains of actions leading to the increase of agent 
resource is demonstrated by computer simulations. 

2.1   Description of the model 

It is supposed that the autonomous agent “lives” in the 
two-dimensional cellular environment. The agent has 
the direction “forward”. In fixed number of cells there 
are portions of food of the agent. The agent has 
resource R(t) that is increased at eating of food and is 
decreased at execution of actions by the agent. The 



 

 

time t is discrete, t = 0,1,… The two-dimensional 
environment consists of NxNy cells. 

Each time moment the agent executes one of following 
five actions: eating food, moving into the forward cell, 
turning right or left, resting. The control system of the 
agent is a set of logic rules similar to rules of 
classifying systems (Holland et al, 1986). 

Executing the action “eating”, the agent eats the whole 
portion of food in its cell. After removing the food 
portion at this eating, the new portion of food is placed 
in a random cell. 

The agent control system ensures its action selection. 
The control system of the agent consists of the set of 
rules that have the following form: 

  Sk  Ak ,                             (1) 

where Sk and Ak are the situation and the action 
corresponding to the rule, k is the number of the rule. 
Each rule has the weight Wk ; weights of rules are 
modified at agent learning. Components of the vector 
Sk are equal to 0 or 1. Values 0 and 1 correspond to 
presence and absence of a portion of food in a certain 
cell of “the field of vision” of the agent. The field of 
vision of the agent includes four cells: its own cell, the 
forward cell and two cells to right and to left from the 
agent. 

Each time moment the agent executes one action and 
is learned too. The action for the execution A* is 
selected as follows. If there are rules corresponding to 
the current situation S(t) (i.e. Sk = S(t)), then the action 
A* is chosen in accordance with the ε-greedy method 
(Sutton and Barto, 1998): the action A* = Ak 
corresponding to the rule that has maximal Wk is 
chosen with the probability 1-ε, the arbitrary action A* 
is chosen with the probability ε (0 < ε < 1). If there is 
no rule corresponding to the current situation S(t), then 
the arbitrary action A* is chosen. If the rule S(t)  A* 
is absent in the agent control system, then the new rule 
S(t)  A* is formed; the initial weight of this rule W is 
equal to 0. The selected action A* is executed.  

The annealing method (Kirkpatrick et al, 1983) was 
used at computer simulation: at t = 0 it was set ε = 1, 
then the value ε was exponentially decreased to zero; 
the characteristic time of ε reduction was 1000 time 
steps. At initial steps of simulation, rules were formed; 
at t  >> 1000 actions were selected according to rule 
weights. 

The rule weights Wk of the agent are adjusted by 
means of reinforcement learning (Sutton and Barto, 
1998): 

     ΔW(t-1) = α [R(t) - R(t-1) + γW(t) - W(t-1)] ,       (2) 

where W(t-1) and W(t) are weights of rules that are 
used at time moments t-1 and t, respectively, R(t-1) 
and R(t) is agent resource at these time moments, α is 
the learning rate, γ is the discount factor; 0 < α << 1,   

0 < γ < 1, 1-γ << 1. The rule weights that lead to 
growth of agent resource are increased during learning. 

2.2   Simulation results 

The main parameters of simulations were as follows. 
The environment consisted of 100 cells (Nx = Ny = 10); 
portions of food were distributed in 50 random cells. 
The increase of agent resource at eating was 1. The 
decrease of the agent resource at any action was equal 
to 0.01. The initial value of resource of the agent (at      
t = 0) was R = 1.  

Simulations demonstrated that initially unknown 
chains of agent actions, leading to food finding, were 
formed. The example of time dependence of agent 
resource R(t) is shown on Figure 1. 
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Figure 1: Time dependence of resource R(t) of the 

single self-learning agent. 

The each situation S(t) is determined by food 
presence/absence in 4 cells of agent field of vision, so 
there are 16 possible situations and 5 possible actions; 
consequently, there are 80 possible rules. In any 
simulation, the total number of the rules generated by 
the agent was 80. However, weights of these rules 
were varied by means of reinforcement learning, and 
at the end of a simulation only 16 rules were mainly 
used. The set of these selected rules can be considered 
as the following agent heuristics: 1) if a portion of 
food is present in the same cell where the agent is 
placed, then the agent executes the action “eating”; 2) 
if there is no food in the agent cell, and there is food in 
a cell that is forward or right/left with respect to the 
agent cell, then the agent executes the action “moving 
forward” or “turning right/left”, respectively; 3) if 
there is no food in the agent field of vision, then the 
agent prefers the searching action “moving forward”. 
We can note that the action “resting” is ignored in all 
situations. Hence, during learning, the autonomous 
agent forms quite natural heuristics, that define 
reasonable chains of actions resulting to reaching and 
eating of food. 

Thus, the model demonstrates generation of effective 
action chains resulting to the increase of agent 
resource. 



 

 

3 Several needs of agents 

The current computer model describes adaptive 
behavior of autonomous agents that have several 
natural needs (feeding, reproduction, safety). The 
model is similar to the described one in the previous 
section. The time t is discrete, t = 0,1,…  The agent 
control system is a set of rules, characterized by the 
Eq. (1). The rule weights Wk are adjusted both by 
reinforcement learning (in accordance with the Eq. 
(2)), and in the course of evolutionary optimization. 

The main particularizes of the current model are as 
follows. The external world consists of two cells: one 
is dangerous for agents and the other is safe. The status 
of cells is changed with period TD time steps: the 
dangerous cell becomes the safe one, and the safe cell 
becomes the dangerous one. The agent in the 
dangerous cell loses resource rD each time moment t. 
Each time moment the agent executes one of the 
following of 4 actions: division, eating, moving to 
another cells, resting. The agent sensory system 
determines the situation S(t). Vector S(t) has 3 binary 
components (0 or 1) that determine the following: 1) 
does amount of food in the external world exceed the 
certain threshold fth , 2) does agent resource R(t) 
exceed the threshold rth , 3) where is the agent in the 
moment t: in the safe cell or in the dangerous cell. As 
the total number of different situations is 8 and the 
number of actions is 4, the whole number of rules is 
32. The initial weights of these rules {W0k} constitute 
the genome of the agent. This genome is received by 
the agent from its parent (with small mutations). The 
temporary rule weights {Wk}, which are used by the 
agent at action selection, are adjusted by reinforcement 
learning. So, each agent has two sets of rule weights: 
initial weights {W0k} that are not modified during 
agent life and temporary adjusted rule weights {Wk}. 
At the moment of agent birth the temporary weights 
are equal to the initial ones: {Wk} = {W0k}. In odder to 
consider restricted lifetime of agents, it is supposed 
that any agent dies at small probability Pd (Pd << 1) 
each time moment. If resource of the agent becomes 
smaller than Rmin , then this agent dies. 

The decrease of the agent resource R(t) at performance 
of one of actions “division”, “eating”, “moving to 
another cell”, and “resting” is equal to rd , re , rt , and  
rr , respectively. The increase of the agent resource 
R(t) at eating is equal to reat . Actions “division” and 
“eating” correspond to needs of reproduction and 
feeding. The action “moving” corresponds to the need 
of safety, as it can provide movement of the agent 
from the dangerous cell into the safe cell. At action 
selection ε-greedy method is used. 

The main simulation parameters were as follows. The 
resource decrease at any action was equal to 0.01: rd = 
re = rt = rr = 0.01. The period of status change of cells 
(dangerous ↔ safe) was TD = 100. The reduction of 

agent resource in the dangerous cell was rD = 10. The 
increase of agent resource at eating was reat = 10. The 
probability of a random death of the agent was Pd = 
0.001. Parameters of reinforcement learning were α = 
0.1 and γ = 0.9. The parameter of the ε-greedy method 
was ε = 0.1. Thresholds Rmin , fth , rth did not influence 
strongly on agent behavior; in typical simulations 
these values were: Rmin = 0, fth = 10, rth = 1. The 
control system of each agent consisted of 32 possible 
rules; at the start of simulations weights W0k of all 
rules were small and random. The variations of these 
weights at mutations were uniformly distributed in the 
interval [-0.5Pm, 0.5Pm], where Pm is the intensity of 
mutations, Pm = 0.1. 

Using special choice of parameters, following three 
cases were analyzed: 

Case LE (learning + evolution), i.e. full model, with 
the parameters described above. 

Case L (pure learning); in this case the intensity of 
mutations was zero: Pm = 0. 

Case E (pure evolution), in this case the intensity of 
learning and the parameter of greedy method were 
zero: α = 0 and ε = 0. 

According to simulations, learning (the case L) ensures 
quicker finding of asymptotic form of behavior as 
compared with evolutionary optimization (the case E). 
The asymptotic behavior was reached during 5000 and 
100000 time steps for the cases L and E, respectively. 
Behavior of agents in the case LE (the full model) was 
similar to that of in the case L. 

In the case L actions of agents in the stationary mode 
(at t > 5000) were distributed as follows. The action 
“resting” was executed by 25% of agents of the 
population, the action “eating” was executed by 70% 
of agents; the action “division” was executed by 3% of 
agents. Just after changing the danger status of cells 
(5-10 time steps), the frequency of the action 
“division” did not vary essentially, and frequencies of 
actions “resting” and “eating” decreased to 5% and 
30%, respectively. The frequency of the action 
“moving” just after changing the danger status of cells 
increased from 5% to 60%.  

In the case E actions of agents in the stationary mode 
(at t ≈ 200000) were distributed as follows. The action 
“resting” was executed by 5% of agents of the 
population, the action “eating” was executed by 55% 
of agents; the action “division” was executed by 40% 
of agents. Just after changing the danger status of cells, 
the frequency of the action “division” was decreased to 
5%, and frequencies of actions “resting” and “eating” 
decreased, but only in small amount (about 5%). The 
frequency of the action “moving” just after changing 
the danger status of cells was increased from almost 
zero value to 40%.  



 

 

So, dynamics of actions of agents in cases L and E 
were similar. The main difference consisted in 
relatively large frequency of the action “division” in 
the case of pure evolution. 

In the case LE (the full model) frequencies of actions 
of agents were approximately the same as in the case 
L. 

Thus, simulations demonstrate formation of rather 
natural behavior of agents. It is essential that 
reproduction plays an important role at evolutionary 
optimization. Evolutionary optimization is slower as 
compared with learning. When learning and 
evolutionary optimization function together, learning 
plays a dominant role and simulation results in case of 
the full model are close to results in the case of pure 
learning. 

4 Interaction between learning and 
evolution 

The computer model of agents which are similar to the 
biological organisms adapting to change of 
temperature Т in environment is designed and 
analyzed in this section. The control system of an 
agent is based on neural network adaptive critic 
designs (Prokhorov and Wunsch, 1997). The control 
system ensures forecasting of Т changes and agent 
movement in accordance with temperature changes. 
Agent behavior is adjusted by means of reinforcement 
learning and evolutionary optimization. The 
interaction between learning and evolution is analyzed. 
The Baldwin effect is demonstrated: certain acquired 
features (obtained by means of learning) of agents can 
be genetically assimilated during several generations 
of Darwinian evolution. 

The Baldwin effect (Baldwin, 1896; Turney et al, 
1996) that is the genetic assimilation of acquired 
features during a number of generations of Darwinian 
evolution is well known. The operation of this effect 
includes two stages. At the first stage, evolving 
organisms obtain (owing to appropriate mutations) a 
property to learn some useful features. Fitness of such 
organisms increases; hence, they are distributed in the 
population. But learning has some disadvantages: it 
demands energy and time. Therefore the second stage 
(the genetic assimilation) is possible: useful features 
can “be reinvented” by evolutionary processes and 
these features can be directly coded in genomes of 
organisms. 

In the article (Red’ko et al, 2005), the Baldwin effect 
was demonstrated for the model of agents-brokers. 
However, the model of agents-brokers is too far from 
biology. The current model is closer to biological 
organisms.  

 

4.1   Description of the model 

The model is based on the following analogy. Modeled 
“lizards” that adapt to temperature changes are 
considered. The adaptation essence consists in the 
following. There are two places, which lizards can 
choose: 1) a place on a stone, 2) a place in a burrow. 
The natural behavior is as follows. At large 
temperature the lizard heats on the stone, at low 
temperature it gets into the burrow and keeps its body 
warm. 

A lizard uses its control systems to choose a place. The 
control systems of agents-lizards are based on neural 
network adaptive critic design (Prokhorov and 
Wunsch, 1997). The agent control system is optimized 
by means of reinforcement learning and Darwinian 
evolution.  

The temperature of environment Text (the temperature 
on a stone) is determined by time series Text(t), t = 
0,1,2... The current situation S(t) is determined by two 
values Text(t) and P(t), S(t) = {Text(t),P(t)}, where P(t) 
is the parameter of the position of a lizard. It is 
supposed that P(t) = 0 if the lizard is in a burrow, and 
P(t) = 1 if the lizard is on a stone. Actions of the lizard 
consist in a choice of its position P(t+1) in the next 
time moment. 

It is supposed that there is some optimum temperature 
of lizard body T0 and when the lizard is in the burrow 
its temperature is close to T0 ; though the environment 
temperature influences slightly on the temperature in 
the burrow. So, the temperature in burrow Tint(t) is the 
following:  

                Tint(t) = T0 + k1 [Text(t) - T0] ,               (3) 

where k1 is small positive parameter, 0 < k1 <<1.  

The reinforcement r(t), which is received by a lizard at 
the time moment t, is proportional to the difference 
T(t) - T0 , where T(t) is the current temperature in that 
place where the lizard is in the moment t: 

                      r(t) = k2 [T(t) – T0] ,              (4) 

where k2 > 0. For simplicity we suppose that the lizard 
predicts Text(t), and Tint(t) can be estimated by it 
according to the Eq. (3). 

4.1.1   Control system of the agent-lizard 

The control system of the agent-lizard is intended for 
maximization of the utility function U(t) (Sutton and 
Barto, 1998): 
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where r(t) is the current reinforcement determined by 
the Eq. (4), γ is the discount factor (0 < γ < 1,              
1-γ << 1).  



 

 

The control system of the agent consists of two neural 
networks (NNs): the model and the critic. The model 
NN predicts dynamics of the environment temperature 
Text(t). The critic NN estimates the utility function U 
for the current situation S(t), predicted situations for 
two possible positions of the agent in the next time 
step, and the next situation S(t+1). 

4.1.2   Operation and learning of the agent 
control system 

Inputs of the model NN are m previous values of 
temperature Text(t-m+1),…,Text(t), this NN predicts the 
environment temperature in the next time moment 
Tpr

ext(t+1). The model is the two-layer NN that 
operates according to formulas: 

xM = {T ext(t-m+1),…,T ext(t)},   yM
j = tanh (∑ i wM

ij xM
i), 

 Tpr
ext (t+1) = ∑ j vM

j yM
j , 

where xM is the input vector, yM is the vector of 
outputs of neurons of the hidden layer, wM

ij and vM
j are 

synaptic weights of the model NN. 

The critic NN is intended for the estimation of quality 
of a situation V(S(t)), namely, the estimation of the 
utility function U(t) for the agent in the situation S(t). 
The critic is the two-layer NN that operates according 
to formulas: 

xC = S(t) = {Text(t), P(t)},   yСj = tanh (∑ i wС
ij xСi), 

V(t) = V(S(t)) = ∑ j vСj yСj , 

where xC is the input vector, yC is the vector of outputs 
of neurons of the hidden layer, wC

ij and vM
j are 

synaptic weights of the critic NN. 

Following operations are carried out in the agent 
control system each time moment t: 

1) The model NN predicts the external temperature in 
the next time moment Tpr

ext(t+1).  

2) The critic NN estimates the value V for the current 
situation V(t) = V(S(t)) and for predicted situations for 
both possible actions Vpr

P(t+1) = V(Spr
P(t+1)), where 

Spr
P(t+1) = {Tpr

ext(t+1),P(t+1)}, P(t+1) = 0 or P(t+1) = 
1.  

3) The ε-greedy method is applied (Sutton and Barto, 
1998): the action corresponding to the maximum value 
Vpr

P(t+1) is chosen with probability 1-ε, the alternative 
action is chosen otherwise (0 < ε << 1). The action 
choice is the selection of the value P(t+1). 

4) The chosen action P(t+1) is carried out. The 
transition to the next time moment t+1 occurs. The 
reinforcement r(t+1) in accordance with the Eq. (4) is 
obtained by the agent. The real value Text(t+1) is 
observed and compared with the prediction Tpr

ext(t+1). 
The synaptic weights of the model NN are adjusted to 
minimize the error of the prediction by means of the 
usual back-propagation method (Rumelhart et al, 

1986). The learning rate of the model NN is equal to 
αM . 

5) The quality of the next situation is estimated by the 
critic NN: V(t+1) = V(S(t+1)); S(t+1) = {Text(t+1), 
P(t+1)}. The time difference error δ(t) is calculated 
(Sutton and Barto, 1998): 

                 δ(t)  = r(t+1) + γV(t+1) – V(t) .               (6) 

6) The synaptic weights of the critic NN are adjusted 
to minimize the time difference error δ(t); this 
adjustment is carried out by the gradient method, 
similar to the back-propagation method. The learning 
rate of the critic NN is equal to αC . 

4.1.3   The evolution scheme  

In addition to agent learning, the evolutionary 
optimization of control systems of agents takes place. 
The evolving population consists of n agents. Each 
agent has its resource R(t) that changes according to 
reinforcements: R(t+1) = R(t) + r(t), where r(t) is  
determined by the Eq. (4). Evolution passes through a 
number of generations, ng = 1, 2,… Duration of each 
generation ng is Tg time steps (Tg is lifetime of the 
agent). At the beginning of each generation, initial 
resource of any agent R(t) is zero. At the end of each 
generation the agent having maximum resource 
Rmax(ng) (the best agent of the generation ng) is 
determined. This best agent gives birth to n 
descendants that constitute the next generation. 

Each agent has two sets of synaptic weights of both 
NNs: G and W. The set G are initial NN synaptic 
weights that are received by the agent at the moment 
of its birth from the agent-parent. This set G is the 
agent genome that does not vary during its life. The set 
W are temporary NN synaptic weights that are 
adjusted during the agent life by means of learning. At 
the moment of the agent birth W = G. Descendants of 
the agent inherit its genome G (with small mutations). 
As the genome G is inherited, the evolution process 
has Darwinian character.  

4.2   Simulation results 

The main parameters of computer simulations are the 
following: the discount factor γ = 0.9; the number of 
inputs of the model NN m = 10; the number of neurons 
in the hidden layers of the model and critic NNs NhM = 
NhC = 10; the learning rate of the model and critic NNs 
αC = αC = 0.01; the parameter of the ε-greedy method ε 
= 0.05; the intensity of mutations Pmut = 0.1; the 
duration of a generation Tg = 1000, the population size 
n = 10. 

The time dependence of the external temperature is the 
sinusoid: 

Text (t) = 0.5sin(2πt/20) + T0 ,   T0 = 1.5. 



 

 

In order to compare learning and evolutionary 
optimization the following cases (similar to cases of 
the previous section) were analyzed: 

Case L (pure learning); in this case single self-learning 
agent was considered; 

Case E (pure evolution), i.e. evolving population of 
agents without learning; 

Case LE (learning + evolution), i.e. the full model 
described above. 

The values of resource obtained by agents during 1000 
time steps for these three cases are compared. For 
cases E and LE the generation duration was Tg = 1000, 
and the maximum value of agent resource in the 
population Rmax(ng) at the end of each generation was 
registered. In the case of L (pure learning) a single 
agent was analyzed. The resource of this agent was set 
to be zero every 1000 time steps: R(Tg(ng-1)+1) = 0. In 
this case the index ng was increased by 1 after every Tg 
time steps, and it was set Rmax(ng) = R(Tgng).  

The plots Rmax(ng) are shown in Figure 2 that 
demonstrates that learning together with evolution (the 
case LE), ensures more effective growth Rmax as 
compared with learning or evolution separately (cases 
L and E). The curves are averaged over 1000 
simulations. 
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Figure 2: The plots Rmax(ng). 

The obvious influence of leaning on evolutionary 
processes was often observed in simulations. The 
essential growth of resource of the best agent began 
with certain time delay (200-400 time steps). This 
means that the agent learnt initially to get satisfactory 
behavioral policy, and only after several generations 
the resource growth began from the start of a 
generation. This phenomenon can be interpreted as the 
Baldwin effect: initially acquired (via learning) 
property to obtain resource became inherit during 
several generations. The example of this phenomenon 
is shown in Figure 3. This figure demonstrates 
resource dynamics R(t) for the best agent of the 
population during five generations. 

Figure 3 shows that during early generations 
(generations 1 and 2), any significant increase of agent 
resource begins only after a lag of 200 to 500 time 
steps. The best agent optimizes its policy by learning. 
Subsequently, the best agents find an advantageous 
policy faster and faster. By the fifth generation, a 
newborn agent “knows” a decent policy because it is 
encoded in its genome G, and the learning does not 
improve the policy significantly. Thus, Figure 3 
demonstrates that the initially learned policy becomes 
inherited (the Baldwin effect).  
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Figure 3: Time dependence of the best agent resource 
R(t) during five generations. The case LE. 

So, simulations show that the strategy initially 
obtained by means of learning, becomes inherited 
though evolution has Darwinian character. It should be 
underlined that the genetic assimilation of initially 
acquired features in the current model can take place 
quickly: during only 3-5 generations of Darwinian 
evolution. 

5   Further steps 

The described models characterize elementary 
cognitive features. Autonomous agents memorize 
relations between situations and useful actions that 
should be executed in these situations. These relations 
are stored in the form of set logical rules (in the first 
and second models) or by means of neural networks 
(in the third model). What should be further steps of 
modeling more effective cognitive features? Let us 
consider several directions of further research. 

The interesting property of considered autonomous 
agents is generation of five simple heuristics by single 
self-learning agent in the first model. These heuristics 
generalize sensory information. Using such 
generalization and certain prediction of action results, 
it could be possible to form plans of behavior. 

The second interesting direction of research is to 
investigate more powerful models of adaptive agents 
that have natural needs. The simplest forms of natural 
needs are analyzed in the second model. Now it is 
reasonable to develop further this approach. 



 

 

Along with interesting behavior of evolving population 
of self-leaning agents in the third model, this model 
outlines rather intelligent agent control system. In 
particular, the control system provides certain 
prediction of future and some knowledge about 
interaction of an agent and its environment. More 
effective control systems could use similar 
architectures. 
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