

Kalman Gain Calculations with a Neural Network

Ensar Gul
Marmara University

Dept. of Computer Engineering,
Goztepe Kampusu, Kadıkoy, Istanbul, Turkey

ensar.gul@marmara.edu.tr

Abstract

In Kalman filtering, a novel approach is presented
to replace a part of the Kalman gain calculations
with a neural network. The proposed algorithm
avoids matrix inversion in the Kalman filter, hence
eliminating the problems encountered.

1 Introduction

Since the publication of R. Kalman`s well known
paper [1] on the solution of discrete data linear
filtering problem, thousands of scientific papers
related to Kalman filtering and its applications were
published. Very detailed and excellent materials on
Kalman filter can be found in [2], [3], [4], [5],[6] and
[7]. A discrete time process is modeled as

1k k nx x w+ = Φ +Γ , (1)

with a measurement vector z

1 1 1n n nz Hx v+ + += + . (2)

Where, the random variables wk and vk assumed to be
independent each other represent the process and
measurement noise respectively with covariance
matrices Qk and Rk respectively. Φ is an nxn state
transition matrix, Γ is an nxm excitation matrix. H is
the mxn measurement matrix. Before the
measurements arrival the Kalman filter updates state
vector and covariance matrix of prediction as (time
update equations):

1/ˆ ˆk k kx x+ = Φ � (3)

1/
T T

k k k kP P Q+ = Φ Φ +Γ Γ � (4)

Kalman filter calculates new state vector using the
Kalman gain and measurements and updates the
covariance matrix of estimation as (measurement
update equations).

1 1 1/
T

k k k kB R HP H+ + += + � (5)

1
1 1/

T
k k kK P H B−
+ += � (6)

1 1/ 1 1 1/ˆ ˆ ˆ()k k k k k k kx x K z Hx+ + + + += + − � (7)

1 1 1/()k k k kP I K H P+ + += − . (8)

If we look at the Kalman filtering equations above, the
matrices are manipulated by multiplying, adding,
subtracting and inverting them. We can use standard
Gaussian elimination in order to invert the matrix B in
the Kalman gain calculations, however, there are
problems encountered in performing matrix inversion:

• singular or near singular matrices can not be
inverted.

• errors accumulates in gauss elimination
algorithm reducing accuracy

hence the overall system including matrix inversion
becomes less robust .

In a linear system of equations AX = C, it can be
shown that

1X C
A A

X X C
−∆ ∆

≤
+ ∆

. (9)

1X A
A A

X A
−∆ ∆

≤ . (10)

The equations above show that the relative change in
the norm of right hand side vector or the coefficient

matrix can be amplified by as much as 1A A−

which is the condition number of the matrix. This
number coupled with the machine epsilon, can
quantify the accuracy of the solution of AX = C. The
order of the relative error in the solution will be
Cond(A) * machineε . Hence Cond(A) * machineε gives

1/ˆ ˆk k kx x+ =Φ

us the number of significant digits at least correct by

comparing it with 0.5x10
-p
 [8][9][10]. The condition

number of matrix B and machine epsilon value will be
used in the simulations to asses the accuracy of matrix
inversion.

In order to prevent the effect of the problems
mentioned above, the proposed simple algorithm
replaces a part of the Kalman gain calculations with a
neural network. This algorithm is presented in Section
2. In section 3 simulation results which compare the
Kalman filter with the neural network aided Kalman
filter are presented.

2 Neural Network Aided Kalman
Gain Calculations

The innovation matrix B is an mxm matrix. We can
construct a neural network taking the elements of B as
inputs and calculating the inverse of B as outputs. Note
that this can be achieved through training the network
using a learning algorithm. The main advantage of this
is that it avoids matrix inversion in Kalman filtering
calculations. The neural network aided Kalman gain
calculations is shown in Fig. 1.

Fig 1 Kalman gain calculations with a neural network

Jang et al[11] proposed a modified Hopfield neural
network for matrix inversion. Steriti at al [12]
simulated this algorithm and showed that although

neural network algorithm takes longer processing time,
the results are less sensitive to error, round off and
noise.

Fa-Long and Zeng [13] developed a two dimensional
neural network for matrix inversion and showed by
both simulations and analytically that the network is
stable and can perform matrix inversion within a
limited time period. Wang [14] also presented a
recurrent neural network for matrix inversion which
can be decomposed into n independent sub-networks
and can be implemented by an analog circuit.

Al-Mudhaf and Esat [15] discuss the use of feed
forward neural network (FNN) in matrix
manipulations. They concentrate on training
algorithms of FNN and speeding up the training
process of the neural network. To the best knowledge
of author of this article, there has been no study in the
literature which uses NN matrix inversion in Kalman
filtering calculations.

In this study, a back-propagation network is used to
construct the neural network for matrix inversion. It is
a 3-layer network including an input layer, a hidden
layer and output layer with m-(m+2)-m processing
elements respectively. There are two major parameters
that have to be set up prior to the learning. These are
learning coefficients and momentum coefficient.
Sigmoid function is used to define the output values of
the processing elements of the network. The detailed
information about back propagation networks can be
found in [16].

Back propagation networks are capable of mapping
certain inputs to certain outputs using its internal
dynamics featured by a learning algorithm. This can
explain how the inverse of matrix is achieved using the
matrix itself as an input. In this study the learning
algorithm is based on a gradient descent rule.

Assuming that the state space where the filter will
operate is known in advance. Training data were
generated using Monte Carlo simulations. The input
values generated through simulations scaled down to
0-1 interval in order to improve the generalization
capability of the network. The following equations are
used for this purpose

min max min() /()scaledy y y y y= − − , (11)

min max min() /()scaledx x x x x= − − , (12)

A well known training multi-layer perception (MLP)
algorithm [17][18] [19][20] was used to train the
network.

N
N

B

Binv

HT

Pk+1/k

*

Kk+1/k

The Kalman gain is calculated using the equation (6)
in the standard Kalman filter. In this equation the
inversion of the matrix B was replaced by the neural
network. The rest of Kalman filter equations stay the
same.

3. Simulation Results

Consider a simple target tracking problem to examine
mean square errors in the estimates of the Kalman
Filter and Neural Network aided Kalman Filter.
Assuming that the target move in x-y plane with a
constant velocity and random acceleration noise, the
state vector, the state transition matrix, the excitation
matrix and measurement matrix are given below
respectively.

1 1()T
k kx x x y y+ += & &

, (13)

1 0 0

0 1 0 0

0 0 1

0 0 0 1

t

t

∆ 
 
 Φ =
 ∆
 
  , (14)

2

2

/ 2 0

0

0 / 2

0

t

t

t

t

 ∆
 
∆ Γ =
 ∆
 

∆   , (15)

1 0 0 0

0 0 1 0
H

 
=  
  . (16)

Here t∆ is the sampling interval which is set to 1 sec.
The variance of range measurement noise is
0.00001km2 and the variance angular measurement
noise is 0.00004 rad2. The speed of the target is
0.015km/sec. The acceleration noise variance is
qx=qy=0.000005(km/s2)2. The inclination of the target
with respect of the x axis is 45 degree. Simulations
were performed for 100 scans. Figures 2 and 3 present
comparison between estimation errors of the two
filters for x and y position estimates. As we see from
these figures the rms errors of x estimates in neural
network aided Kalman filter are comparable to the
standard Kalman filter. However, those of y estimates
are grater than the Kalman filter. Note that the error
scale is ten times smaller in magnitudes than error
scale for x estimates.

Figure 4 shows how the determinant of the matrix B
changes during the simulations for 100 scans. When

the filter is initialized the determinant of B is very
close to zero which can cause matrix inversion
algorithm failure. On the other hand, the condition
numbers of the matrix which give better idea about the
matrix B is shown in Figure 5. The condition numbers
are calculated using 2-norm. By examining this figure
it can be seen that the matrix B is not well conditioned.
After the initial period, the condition numbers are

settled around 1300. The value of machineε
 for an

embedded 32 bit processor with single precision
floating point unit which has a mantissa of 24 bits can

be calculated as machineε
=

1 24 62 0.1192 10x− −= .
Then

0.5 10 ()*p
machinex cond B ε− <

0.5x10-p < 1300 * 0.1192x10-6 = 0.1549 * 10-3

hence p >=3

Here the results are given for a particular scenario.
Simulations have been performed with different noise
levels. In all of them the matrix B is found to be not
well conditioned. For three different values of range
and measurements noise, the average values of the
condition numbers of the matrix B for 100 scans are
shown in the Table 1. From this table it can be seen
that as measurements noise increases the condition
numbers of the matrix B also increases. Therefore
using neural network in the calculations of the matrix
B prevents us dealing with ill conditioned matrices.

Table 1 The condition numbers of the matrix B

Noise Noise
variance

average of
condition
numbers of
the matrix
B

Measurement noise (km2)

Angular noise (rad2)

0.000001

0.000004

623

Measurement noise (km2)

Angular noise (rad2)

0.00001

0.00004

1279

Measurement noise (km2)

Angular noise (rad2)

0.0001

0.0004

1890

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

1 21 41 61 81

time

rm
s
er
ro
r
of
 x
 p
os
iti
on

es
tim

at
io
n

Kalman Filter

NN Aided Kalman Filter

Fig 2 rms error of x position estimation

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

1 21 41 61 81

time

rm
s
er
ro
r
of
 y
 p
os
iti
on

es
tim

at
io
n

Kalman Filter

NN Aided Kalman Filter

Fig 3 rms error of y position estimation

determinant of B

0,00E+00

5,00E-07

1,00E-06

1,50E-06

2,00E-06

1 21 41 61 81

time

d
e
te
rm
in
a
n
t

Fig 4 Determinant of the matrix B

condition numbers of B

0

1000

2000

3000

4000

1 21 41 61 81

time

c
o
n
d
it
io
n
 n
u
m
b
e
r

Fig 5 Conditions numbers of the matrix B

4. Conclusions

In this study a novel approach is presented in such a
way that the neural network technology is utilized for
performing matrix inversion in Kalman filtering
algorithm. The approach overcomes matrix inversion
problems. Note that traditional gauss elimination
algorithm for matrix inversion in a Kalman filter may
yield filter which is not robust enough due the loss of
accuracy in the inversion process. The simulation
results showed that for the chosen example the matrix
B is not well conditioned. Simulations were performed
using double precision arithmetic, however in the
actual embedded system implementation it is assumed
that only single precision is available. Neural networks
are well known for their robust structure which may
definitely produce more stable estimates. Moreover
neural networks can estimate inverse values of any
matrix regardless of condition numbers of the matrix
which is one of the main difficulties of the standard
Kalman filter.

Although generalization capability of neural network
makes them applicable in a wide range of problem
spaces, it should be stated the proposed approach is
effectively applicable when the problem space is
known, for example using the filter to estimate
trajectories of the objects with limited life time.

Further investigations can be made by using different
type of neural networks in Kalman gain calculations
and comparing the results. Applying the
proposed approach to nonlinear filters such as
Unscented Kalman Filter [21] and Central Difference
Kalman Filter [22] should be a subject of future work.

Acknowledgement

The author would like to express his gratitude to Ercan
Oztemel for his support in the construction of the NN.

References

[1] Kalman, R. E. (1960) “A New Approach to Linear
Filtering and Prediction Problems,” Transaction of the
ASME—Journal of Basic Engineering, pp. 35-45

[2] Sorenson, H. W. (1970) “Least-Squares estimation:
from Gauss to Kalman”, IEEE Spectrum, vol. 7, pp.
63-68.

[3] Gelb, A., (1974) Applied Optimal Estimation, MIT
Press, Cambridge, MA.

[4] Maybeck, Peter S. (1979) Stochastic Models,
Estimation, and Control, Volume 1, Academic Press,
Inc.

[5] Lewis, R, (1986) Optimal Estimation with an
Introduction to Stochastic Control Theory, John Wiley
& Sons, Inc.

[6] Grewal, Mohinder S., and Angus P. Andrews,
(1993) Kalman Filtering Theory and Practice, Upper
Saddle River, NJ USA, Prentice Hall.

[7] Bozic, S. M. (1994) Digital and Kalman Filtering.
Edward Arnald Publications.

[8]
http://numericalmethods.eng.usf.edu/mws/gen/04sle/

[9] Golub, Gene H., Charles F. Van Loan,(1996)
Matrix Computations, The John Hopkins University
Press, (3rd edition).

[10] A priori and a posteriori bounds in matrix
computations, Encyclopaedia of Mathematics,(2001),
http://eom.springer.de/A/a110010.htm.

[11] Jang, J., S. Lee, and S. Shin, (1988), “An
optimization network for matrix inversion,” in Neural
Information Processing Systems, D.Z. Anderson,
(Editor), American Institute of Physics, New York, pp.
397-401.

[12] Steriti, R.; J. Coleman, M. A. Fiddy, (1990) “A
neural network based matrix inversion algorithm”,
IJCNN International Joint Conference on Neural
Networks, vol. 1, pp:467 – 470.

[13] Fa-Long, L. and B. Zeng,(1992) “Neural Network
Approach to Computing Matrix Inversion”, Applied
Mathematics and Computation, Vol. 47, pp. 109-120..

[14] Wang, J., (1993) “A Recurrent Neural Network
for Real-Time Matrix Inversion”, Applied
Mathematics and Computation, Vol. 55, pp. 89-100.

[15] Al-Mudhaf, A., and I.I Esat, (2004), “Matrix
Manipulations using Artificial Neural Networks”,
Transactions of SDPS, Vol. 8 No 3, pp. 113-122.

[16] Haykin S. (1998), Neural Netwoks A
Comprehensive Foundation, Prentice Hall, (2nd
edition).

[17] Rumelhart, D.E., GE. E. Hinton, and R. J.
Williams (1988) ‘Learning internal representations by
error propagation’ in Neurocomputing: foundations of
research, pp 673-695, edited by James A. Anderson
and E. Rosenfeld, MIT Press, Cambridge MA USA.

[18] Amin, H.; K. M. Curtis, B. R. Hayes Gill (1997),
“ Dynamically pruning output weights in an expanding
multilayer perceptron neural network” 13th
International Conference on Digital Signal Processing
Proceedings, Volume 2, Issue , 2-4 pp:991 – 994.

[19] Chen, H. H., M. T. Manrym M. T. and H.
Chandrasekaran (1999), “A neural network training
algorithm utilizing multiple sets of linear equations,”
Neurocomputing, vol. 25, no. 1-3, pp. 55-72

 [20] Delashmit, W. H. and M. T. Manry, (2005).,
"Recent Developments in Multilayer Perceptron
Neural Networks", Proceedings of the 7th annual
Memphis Area Engineering and Science Conference
(MAESC).

[21] Julier, S.J, and J.K. Uhlmann, (2004), "Unscented
Filtering and Nonlinear Estimation", Proceedings of
IEEE, vol 92, pp. 401-422.

[22] Norgaard, M, N. K. Poulsen, and O. Ravn,(2000)
"New Developments in State Estimation for Nonlinear
Systems," Automatica, vol. 36, pp.1627-1638.

