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Abstract 

In Kalman filtering, a novel approach is presented 
to replace  a part of the Kalman gain calculations 
with a neural network. The proposed algorithm 
avoids matrix inversion in the Kalman filter, hence 
eliminating the problems encountered. 

1   Introduction 

Since the publication of R. Kalman`s well known 
paper [1] on the solution of discrete data linear 
filtering problem, thousands of scientific papers 
related to Kalman filtering and its applications were 
published.  Very detailed and excellent materials on 
Kalman filter can be found in [2], [3], [4], [5],[6] and 
[7].  A discrete time process is modeled as 

1k k nx x w+ = Φ +Γ ,   (1)

with a measurement vector z  

1 1 1n n nz Hx v+ + += + .    (2) 

Where, the random variables wk and vk assumed to be 
independent each other represent the process and 
measurement noise respectively with covariance 
matrices Qk and Rk respectively. Φ  is an nxn state 
transition matrix, Γ  is an nxm excitation matrix. H is 
the mxn measurement matrix. Before the 
measurements arrival the Kalman filter updates state 
vector and covariance matrix of prediction as (time 
update equations): 

 

1/ˆ ˆk k kx x+ = Φ � (3)

1/
T T

k k k kP P Q+ = Φ Φ +Γ Γ � (4)

Kalman filter calculates new state vector using the 
Kalman gain and measurements and updates the 
covariance matrix of estimation as (measurement 
update equations). 

1 1 1/
T

k k k kB R HP H+ + += + � (5) 

1
1 1/

T
k k kK P H B−
+ += � (6) 

1 1/ 1 1 1/ˆ ˆ ˆ( )k k k k k k kx x K z Hx+ + + + += + − � (7)

1 1 1/( )k k k kP I K H P+ + += − .  (8) 

If we look at the Kalman filtering equations above, the 
matrices are manipulated by multiplying, adding, 
subtracting and inverting them.  We can use standard 
Gaussian elimination in order to invert the matrix B in 
the Kalman gain calculations, however, there are 
problems encountered in performing matrix inversion:  

• singular or near singular matrices can not be 
inverted. 

• errors accumulates in gauss elimination 
algorithm reducing accuracy 

hence the overall system including matrix inversion 
becomes less robust . 

 

In a linear system of equations AX = C, it can be 
shown that 

1X C
A A

X X C
−∆ ∆

≤
+ ∆

. (9) 
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The equations above show that the relative change in 
the norm of right hand side vector or the coefficient 

matrix can be amplified by as much as 1A A−   

which is the condition number of the matrix. This 
number coupled with the machine epsilon, can 
quantify the accuracy of the solution of AX = C.   The 
order of the relative error in the solution will be 
Cond(A) * machineε . Hence Cond(A) * machineε  gives 

1/ˆ ˆk k kx x+ =Φ



 

 

us the number of significant digits at least correct by 

comparing it with 0.5x10
-p
  [8][9][10]. The condition 

number of matrix B and machine epsilon value will be 
used in the simulations to asses the accuracy of matrix 
inversion. 

 

In order to prevent the effect of the problems 
mentioned above, the proposed simple algorithm 
replaces a part of the Kalman gain calculations with a 
neural network.  This algorithm is presented in Section 
2. In section 3 simulation results which compare the 
Kalman filter with the neural network aided Kalman 
filter are presented.  

2  Neural Network Aided Kalman 
Gain Calculations 

The innovation matrix B is an mxm matrix. We can 
construct a neural network taking the elements of B as 
inputs and calculating the inverse of B as outputs. Note 
that this can be achieved through training the network 
using a learning algorithm. The main advantage of this 
is that it avoids matrix inversion in Kalman filtering 
calculations. The neural network aided Kalman gain 
calculations is shown in Fig. 1. 

 

 

 

 

 

Fig 1 Kalman gain calculations with a neural network 

 

Jang et al[11] proposed a modified Hopfield neural 
network for matrix inversion.  Steriti at al [12] 
simulated this algorithm and showed that although 

neural network algorithm takes longer processing time, 
the results are less sensitive to error, round off and 
noise. 

 

Fa-Long and Zeng [13] developed a two dimensional 
neural network for matrix inversion and showed by 
both simulations and analytically that the network is 
stable and can perform matrix inversion within a 
limited time period. Wang [14] also presented a 
recurrent neural network for matrix inversion which 
can be decomposed into n independent sub-networks 
and can be implemented by an analog circuit.  

Al-Mudhaf and Esat [15] discuss the use of feed 
forward neural network (FNN) in matrix 
manipulations. They concentrate on training 
algorithms of FNN and speeding up the training 
process of the neural network. To the best knowledge 
of author of this article, there has been no  study in the 
literature which uses NN matrix inversion in Kalman 
filtering calculations. 

In this study, a back-propagation network is used to 
construct the neural network for matrix inversion. It is 
a 3-layer network including an input layer, a hidden 
layer and output layer with m-(m+2)-m processing 
elements respectively. There are two major parameters 
that have to be set up prior to the learning. These are 
learning coefficients and momentum coefficient. 
Sigmoid function is used to define the output values of 
the processing elements of the network. The detailed 
information about back propagation networks can be 
found in [16].  

Back propagation networks are capable of mapping 
certain inputs to certain outputs using its internal 
dynamics featured by a learning algorithm. This can 
explain how the inverse of matrix is achieved using the 
matrix itself as an input. In this study the learning 
algorithm is based on a gradient descent rule. 

 

Assuming that the state space where the filter will 
operate is known in advance. Training data were 
generated using Monte Carlo simulations. The input 
values generated through simulations scaled down to 
0-1 interval in order to improve the generalization 
capability of the network. The following equations are 
used for this purpose 

 

min max min( ) /( )scaledy y y y y= − − , (11) 

min max min( ) /( )scaledx x x x x= − −  , (12) 

 

A well known training multi-layer perception (MLP) 
algorithm [17][18] [19][20] was used to train the 
network. 
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The Kalman gain is calculated using the equation (6) 
in the standard Kalman filter. In this equation the 
inversion of the matrix B was replaced by the neural 
network.  The rest of Kalman filter equations stay the 
same. 

3. Simulation Results 

Consider a simple target tracking problem to examine 
mean square errors in the estimates of the Kalman 
Filter and Neural Network aided Kalman Filter. 
Assuming that the target move in x-y plane with a 
constant velocity and random acceleration noise, the 
state vector, the state transition matrix, the excitation 
matrix and measurement matrix are given below 
respectively. 

1 1( )T
k kx x x y y+ += & &

,    (13) 
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1 0 0 0

0 0 1 0
H

 
=  
  .   (16) 

Here t∆  is the sampling interval which is set to 1 sec. 
The variance of range measurement noise is 
0.00001km2 and the variance angular measurement 
noise is 0.00004 rad2. The speed of the target is 
0.015km/sec. The acceleration noise variance is  
qx=qy=0.000005(km/s2)2. The inclination of the target 
with respect of the x axis is 45 degree. Simulations 
were performed for 100 scans. Figures 2 and 3  present 
comparison between estimation errors of the two 
filters for x and y position estimates. As we see from 
these figures the rms errors of x estimates in neural 
network aided Kalman filter are comparable to the 
standard Kalman filter. However, those of y estimates 
are grater than the Kalman filter. Note that the error 
scale is ten times smaller in magnitudes than error 
scale for x estimates. 

 

Figure 4 shows how the determinant of the matrix B 
changes during the simulations for 100 scans. When 

the filter is initialized the determinant of B is very 
close to zero which can cause matrix inversion 
algorithm failure.  On the other hand, the condition 
numbers of the matrix which give better idea about the 
matrix B is shown in Figure 5. The condition numbers 
are calculated using 2-norm. By examining this figure 
it can be seen that the matrix B is not well conditioned. 
After the initial period, the condition numbers are 

settled around 1300. The value of machineε
 for an 

embedded 32 bit processor with single precision 
floating point unit which has a mantissa of 24 bits can 

be calculated as machineε
= 

1 24 62 0.1192 10x− −= . 
Then  

0.5 10 ( )*p
machinex cond B ε− <

 

0.5x10-p <  1300 * 0.1192x10-6 = 0.1549 * 10-3  

hence  p >=3 

Here the results are given for a particular scenario. 
Simulations have been performed with different noise 
levels. In all of them the matrix B is found to be not 
well conditioned. For three different values of range 
and measurements noise, the average values of the 
condition numbers of the matrix B for 100 scans are 
shown in the Table 1. From this table it can be seen 
that as measurements noise increases the condition 
numbers of the matrix B also increases. Therefore 
using neural network in the calculations of the matrix 
B prevents us dealing with ill conditioned matrices. 

Table 1 The condition numbers of the matrix B 

Noise  Noise 
variance 

average of 
condition 
numbers of 
the matrix 
B 

Measurement noise (km2) 

Angular noise (rad2) 

0.000001 

0.000004 

623 

Measurement noise (km2) 

Angular noise (rad2) 

0.00001 

0.00004 

1279 

Measurement noise (km2) 

Angular noise (rad2) 

0.0001 

0.0004 

1890 
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Fig 2  rms   error of x position  estimation 
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Fig 3  rms  error  of y position  estimation  
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Fig 4 Determinant of the matrix  B  
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Fig 5 Conditions numbers of the matrix B  

 

4. Conclusions 

In this study a novel approach is presented in such a 
way that the neural network technology is utilized for 
performing matrix inversion in Kalman filtering 
algorithm. The approach overcomes matrix inversion 
problems. Note that traditional gauss elimination 
algorithm for matrix inversion in a Kalman filter may 
yield filter which is not robust enough due the loss of 
accuracy in the inversion process. The simulation 
results showed that for the chosen example the matrix 
B is not well conditioned. Simulations were performed 
using double precision arithmetic, however in the 
actual embedded system implementation it is assumed 
that only single precision is available. Neural networks 
are well known for their robust structure which may 
definitely produce more stable estimates.  Moreover 
neural networks can estimate inverse values of any 
matrix regardless of condition numbers of the matrix 
which is one of the main difficulties of the standard 
Kalman filter. 

 

Although generalization capability of neural network 
makes them applicable in a wide range of problem 
spaces, it should be stated the proposed approach is 
effectively applicable when the problem space is 
known, for example using the filter to estimate 
trajectories of the objects with limited life time. 

Further investigations can be made by using different 
type of neural networks in Kalman gain calculations 
and comparing the results. Applying the 
proposed approach to nonlinear filters such as 
Unscented Kalman Filter [21] and Central Difference 
Kalman Filter [22] should be a subject of future work. 
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