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Abstract

A point-by-point approximation method for
multidimensional scalar function is discussed.
In accordance with Tikhonov theory a sta-
bilizing functional was introduced in the so-
lution set for the purpose of approximation
regularization. Bayesian method was used to
determine the regularization parameter. The
developed algorithm has unique analytical so-
lution for the regularization parameter un-
like other approximation models which use
Bayesian regularization.

1 Introduction

The heart of the problem of scalar function approxi-
mation is to build a functional dependence h(~x) able
to produce the given dataset D = {yi, ~xi}Li=1. The
data are presented as points in m + 1-dimensional
space consisting of m-dimensional subspace of
inputs X and one-dimensional subspace of outputs
Y . If there is noise in the data the function h(~x) is
admitted not to go exactly through the points.

Function approximation, as most of the inverse
problems, is ill-posed i.e. has many solutions.
Mathematically it is usually formulated as mean-
square error minimization problem (the least squares
method):

E =

L∑

i=1

(yi − h(xi))
2
.

To guarantee uniqueness of the solution, in accor-
dance with Tikhonov theory of regularization, a sta-

bilizing functional Ω(h) was introduced in the field
of solutions. It reflects the degree of preference of
possible functions h. As a result the problem comes
to another optimization problem: minimization of
mean-square error with stabilization term:

F =

L∑

i=1

(yi − h(xi))
2
+ λΩ(h). (1)

Minimization of the functional (1) actually is a
trade-off between accuracy of data description (the
first term minimization) and prior preferences of
solutions (the second term minimization). The
regularization parameter λ in this formula defines
which of these two terms is more significant.

One of the possible ways to define this parameter
is validation approach (Zhu, 1996). The data
D = {yi, ~xi}Li=1 are divided into two parts: training
set DL, and validation set DV : D = DL ⊕DV . As
the first step the parameter λ is chosen (perhaps
randomly) and minimum of (1) is found for the
training data set DL. Then λ is corrected to mini-
mize the validation error

∑
i∈DV

(yi−h(xi))
2. After

that new approximation function is determined
using new and so on. That is so-called Expectation
Maximization algorithm (EM-algorithm) (Demp-
ster, 1977).

The weakness of this method is a strong depen-
dence on the way of division into training DL

and validation DV parts. To avoid this problem a
cross-validation method was suggested (Zhu, 1996).
In this case the data were divided into training
and validation parts many times and each time
the procedure of approximation function building
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and λ correction is fulfilled. The cross-validation
technique provides increase of solution reliability
but the expensiveness of the procedure rises too.
Indeed, the number of ways of data fragmentation
into training and validation parts increases as a
factorial of data points number L.

A new method of regularization parameter de-
termination based on the Bayesian formula has
become popular since the end of eighties of last
century. It is assumed that there is some functional
dependence of probability of approximation error on
the magnitude of this error P (βE). This functional
dependence includes β as a parameter. The same
assumptions are introduced for prior probabilities
of the solutions P (h) = P (αΩ(h)). The solution
of the problem is the function which maximizes
the product P (βE)P (αΩ(h)). It depends on the
parameters α and β. In probabilistic paradigm
these parameters perform the same role as λ does
in (1). Their values are determined using maxi-
mum likelihood method. We will discuss Bayesian
method in details in the next section.

Then we will describe a new model of approxima-
tion using Bayesian regularization. This model has
a unique analytical solution for the regularization
parameters in difference of the others.

2 Bayesian approach to the
regularization problem

In Bayesian paradigm we choose the solution tak-
ing into account some terms set by the model H
(MacKay, 1992). The most probabilistic solution is
defined by Bayesian formula:

P (h|D,H) =
P (D|h,H)P (h|H)

P (D|H)
. (2)

In this expression P (h|D,H) is a conditional
probability that the solution h is chosen for data
D description under the conditions H, P (D|h,H)
is a probability of generation of data D by the
function h under the conditions H, and P (h|H) is a
prior probability of solution h choosing the modelH.

Likelihood of the model called Evidence is defined
by the denominator of Bayesian formula.

P (D|H) =
∑

h

P (D|h,H)P (h|H) =
∑

h

P (D,h|H).

Bayesian formula also can be written for models. In

this case it compares different prior terms:

P (H|D) =
P (D|H)P (H)

P (D)
.

We have to define priorities for models P (H) to max-
imize Evidence i.e. have to define next-level model.
In practice two-levels scheme is usually used. We
assume all models are equiprobable:P (H) = const .
Under this assumption we choose the model with
maximal Evidence:

HML = argmax
h

P (D|H).

After the prior terms are defined we choose the func-
tion (2).

3 Prior function selection

Let us suppose the solution depends on some set
of fitting parameters h(~x) = h(~x,~a), where ~a =
{an}Nn=1. Some assumptions must be done for the
probabilities in the formula (2). In the review
(Zhu, 1996) Bayesian regularization of interpolation
is discussed for various models. The probabilities
considered there are:

P (D|h,H) =
1

ZX
exp(−αEX),

P (h|H) =
1

ZA
exp(−αΩ(h)).

Here EX is an approximation error, Ω(h) is a func-
tion of parameters ~a = (a1, a2, . . . , aN ). As a rule
the function is symmetrical i.e. it depends on ab-
solute values of (a1, a2, . . . , aN ). ZX and ZA are
normalization constants. There are two the most
popular and simplest stabilization functionals which
suit this requirement:

• Gaussian prior Ω(h) =
∑N

n=1 a
2
n (for example,

it was used in (Sollich, 1999))

• Laplace prior Ω(h) =
∑N

n=1 |an| (for example,
it was used in (Poggio, 1998))

They correspond to probabilities

P (h|H) =
1

ZA
exp(−α

N∑
n=1

a2n), (3)

P (h|H) =
1

ZA
exp(−α

N∑
n=1

|an|).

Below we use Gaussian prior probability function
(3). It allows building the scheme of function ap-
proximation with some calculation advantages.



4 Approximation by func-
tional basis

In this section algorithm of approximation suggested
by authors in (Nuzhny, 2003) is described briefly.
Let’s search the solution h(~x) as series of functions
{ψn(~x)}Nn=1:

h(~x) =

N∑
n=1

anψn(~x).

It is also assumed that noise in the data is Gaussian.
Then the probability of data point {yi, ~xi} genera-
tion by the solution is

P (xi|h) =
√

π

β
exp

(−β(yi − h(xi))
2
)

and full data set D = {yi, ~xi}Li=1 generation proba-
bility is

P (D|h) = 1

ZX
exp

(
−β

L∑
n=1

(yi − h(xi))
2

)
.

Let the stabilization term to be of Gaussian form.
In this case the prior probability is

P (h|H) =
1

ZA
exp

(
−α

N∑
n=1

a2n

)
.

Maximization of the total probability

P (h|D,H) =
1

ZM
e−M

where

M = β

L∑

i=1

(yi − h(xi))
2
+ α

N∑
n=1

a2n

equals to minimization of (1) and comes to solving
of the system of linear algebraic equations problem:

∑
amAmn = Bn (4)

where

Amn = β

L∑

i=1

ψmiψin, n 6= m,

Ann = β

L∑

i=1

ψ2
ni + α,

Bn = β

L∑

i=1

yiψni.

Now we have to maximize Evidence to define the
parameters α and β. It is easy to show that

P (D|H) =
ZM

ZAZX

or

ln P (D|H) = ln ZM − ln ZA − ln ZX

where

ZA =

∫ ∞

−∞
exp

(
−α

N∑
n=1

a2n

)
dNan

ZX =

(
π

β

)L
2

ZM =

∫ ∞

−∞
dNanexp(−β

L∑

i=1

(yi−

−
N∑

n=1

anψni)
2 − α

N∑
n=1

a2n) (5)

The last integral can be calculated approximately.

ln P (D|H) =

N∑
n=1

(
(
β~y ~ψn

)2

Ann
− 1

2
ln Ann−

−β

N∑

m 6=n

~ψn
~ψmanam

)
+
N

2
ln α−β~y2+

L

2
ln β−L

2
ln π

This functional contains the coefficients {an}Nn=1 de-
fined by the parameters α and β. In this case EM-
algorithm (Dempster, 1977) can be used:

• On the first step we initialize the parameters
α and β and calculate the coefficients {an}Nn=1

resolving the system (4).

• On the second step we fix these coefficients and
calculate the regularization parameters and so
on.

These steps are repeated until {an}Nn=1 are stable.

5 The Case of orthogonal basic
vectors

In this section the case when basic functions meet
the condition (6) is discussed.

L∑

i=1

ψmiψni = δmn (6)



For example, many wavelet bases defined on regu-
lar grid satisfy this term. Normalization of these
sums on the unit is an unnecessary condition but it
makes calculations easier.If the term (6) is true the
algorithm of approximation is simplified essentially:

1. The expensive procedure of system (4) calcula-
tion (the number of operations increases as the
number of basic functions to the third power

N3) is replaced by an =
Bn

Ann
or taking into

account (6)

an =
β

β + α

L∑

i=1

yiψni (7)

2. Logarithm of Evidence does not include the co-
efficients an:

ln P (D|H) =

N∑
n=1




(
β~y ~ψn

)2

Ann
− 1

2
ln Ann


+

+
N

2
ln α− β~y2 +

L

2
ln β − L

2
ln π (8)

It allows not to use EM-algorithm but to per-
form a single iteration. Optimal α and β are
found by maximizing of (8) and then coefficients
(7) are calculated.

3. The expression for logarithm of Evidence is
computed exactly. The details of computation
are in appendix A.

4. Functional (8) has a unique extreme point. It
corresponds to the functional maximum and the
parameters can be expressed analytically:

α =
1

2

(L−N)(
L
N S − ~y2

) (9)

β =
1

2

(L−N)

~y2 − S
(10)

λ =
α

β
=

~y2 − S(
L
N S − ~y2

)

where S is given by (14).

For details see appendix B. As a result the algorithm
of approximation is built:

1. Calculate basis functions {~ψn(x)}Nn=1 in points
{xi}Li=1

2. Find parameters α and β by formulas (9) and
(10).

3. Using these parameters find the coefficients of
solution decomposition {an}Nn=1.

The parameters α and β must be positive. Oth-
erwise the expressions for probabilities lose mean-
ing. This requirement is satisfied when L > N .
The other cases are outside of our model. Indeed
if N ≥ L matrix (4) is irregular and term (6) is not
valid.

6 Examples of approximation

The described algorithm was used for approxima-
tion of a model data set on a regular mesh. The
points were generated by the function f(x) =

exp (x/x0)
2
(1− cos (x/10)), where x0 - parameter

which determines damping. Here this parameter
equals the length of variation interval forX variable.
The number of the points was L = 128. Haar func-
tions (Daubechies, 1992) were used as basic func-
tions. They are given by scaling and shifting of the
“mother function”:

ψ(x) =





1 0 ≤ x < 1/2
−1 1/2 ≤ x < 1
0 otherwise

With the “scaling function”

φ(x) =

{
1 0 ≤ x ≤ 1
0 otherwise

they form an orthonormal basis on a regular mesh.

Accordingly to the developed algorithm the regular-
ization parameters and series coefficients for initial
function were calculated. The results of approxi-
mation for 16 and 64 basis functions are shown in
Fig. 1-2 respectively.
This method can be extended to the case of
nonorthogonal basis functions. If term (6) is not

true the set of vectors {ψn(x)}Nn=1 can be orthogo-
nalized. Consider matrix Ψ which columns are the
basis vectors. Transformation

W = Ψ
(
ΨTΨ

)− 1
2 (11)

gives a new matrix which columns are new orthog-
onal basis vectors {~ωn}Nn=1 (Hyvarinen, 2000). We
apply the above described algorithm for this new
basis. The final decision can be written as

h(x) =

N∑
n=1

ãnψn(x)

where
~̃a = ~a

(
ΨTΨ

)− 1
2 .
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Figure 1: The results of approximation with Haar
wavelets for N = 16
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Figure 2: The results of approximation with Haar
wavelets for N = 64

The inverse matrix in equation (11) was defined
by Gauss-Jordan elimination (Strang, 2003).
In the case of singular matrix ΨTΨ the number
of basic functions was decreased to avoid singularity.

The results of application of the modified algorithm
are shown in Fig. 3. The data set defined on ir-
regular mesh was approximated by Fourier basis{
1, sin

2π

x0
kx, cos

2π

x0
kx

}(N−1)/2

k=1

.

The algorithm described above was applied for two-
variable data set approximation. This data was
given on irregular mesh. Radial Basis Functions

(RBF) ψn = exp

(
− (~x− ~xn)

2

2σ2
n

)
(Buhmann, 2003)

were used as a function basis. The data were
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Figure 3: The results of approximation of the data
set defined on irregular mesh using Fourier basis and
N = 21

clustered using Kohonen maps algorithm (Koho-
nen, 1982). The centers of clusters were selected as
centers ~xn of RBFs. Parameters σn were determined
as standard deviations for corresponding clusters

σn =

√√√√ 1

J

J∑

j=1

(~xj − ~xn)2

where ~xj , j = 1, J are representatives of the n-th
cluster.

The result is shown in Fig. 4.
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Figure 4: The result of RBF network approximation



7 Conclusions

The algorithm of point-by-point function approx-
imation was discussed. The solution was being
searched as a series of basis functions. For regular-
ization parameter determination Bayesian method
was used. The proposed algorithm gives unique an-
alytical solution for regularization parameters and
approximation function. Besides it does not use any
iteration procedures like the gradient methods or
EM-algorithm. That is why it can have computing
advantages compared with the others.

Appendix A

Using (5) the following formula can be obtained:

ZM =

∫
dNanexp− β~y2 + 2β

N∑
n=1

~y ~ψnan−

−
N∑

n=1

Anna
2
n

ZM =

∫
dNanexp− β~y2−

N∑
n=1

Ann

(
a2n − 2

β~y ~ψn

Ann
an

)

ZM =

∫
dNanexp− β~y2 +

N∑
n=1

(
β~y ~ψn

)2

Ann
−

N∑
n=1

Ann

(
an − β~y ~ψn

Ann

)2

ZM = exp


−β~y2 +

N∑
n=1

(
β~y ~ψn

)2

Ann




∫
dNa′nexp

(
−

N∑
n=1

Anna
′2
n

)

where

a′n = an − β~y ~ψn

Ann

After integration, substitution all normalization
terms in (4) and finding the logarithm expression
(8) is obtained.

Appendix B

Differentiate functional (8) over parameters α and β
and get the set of equations to determine the values
of these parameters:

∂ ln P (D|H)

∂α
= −

N∑
n=1

(β~y ~ψn)
2

A2
nn

+
Nβ

2αAnn
= 0,

∂ lnP (D|H)

∂β
=

N∑
n=1


2β(~y ~ψn)

2

Ann
−

(
β~y ~ψn

)2

A2
nn


−

− N

2Ann
− ~y2 +

L

2β
. (12)

From the first one it can be found

βS

Ann
=

N

2α
(13)

where

S =

N∑
n=1

(
~y ~ψn

)2

. (14)

Then substituting expression (13) in (12) the fol-
lowing term can be calculated:

N

2α
− ~y2 +

L

2β
= 0.

Using this expression and equation (13) one can ob-
tain the parameter (10).
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